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DNA-binding proteins (DBP) play an essential role in the genetics and evolution

of organisms. A particular DNA sequence could provide underlying therapeutic

benefits for hereditary diseases and cancers. Studying these proteins can timely

and effectively understand their mechanistic analysis and play a particular

function in disease prevention and treatment. The limitation of identifying

DNA-binding protein members from the sequence database is time-

consuming, costly, and ineffective. Therefore, efficient methods for

improving DBP classification are crucial to disease research. In this paper,

we developed a novel predictor Hybrid _DBP, which identified potential DBP

by using hybrid features and convolutional neural networks. The method

combines two feature selection methods, MonoDiKGap and Kmer, and then

used MRMD2.0 to remove redundant features. According to the results, 94% of

DBP were correctly recognized, and the accuracy of the independent test set

reached 91.2%. This means Hybrid_ DBP can become a useful prediction tool

for predicting DBP.

KEYWORDS

DNA-binding proteins, monoDiKGap, CC-PSSM, kmer, MRMD2.0, convolutional neural
network

1 Introduction

DNA-related activities are integral to biological cellular life activities, including

detecting DNA damage, DNA replication, and gene transcription. The replication and

recombination of DNA are facilitated by DNA-binding proteins (Luscombe et al., 2000).

The proteins associated with and regulating the life activities of DNA are called DNA-

binding proteins (DBP) (Gao and Jeffrey, 2008). In the past few years, DBP has become

the subject of increasing research that is crucial to genetics and evolution. Thus,

identifying DNA sequences could potentially treat cancer and hereditary diseases.

DBP has been determined using several experimental approaches (comprising filter

binding analysis, genetic analysis, and X-ray) (Nakano et al., 2016). This technique can
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provide detailed information about DBP, but it is costly and takes

longer to perform. In this post-genomic era, there are many

protein sequences containing DNA-binding domains, so how to

identify these proteins efficiently and effectively is an important

topic worth studying in depth in bioinformatics. The

identification and prediction methods of DBP were mostly

based on machine learning, and many studies tried to use

protein sequence features and machine learning to distinguish

DBP. DBD-Threader (Mu and Skolnick, 2009) thread-based

approach was applied to predict DNA-binding domains and

associated functional sites. DBPBIND (Szilágyi and Skolnick,

2006) identified DBP from amino acid sequences and low-

resolution junctions. A support vector machine (SVM) model

was constructed by DNABinder (Kumar et al., 2007) by analyzing

amino acids and dipeptides. DNA-Prot (Kumar et al., 2009) was

originally trained to identify DBP from features derived from

sequences using a random forest (RF) classifier, and iDNA-Prot

(Lin et al., 2011) was subsequently named. IDNAPro-PseAAC

(Liu et al., 2015a) used the SVM to improve the predictive power.

After conducting dimensionality reduction, the model was

renamed iDNA-Prot|dis (Liu et al., 2014). Kmer1 + ACC (Liu

et al., 2016) proposed a new approach combining support vector

machines and self-crossing covariance transformations. In

DBPred (Lou et al., 2014), the selection was performed by

FIGURE 1
Hybrid_DBP model structure flowchart (A) Extract features using monoDiKGap feature selection (B) Extract features using Kmer feature
selection (C) Extract features using CC-PSSM feature selection (D)Combine three single feature representations and choose the best hybrid features
(E) Remove redundant features using MRMD2.0 and Predict DBP by 1-D CNN model.

Frontiers in Pharmacology frontiersin.org02

Yu et al. 10.3389/fphar.2022.1031759

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1031759


using a mixture of Random Forest and Gaussian Naive Bayes.

PsePSSM+PSSM-AB+PSSM-DWT (Lu et al., 2020) was

constructed using evolutionary computation and the SVM

approach. Protein identification work is increasingly being

carried out with artificial intelligence and big data, which

brings new perspectives. Many studies have attempted to use

deep learning algorithms to distinguish the sequences of

identifying DBP (Zhang et al., 2020; Li et al., 2021). Previous

approaches have contributed to the development of this field, but

the prediction accuracy has not yet reached satisfactory results

and needs to be further improved. We urgently need a method

for extracting and classifying optimal features to identify DBP.

