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Myofascial pain syndrome (MPS) is a chronic pain disorder with inflammation-related

primarily characterized by the presence of myofascial trigger points (MTrPs). Myocyte

enhancer factor 2C (MEF2C) is involved in theoccurrenceof a variety of skeletalmuscle

diseases. However, it is not yet clear if MEF2C is involved in MTrPs. The purpose of this

studywas to investigatewhetherMEF2Cwas involved in the inflammatorypathogenesis

of MTrPs. In the present study, we used RNA sequencing (RNA-seq) to compare the

differential expression of myocyte enhancer factor 2C (MEF2C) in healthy participants

and MTrPs participants. The widely used rat MTrPs model was established to research

theupstreamanddownstreamregulatorymechanismofMEF2Cand found thatMEF2C

was significantly increased in patientswithMTrPs. Dexmedetomidine (Dex)was injected

intramuscularly in the MTrPs animal to assess its effects on MEF2C. The expression of

MEF2C protein and mRNA in skeletal muscle of rats in the MTrPs group were up-

regulated. In addition, the expressionof TNF- α, p-P65,MLCK, andMyocilin (MyoC)was

up-regulated and the mechanical pain threshold was decreased. Peripheral TNF- α

injection significantly decreased the mechanical pain threshold and increased the

expression of p-P65, MLCK, MEF2C, and MyoC in healthy rats. Maslinic acid

increased the mechanical pain threshold and inhibited the expression of p-P65,

MLCK, MEF2C, and MyoC. In addition, peripheral injection of DEX in MTrPs rats also

inhibited the expression of TNF- α, p-P65, MLCK, MEF2C, and MyoC. These results

suggest that MEF2C is involved in the inflammatory pathogenesis of MTrPs and DEX

serves as a potential therapeutic strategy for the treatment of MPS.
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Introduction

Myofascial pain syndrome (MPS) is a chronic pain

condition which is reported to affect approximately 85% of

the population during their lifetime (Staud 2007). MPS is

defined as a common clinical pain disorder primarily

characterized by myofascial trigger points (MTrPs) (Alvarez

and Rockwell 2002; Fede et al., 2020). The presence of taut

bands and hyperalgesia in skeletal muscles and/or local twitch

responses when conducting palpation are two of the most

remarkable characteristics of MTrPs(Donnelly et al., 2019;

Simons et al., 2019). Myofascial trigger points can be

clinically classified as latent MTrPs or active MTrPs,

according to whether spontaneous pain is caused (Bordoni

et al., 2022). Myofascial trigger points not only induce pain

directly, and can lead to autonomic nerve phenomenon, such as

changes in skin temperature, sweating, tearing, and other

autonomous nerve responses (Morikawa et al., 2017). The

pathophysiological mechanism of MTrPs, however, is not

entirely clear. The formation of MTrPs is a complex process

of neuromuscular dysfunction, with various pathophysiological

factors being involved in the initiation and progression (Stecco

et al., 2013). In our previous studies, we used disposable biopsy

instrument (SuperCore™, Argon Medical Devices, Inc.) for

MTrPs muscle tissue and performed morphological

observations. Hematoxylin and eosin (HE) staining revealed

abnormal hypertrophy of skeletal muscle fiber at the

MTrPs(Zhang et al., 2020b; Jin et al., 2020; Jin et al., 2020;

Zhu et al., 2020). The muscle fibers in the MTrPs showed

annular or elliptical muscle fibers of different sizes in cross-

sectional views (Jin et al., 2020). Nevertheless, the molecular

mechanisms underlying skeletal muscle fiber at the MTrPs

hypertrophy are uncertain. In this study, we performed

transcriptome sequencing analyses with human MTrPs and

normal muscle tissue. Myocyte enhancer factor 2C (MEF2C)

belongs to the MADS-BOX family of transcription factors and

is considered to involve in skeletal muscle differentiation and

growth (Gossett et al., 1989; Piasecka et al., 2021). Myocyte

enhancer factor 2C activity is essential for pathological

myocardial hypertrophy (Zhao et al., 2021), and inhibition

of MEF2C has a protective effect on chondrocytes

hypertrophy (Zhang et al., 2020). Moreover, MEF2C

participates in the process of skeletal muscle atrophy and

hypertrophic process in the soleus muscle after mechanical

overloading (Sakuma et al., 2008; Judge et al., 2020).