In this paper, three feature selection approaches were chosen:

monoDiKGap, profile-based cross covariance (CC-PSSM) and

Kmer. Combining the three features in different combinations

was conducted using a hybrid feature approach. We then used

MRMD2.0 to remove redundant hybrid features, and then use

the convolutional neural networks (CNN) to predict DBP. The

result showed the CNN can be very effective in predicting DBP

on the basis of the hybrid features of monoDiKGap and Kmer

methods. Further, a test set was applied to assess the

generalization capability, and the results demonstrated that

the model was robust and generalizable. It showed the

reliability of this paper’s method for studying DNA-binding

proteins. We illustrate our framework in Figure 1, which

explains our modeling process.

2 Materials and methods

2.1 Dataset construction

Datasets of high standard are the foundation for a reliable

model. The dataset used in this paper was obtained from Liu et al,

(2014), which was collected through the Protein Data Bank

(PDB) database of DBP. The database is the most prevalent in

the field of bioinformatics. To process the data set further, we

deleted the sequences comprising nonstandard amino acid

characters “B,” “J,” “O,” “U,” “X,” and “Z.” Finally,

1069 DNA-binding protein samples were obtained, of which

525 were DBP and 544 were non-DBP. To further test the

reliability of the model, this paper used Lou et al, (2014)

compiling the DNA-binding protein dataset PDB186 as an

independent test set, which includes 93 DBPs and 93 non-

DBPs. The model data can be downloaded from https://

github.com/YUshunL/DBP-file.

2.2 Feature selection

2.2.1 MonoDiKGap
The monoDiKGap feature selection is a modification of the

kmer feature selection approach in the PyFeat (Rafsanjani et al.,

2019). Kmer, a typical and important approach for extracting

local features is known as k-tuples. KGap describes a sequence

with monoDiKGap combined with subsequences. MonoDiKGap

then uses AdaBoost (Zhu et al., 2006) to eliminate redundant

features to produce optimal features. The AdaBoost uses the

SCRIT package in Python in order to select the n highest scoring

features for training after the data have been selected.

As a result of the optimal set of features generated, the

dimensionality of the features will be reduced and good

predictions will be made. KGap was set at 2 in this study. In

monoDiKGap, we can express it as follows:

VKGap � [fk1
1 , f

k1
2 , . . . , f

k1
8000, f

k2
1 , f

k2
2 , . . . , f

k2
8000]T. (1)

In Eq. 1, fk1
i (i � 1, 2, ..., 8000) denotes ith feature’s frequency

computed, whenKGap � 1. fk2
i (i � 1, 2, ..., 8000) denotes ith

feature’s frequency computed, when KGap � 2. In this way,

AdaBoost automatically optimized the total feature set created

by 16,000 features and ultimately generated 441 subsets of

features.

2.2.2 Profile–based cross covariance (CC-PSSM)
CC-PSSM (Yanzhi et al., 2008) uses a site-specific scoring

matrix as a feature. Using PSI-BLAST (Altschul et al., 1997) and

NCBI’s NR database, DNA-binding protein sequences were

compared with local information to determine PSSM matrix

information. Using the PSSM matrix, protein sequences can be

predicted based on evolution. The component Sji in the Eq. 2

PSSM matrix indicates the replacement score of the amino acid i

in the sequence j.

The CC-PSSM algorithm converts PSSM matrixes of various

sizes into vectors of identical length. A difference in property

between two residues was computed using CC, along with a lag in

sequence between them. Following is the formula:

CC(i1, i2, LG) � ∑L−LG
j�1

(Sj,i1 − Si1)(Sj+LG,i2 − Si2)/(L − LG). (2)

In the Eq. 2, i1, i2describes two various amino

acids,�Si1, �Si2describes the mean of replacement scores for i1, i2.

L is the protein sequence length, and the maximum LG

(LG � 1, 2 . . . , lag) value is lag. In our study, lag is set at 2.

Consequently, the protein samples were transformed into 760-

length vectors by using computational methods.

2.2.3 Kmer
The Kmer (Liu et al., 2015b) method is a method of

extracting protein features based on sequence data, a relatively

simple and widely used feature extraction method in

bioinformatics. Kmer is a vector consisting of K adjacent

amino acid frequency values.Ai indicates the amino acid at

thei position andAi ∈ {A,C,D, E, F, ...,W, Y} contains the

known 20 amino acids. Eqs. 3–4 list the specific features of

the two commonly used Kmer-K models (Liu et al., 2017).
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Kmer − 1 � {A1, A2, A3, A4, ..., AL−1, AL}, (3)
Kmer − 2 � {A1A1, A1A2, A1A3, ..., ALAL}. (4)

Separate frequencies are calculated for each amino acid

arrangement, and the size of the generated frequency vector

is20K (Galili, 2015). In this paper, we use K=2 to obtain a 400-

dimensional feature vector.

2.3 Feature selection

Hundreds of features are selected by feature extraction

methods. Nevertheless, some of these features are redundant.

In this section, we used the maximum correlation maximum

distance (MRMD2.0) (He et al., 2020) to perform feature

selection. MRMD2.0 reduces dimensionality and ranks

features by identifying those contributing most to predictor

variables or outputs. After extracting features from the

sequences, it used the concepts of the PageRank algorithm

and combined the method coefficients of ANOVA, minimum

redundancy and maximum correlation, maximum

information, and the minimum absolute shrinkage and

selection operators (Quan et al., 2016). Thus,

MRMD2.0 used a forward addition method to detect

optimized dimensions, combining seven various feature

ranking methods with PageRank. Each target page was

assigned a weight value according to the PageRank method.

Smaller weight values were displayed at the back of pages with

larger weight values.

2.4 Classification algorithm

This study is a representative binary classification issue to

predict DBP. We mainly used CNN algorithms to better

explore the prediction model. To better demonstrate the

robustness of our model, the three most prominent deep

learning (DL) architectures and five classical machine

learning (ML) models were compared. In our study, the DL

architectures included CNN, Recurrent Neural Network

(RNN) (Arunkumar et al., 2021), Long Short- Term

Memory (LSTM) (Liu et al., 2021), while the classical ML

models included RF (Qi, 2012), SVM (Meng et al., 2020),

Naive Bayes (NB) (Sun, 2005), Logistic Regression (LR)

(Hosmer et al., 1997)and K-nearest neighbors (KNN)

(Samanthula et al., 2015).

A classical CNN has four kinds of layers: convolutional,

pooling, flat, and fully connected. A feature extraction process

is conducted on the first two layers, while the last two layers

map the extracted features to the final output shown in its

classical structure (Le et al., 2018; Nguyen et al., 2019).

According to the current study, CNN used the following

layers:

1) As part of the convolution process, convolution layers were

used to extract features embedded in 1D (one dimension)

input vectors. Every input shape was transformed with a

sliding window and a specific step shift. A representative value

was generated by sliding the input shapes. During the

convolution process, a vector preserved distances between

values. By utilizing small slides of the input data, this layer was

learned the important features (Le et al., 2017; Le et al., 2019).

2) The activation layer was performed after the convolution

layer. Rectified Linear Unit (ReLU) is a non-linear operation

applied and computed in Eq. 5:

f(x) � max(0, x). (5)

In the Eq. 5, x is the amount of inputs. By introducing ReLU

into our CNN, we enabled it to learn more effectively based on

data analysis.

3) The pooling layer was used for the convolutional layer to

decrease the computation of the following layer. Our

architecture selected the maximum pooling from three

different types of pooling layers to select the maximum

value over 2 windows.

4) To cope with the overfitting problem of neural networks and

improve the model’s generalization ability, we set the dropout

size to 0.2, randomly discarded some neurons, and improved

the performance results in some cases.

5) In the flat layer, the previous layer’s feature matrix is

flattened into one-dimensional feature vectors, which

facilitate the input to the fully connected layer, which is

typically found at the end of a CNN network, and consists

of individual nodes connected to the inputs (Srivastava

et al., 2014).

6) The fully connected layer was typically applied at the end of

the neural network. There is a full connection between each

node in this layer and every other node during the previous

layer. Two layers were fully connected in the current model.

Using this first one, we gained more knowledge and enhanced

our model’s performance by connecting all input nodes to the

spreading layer. The second layer connected this layer to the

output layer. Since DNA-binding proteins were classified

using binary classification, the output layer consists of

2 nodes.

7) Softmax is an evaluation function that determines the

probability of each possible output at the output. The

following formula can be used to calculate its function:

σ(z)i � ezi

∑K
k�1ezk

. (6)
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A K-dimensional vector represents the input vector z, the ith

class is based on predicted probability for x, and σ(z)i is real

values in the range (0, 1).