Many previous studies proved that the histological

hallmark of MTrPs is the abnormal hypertrophy of local

skeletal muscle (Huang et al., 2015; Zhang et al., 2020b; Jin

et al., 2020; Zhu et al., 2020). However, whether MEF2C is

involved in MTrPs remain unknown. Many studies (Shah

et al., 2008) support the argument that chronic aseptic

inflammation may be involved in MTrPs. Recent studies

have revealed that inhibition of miR-218-5p can suppress

inflammation in myocardial ischemia-reperfusion injury via

targeting MEF2C/NF-κB axis (Yang et al., 2021). And

lipopolysaccharide (LPS) increases the activity of MEF2C

via phosphorylates p38 to contribute to inflammation (Han

et al., 1997). TNF- α, as a classical inflammatory factor, has

been shown to increase significantly in MTrPs. (Shah et al.,

2005). Meanwhile, TNF-α has been considered to be a key

molecule in the regulation of myogenesis and skeletal muscle

regeneration through its activation of p38 and MEF2C(Chen

et al., 2007). These findings illustrate that may exist a positive

feedback loop between TNF-α and MEF2C. In the process of

skeletal muscle forming the MTrPs, it is unclear whether this

regulatory pathway might exist. Therefore, we hypothesize

that inflammation factors TNF-α might promote abnormal

hypertrophy of muscle fibers by activating MEF2C. A human

study and animal model experiment of MTrPs were conducted

to test our hypothesis.

Materials and methods

Participants

This study was approved by the Human Research Ethics

Committee of Qilu Hospital (KYLL-2014-027) and registered in

the Chinese Clinical Trial Registry (ChiCTR-CPR-15007329).

Written informed consent was obtained from participants before

the study began.

The procedure used to recruit MPS participants (M group)

and healthy controls (C group) was described in previous

publications (Jin et al., 2020). A total of 18 participants who

were diagnosed with myofascial pain syndrome by the

Department of Orthopedics at Shandong University’s Qilu

Hospital more than 3 months before the start of the study

were enrolled. The MPS diagnosis and biopsy procedure of

MTrPs were performed by the same physician in order to

avoid any differences caused by different physicians. The

diagnosis was made based on the Delphi study (Fernández-

de-Las-Peñas and Jan, 2018; Gerwin, 2018), including an

inquiry into the history of the disease and a physical

examination. Participants in this study were included if they

met the following criteria: 1) 18 - 65 years old. 2) any gender. 3)

The upper trapezius muscle was diagnosed with MPS. The

exclusion criteria: recent trauma, pregnancy, arthritis, diabetes,

neurological disease, multiple sclerosis, and inflammatory

diseases. The MTrPs group consisted of seven participants,

while the control group consisted of five participants. Based

on their medical histories, none of the participants had radiation,

chemotherapy, or cervical radiculopathy.

Frontiers in Pharmacology frontiersin.org02

Liu et al. 10.3389/fphar.2022.1031804

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1031804


MTrPs biopsy procedure

As described in our previous publication (Jin et al., 2020), the

procedure for sample biopsy is detailed. Briefly, biopsies from the

MTrPs were obtained using a disposable SuperCore™ Biopsy

instrument (ARGON) according to the international consensus

on diagnostic criteria established in 2018 (Fernández-de-Las-

Peñas and Jan, 2018; Gerwin 2018). The tissues were rapidly

frozen in liquid nitrogen and stored at −80°C.

RNA-seq

In this project, RNeasyMiniKit (Qiagen) was used to extract

RNA from human upper trapezius muscle MTrPs samples.

According to the TruSeq™ sample preparation guidelines

(Chen et al., 2015), the TruSeqTMRNA sample preparation kit

was used to synthesize a pair-end library. We use the concept of

FPKM to express the expression of different genes, use edgeR

software for statistical quantification, calculate the number of

sequencing reads of each gene and homogenize between human

upper trapezius samples, on this basis, according to the

experimental grouping information to calculate the differences

between the two groups of genes. The gene fold change difference

between groups was calculated according to the FPKM value.

MTrPs animal model and measurement of
mechanical hyperalgesia.

Shandong University’s Animal Care and Use Committee

approved all animal experiments. Qilu Hospital of Shandong

University Experimental Animals Laboratory provided 6-

week-old male/female Sprague-Dawley (SD) rats weighing

200–250 g. In standard conditions (room temperature: 24°C;

relative humidity: 20%–30%), rats were raised on a 12-h light/

12-h dark cycle. In each cage, four rats were housed

independently, and food and water were provided ad

libitum. One week before the experiment, the rats were

acclimated to the environment.

In the current study, we used theMPS animal model reported

by Huang et al., which is the most widely used animal model of

MPS(Li et al., 2019; Li et al., 2019; Zhang et al., 2020a; Ye et al.,

2020). The diagnosis was done according to the standard

diagnosis with MPS criteria based on the 2018 diagnosis

(Fernández-de-Las-Peñas and Jan, 2018; Gerwin, 2018),

including the presence of TBs and a hypersensitive spot

(MTrPs). This animal model, a chronic pain animal model,

well mimics the two characteristic features of MPS. Moreover,

the muscle fibers in the MTrPs rat model are morphologically

similar to that seen in human muscle biopsy. Therefore, this

model is the most appropriate model for the study of MPS both

behaviorally and histologically. The procedure of the animal

model has been studied and exhaustively described in

previous studies. Briefly, the left gastrocnemius muscle (GM)

of rats was struck bluntly (2.352 J energy) and eccentric-based

exercises (downward angle of -16, speed of 16 m/min, lasted for

1.5 h) were performed on the first and second day of each week

for a total of 8 weeks. During the remaining 4 weeks, the diets

were well fed with no other manipulations. The position of the

MTrPs was determined by palpation of TBs and needling (LTRs).

For mechanical withdrawal pain threshold, a Randall-Selitto

instrument (Shandong Institute of Science and Technology)

equipped with a round head probe (tip diameter: 8 mm) was

used. Randall-Selitto tests involve increasing pressure until the

rat withdraws its limb, the pressure value is automatically

recorded. The withdrawal pain threshold was measured five

times for each rat with an interval of 3 minutes, and the

maximum and minimum values were removed for statistical

analysis. The rats were randomly divided into eight groups using

a web-based random number generator (GraphPad software):

Control + dimethyl sulfoxide (DMSO) (n = 3), Control + TNF-α
(Abcam, 0.1 mg/m, n = 6), Control + Maslinic acid (MCE, 5 mg/

ml) + TNF-α (0.1 mg/ml) (n = 5), MTrPs + DMSO (n = 3),

MTrPs + NF-κB inhibitor Maslinic acid (5 mg/ml, n = 6), MTrPs

+ Dexmedetomidine (10 μg/ml, n = 6), MTrPs +

Dexmedetomidine (100 μg/ml, i. m.n = 6), MTrPs +

Dexmedetomidine (100 μg/ml, i. v.n = 6).

Hematoxylin-eosin staining

Control and MTrPs specimens were fixed using GD fixative

solution (Sevicebio, Wuhan, China). In the following stages,

TABLE 1 The sequence of the primers used in the current investigation in RT-qPC.

Gene Forward primer 59→39 Reverse primer 59→39

MLCK GAGGATCGTGGATGAGGACTACC ACACAGGATGTTCTCTGGCTTGA

MEF2C GAGGATGTGGACTTGCTGTTGAA TGTTGTTGAAATGGCTGACGGATA

MyoC AGGTAGCAAGGCTGAGGAGAG CCAAATTGGACTGAGAGACTTCCC

GAPDH TCTCTGCTCCTCCCTGTTCT ATCCGTTCACACCGACCTTC

Frontiers in Pharmacology frontiersin.org03

Liu et al. 10.3389/fphar.2022.1031804

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1031804


specimens were dehydrated, paraffin-embedded, and sectioned.