2.5 Performance evaluation

In this paper, accuracy (ACC) (Wang et al., 2019), sensitivity

(SN), specificity (SP) (Zhu et al., 2020), and Mathew correlation

coefficient (MCC) (Zeng et al., 2019) were applied as a measure

of model performance and represented in Eq. 7–9:

SN � TP
TP + FN

, (7)

SP � TN
TN + FP

, (8)

ACC � TP + TN
TP + TN + FP + FN

, (9)

MCC � TN × TP − FP × FN																																			(TP + FN)(TP + FP)(TN + FP)(TN + FN)√ , (10)

In the model, TP indicates that the DBP is accurately

predicted; FN indicates that the DBP is inaccurately

predicted as the non-DBP; FP demonstrates that the

model inaccurately predicts the DBP from the non-DBP,

and TN demonstrates that the model accurately predicts the

non-DBP. To determine the performance of our model, we

FIGURE 2
Accuracy and loss function plots for three feature selection methods. (A,B) illustrate the accuracy and loss function plots under monoTriKGap.
(C,D) illustrate the accuracy and loss function plots under CC-PSSM. (E,F) illustrate the classification accuracy and loss function plots under Kmer.
The blue line describes the training set and the yellow line describes the validation set.
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calculated the area under the ROC curve (AUC) and the

precision-recall curve (PRC).

3 Results and discussion

3.1 Comparative analysis of different
characterization methods

Three feature selection approaches were used for comparison

to find better feature types. To illustrate the stability and

robustness, we used 80% of the samples in the dataset for

training and 20% for validation. The constructed neural

network has three convolutional layers. The first has a size in

convolutional kernels is 10 and a number of 256, the second has a

size in convolutional kernels is 5 and a number of 128, and the

third has a size in convolutional kernels is 5 and 64. The

convolutional layer’s activation function used ReLU to

improve generalization to deal with the neural network’s

overfitting problem. The size of the dropout was 0.2, and

some neurons were randomly discarded. For the pooling

layer, max-pooling was chosen for our model. Figure 2 shows

the results of classification using a 1D CNN under the three

feature selection methods. We found that the model built based

on the 441 optimal feature subsets selected by monoDiKGap has

a higher performance than other methods. MonoDiKGap feature

extractionmethod predicted 90.5% for the validation set, which is

significantly better than CC-PSSM and Kmer-2. According to the

analysis, monoTriKGap outperformed better than other two

feature selection methods for classification with 1D CNN. The

results illustrated the importance of choosing an appropriate

feature extraction method for model building.

3.2 Performance comparison of different
optimizers methods

Different gradient optimization algorithms were applied to

optimize the neural network to enhance the accuracy and

convergence of the model. Six optimizers were selected in this

paper to optimize the weight coefficients and bias coefficients of

the neural network, namely: Adam, SGD, Adagrad, RMSprop,

Adadelta, and Adamax optimizers (Chensi et al., 2018). The

purpose is to find the appropriate optimizer to converge the

model faster and better. The accuracy and loss function plots of

the six optimizers are shown after 50 epochs in Figure 3. The best

optimizer sought should result in the fastest convergence of the

model’s accuracy and loss function. Figure 3 showed that the Adam

optimizer worked better, with fewer fluctuations, and was more

stable than the other optimizers. Therefore, this parameter

optimization step is vital for improving the overall model’s accuracy.

3.3 Comparison of hybrid feature
representation methods

To determine a better method for extracting features for DBP,

multiple types of feature information was combined by feature

combination. Combining the three feature selection approaches

yields four types of feature combination methods:

monoTriKGap+CC-PSSM, K-mer2 +CC-PSSM, CC-PSSM +

Kmer-2, monoTriKGap+CC-PSSM+K-mer2. There may be

redundancies among these feature combinations, which can affect

performance. Therefore, each of these four feature combinationswas

dimensionally reduced through MRMD2.0 and the classification

results of the validation set were evaluated using a 1-DCNN, and the

FIGURE 3
(A) Shows the classification accuracy of different optimizers (B) shows the loss function of different optimizers.
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results were shown in Table 1. The best classification was found by

comparing experimental results when monoTriKGap and Kmer

were applied with MRMD2.0 dimensionality reduction, which

provided ACC values of 94%, MCC values of 0.91, SN values of

95%, and SP values of 93.1%, which was a 3.5% increase over the

accuracy obtained by monoTriKGap with a single optimal feature.