A 4-um thick section of tissue was attached to glass slides,

dewaxed, and stained with HE. In the next step, the sections

were dehydrated in ethanol (70–100%) and xylene, followed by

cover slips. Slices were examined with a digital camera attached

to an optical microscope.

Immunofluorescence

Sections of paraffin-embedded tissue were heated at 65°C for 2 h,

separated in xylene, and rehydrated in graded ethanol at room

temperature. Triton X-100 was applied for 10min after washing

with PBS three times. Sections were washed three times in PBS and

thenmicrowavedwith a sodium citrate buffer (PH= 6). Awet chamber

was used to incubate the slices in 3%hydrogen peroxide for 10min after

threewashes in PBS. The tissue sectionswerewashed three times in PBS

and treated for 30min with normal goat serum at 37°C. At 4°C, muscle

sectionswere then incubated overnightwith primary antibody (MEF2C,

Santa, sc-518152, 1:200). The next day, secondary antibodies were

incubated at 37°C for 30min with dye-labeled secondary antibodies

(Abbkine, A23210). After three rounds of washing with PBS, tissue

sections were treated with DAPI for 5minutes and covered.

qRT-PCR

In this experiment, Trizol (Beyotime, R0016) was used to

extract total RNA from MTrPs and normal rat gastrocnemius

muscle tissue. The total RNA was transcribed into cDNA by

HiScript III RT SuperMix for qPCR (+gDNAwiper) kit (Vazyme,

R323-01). cDNA was subsequently amplified by PCR with

specific primers. ChamQ universal SYBR qPCR Master Mix

(Vazyme, Q711-02) was used to perform quantitative real-

time PCR. Levels of targeted mRNA were normalized to

GAPDH. The primers are listed in table 1.

Western blotting

Liquid nitrogen was used to store the muscle tissues at the

injection site of the rat’s left gastrocnemius. Lysis buffer (containing

protease inhibitors and phosphatase inhibitors) was used with the

tissue samples. Centrifuge the lysed homogenate at 14,000 rpm for

20 min at 4°C. The supernatants were collected and dissolved in 4°C

sample buffer before being denatured at 100°C for 10 min.

Afterward, the proteins were separated by SDS-PAGE and

transferred to PVDF membranes, which were blocked for 1 h at

FIGURE 1
(A) H&E staining of the human trapezius muscle fibers cross-sections with light microscopy (x 400). (a) Control muscle fiber morphology. (b)
Enlarged and round muscle fibers were observed in MTrPs patients. (B). RNA-seq was used to compare the transcriptome differences of MEF2C
between healthy human control group (n = 5) and MTrPs group (n = 7, log2FC = 10.20419, versus control using unpaired Mann-Whitney U Test, p <
0.05). (C). Immunofluorescence staining of trapeziusmuscle fibers in human control andMTrPs groups, showed a significant increase in nuclear
translocation in the MTrPs group. (D). The number of MEF2C expression in the Control and MTrPs group. *p < 0.05, **p < 0.01.
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room temperature with QuickBlock™ Blocking Buffer (Beyotime

Biotechnology, P0252-500 ml), before incubating at 4°C overnight

with the antibodies (TNF-α, Affinity, AF7014, 1:500; p-P65, Abcam,

ab76302, 1:1000; P65, CST, 8242T, 1:1000;MLCK, Affinity, DF9023,

1:1000;MEF2C, Santa, sc-518152, 1:500;MyoC, Affinity, DF6483, 1:

1000; GAPDH, Beyotime, AF1186, 1:10000; Lamin B1, Abcam,

ab133741, 1:5,000). Membranes were washed with Tris-buffered

saline Tween-20 (TBS-T) and incubated at room temperature for

1 h with secondary antibody (Bosterbio, BA1054, 1:10000;

Bosterbio, BA1050, 1:10000). With a chemiluminescent reagent,

the blots were developed.