The monoDiKGap method combines basic features from adjacent

amino acids, generating features to capture amino acid arrangement

frequency distributions in biological protein sequences, as well as

reducing the amount of dimensionality, complexity and

computation time by selecting features with the most

distinguishable information based on AdaBoost. An advantage of

a K-mer protein representation is that it does not require structural

knowledge in order to determine the frequency of incidence of k

neighboring amino acids. Howerver, with frequency-based features,

themore features that are redundant, the less improvement itmakes,

and the longer the feature vector becomes, the less generalization

ability of the underlying prediction model will be achieved. The CC-

PSSM has the advantages of storing the evolutionary information of

TABLE 1 Performance comparison of different feature combinations
under 1-D CNN

Methods ACC(%) MCC SN(%) SP(%)

MonoDiKGap+Kmer 94.0 0.909 95.0 93.1

MonoDiKGap+CC-PSSM 78.6 0.572 79.0 78.2

Kmer + CC-PSSM 69.7 0.393 68.0 71.3

MonoDiKGap+Kmer+CC-PSSM 86.1 0.720 86.0 86.1

FIGURE 4
Confusion matrix unde Hybrid_DBP (A) validation set, (B) test set.

FIGURE 5
(A) ROC curves for different classifiers (B) PRC curves for different classifiers.
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protein sequences. However, calculating features takes time and does

not utilize evolutionary information and protein sequence order

information, making the process more time consuming. To analyze

the amino acid frequency distribution from different perspectives,

we found that combining K-mer and monoDiKGap is more

effective, and we called this model Hybrid_DBP.

3.4 Stability and generalization capability
of models

To test the generalization ability of the Hybrid_DBP, we used

PDB186 to test Hybrid_DBP. The first step in the process was to

extract feature vectors using the monoDiKGap method and Kmer,

followed by filtering the extracted feature set with MRMD2.0 to

generate the best hybrid features with low redundancy and high

relevance. The hybrid features were not only more expressive, but

also reduce feature dimensionality. After using CNN for

classification, 91.2% of DBPs were identified. Figure 4 showed

the confusion matrix for the validation and test sets of the

model. According to the result, the model developed in this

paper was extremely useful for identifying DBP.

3.5 Performance comparison of different
classifiers

To explore the extracted features used to select the best

classification method, we kept the other conditions of the model

constant and explored the model with three classical deep learning

methods and five machine learning classification methods while

exploring the model. We selected a total of eight widely used

classifiers for comparison on the same benchmark dataset,

namely CNN, RNN, LSTM, RF, NB, LR, KNN and SVM, based

on the Hybrid_DBP approach. Figure 5 illustrated the ROC curve

and PRC curves from multiple classification models, in which it

could be observed that the ROC curve of CNN should be the furthest

from the dotted line, close to the upper left corner, with a value of

0.963. A CNN model with PRC curve value of 0.95, closest to the

upper right corner, had the best classification capability. Therefore,

CNN was used to construct our final classification model.

3.6 Comparison with previous approaches
on the independent test set

To compare and analyze the advantages of this model with

previous results, we used PDB186 to conduct experiments.

Table 2 compared the performance method with 10 previous

methods on the independent data set. From the monoTriKGap-

CNN method, we found that the ACC was 91.2%, the MCC was

0.828, the SN was 96.1, which were 5.1%, 0.107 and 11% better

than the current optimal PsePSSM+PSSM-AB+PSSM-DWT

methods, respectively. Compared to most of the existing

methods, the CNN-based algorithms performed better at

certain confidence levels. The selected method presented in

this study is effective and accurate at identifying DBP based

on the previous experimental results.

4 Conclusion

The ability to accurately predict DNA-binding proteins could be

beneficial for treating diseases, which is more beneficial to developing

drugs and treating diseases. This study focuses on the accurate

prediction of DBP. The results showed that the best feature set

produced by combining monoDiKGap and Kmer via

MRMD2.0 under convolutional neural networks could predict 94%

of DNA binding proteins. Furthermore, with the Hybrid_DBP, 91.2%

accuracy was achieved in the independent test set. As a result, the

Hybrid_DBP model was a useful method for studying DBP and

providing reference values for other research studies.

TABLE 2 Performance comparison of existing methods

Method ACC(%) MCC SN (%) SP (%)

IDNA-Prot|dis 72.0 0.445 79.5 64.5

IDNA-Prot 67.2 0.344 67.7 66.7

DNA-Prot 61.8 0.240 69.9 53.8

DNAbinder 60.8 0.216 57.0 64.5

DNABIND 67.7 0.355 66.7 68.8

DNA-Threader 59.7 0.279 23.7 95.7

DBPPred 76.9 0.538 79.6 74.2

IDNAPro-PseAAC 71.5 0.442 82.8 60.2

Kmer1+ACC 71.0 0.431 82.8 59.1

PsePSSM+PSSM-AB+PSSM-DWT 86.1 0.721 85.1 86.9

Hybrid_DBP 91.2 0.828 96.1 86.1
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