Statistical analysis

For data analysis, GraphPad Prism 8.0 statistical software

was used. All variables were obtained from at least three

repeat independent experiments unless otherwise stated, and

are presented as mean +standard deviation (SD). Student’s

t-test was used to analyze the differences between the two

groups. The t test was used for data with normal distribution,

and the Mann-Whitney U test was used for data that did not

meet normal distribution. The main effects and interactions

of two factors were determined using one-way ANOVA or

two-way ANOVA, followed by Tukey’s multiple comparison

test to determine differences between groups where

necessary. Pain withdraw threshold data measured over

time were analyzed using repeated measures ANOVA. A

p-value smaller than 0.05 (p < 0.05) was considered

statistically significant.

Results

MEF2C was found to be upregulated in
human and animal MTrPs tissue and
participated in the pathophysiological
process of MTrPs

Human trapezius tissue was taken for H&E staining and observed

under themicroscope. In the control group, the fibers were polygonal in

shape (Figure 1A). However, the fibers of the MTrPs group were

enlarged and round (Figure 1A). The RNA sequencing results showed

that the expression of MEF2C genes was up-regulated in MTrPs tissue

(Figure 1B). MEF2C is the second most highly transcribed gene in

MTrPs tissue compared to normal tissue. Immunofluorescence for

FIGURE 2
(A)Weekly changes inmechanical withdrawal thresholds in the left gastrocnemiusmuscle of rats weremeasured with the RandallSelitto device.
The mechanical withdrawal threshold decreases from week three until it remains low at week 12. Data are presented as the mean values ±standard
deviation. (B) H&E staining of the MTrPs model of rats muscle fibers cross-sections with light microscopy (x 400). (a) Normal muscle fibers have a
uniform size and a polygonal shape. (b) Deeply stained round muscle fibers with central nucleus of variable size were seen in the MTrPs
group. (C). The mRNA expression of MEF2C in the MTrPs group was higher than that in the control group, using GAPDH as the internal reference
mRNA. (D). MEF2C protein expressionwas significantly higher in theMTrPs group, with GAPDH as the internal reference protein. *p < 0.05, **p < 0.01.
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MEF2C showed a significant increase in nuclear translocation in human

MTrPs groups (Figures 1C,D).

The animals model was established successfully verified by

results of mechanical withdrawal thresholds and HE staining

after a blunt strike on the left gastrocnemius muscles and

eccentric exercises for 8 weeks subsequent 4 weeks of recovery

(Figure 2A,B). In the animal MTrPs model, the transcript levels

of MEF2C genes were increased by qRT-PCR experiments

(Figure 2C). MEF2C was measured by Western blotting

experiments, consistent with the qRT-PCR results

(Figure 2D). A significant increase of MEF2C levels was

observed, either in transcript or in protein expression levels.

These results demonstrate that MEF2C is involved in the

pathophysiological process of MTrPs. In many studies,

MEF2C has been shown to play a critical role in muscle

differentiation and maturation. Our initial results suggest that

dysplastic aspects are evident in MTrPs and associated with

MEF2C. To clarify the regulatory relationship of MTrPs

muscle development associated with MEF2C, we conducted a

series of experiments.

Overexpression of TNF-α induced
activation of NF-κB p65, MLCK, and
MEF2C and causes mechanical
hyperalgesia when injected
gastrocnemius muscles in vivo

Our previously unpublished studies found that elevated

expression of these inflammatory cytokines in MTrPs tissue,

including TNF-α and IL-6R. Inflammation is not the end point

of pathophysiological change, and the inflammatory response may

play an essential role in the pathogenesis and process of MTrPs

through other novel mechanisms or pathways. To confirm our

hypothesis, we injected animals with recombinant TNF-α (0.1 mg/

ml, 30 ul * 3 points) to gastrocnemius muscles in healthy rats. The

rats developed mechanical hyperalgesia and withdrawal thresholds

decreased following recombinant TNF-α injection (Figure 3A). This
decreased mechanical withdrawal thresholds started 15 min after

recombinant TNF-α injection, reached its lowest point at the 2 h

after injection, and lasted for about 12 h. The rats were sacrificed,

and the muscle was extracted at 2 h for Western blotting and qRT-

FIGURE 3
(A) Effect of TNF-α onmechanical withdrawal threshold in control group rats. Decreased mechanical withdraw threshold in control rats (n = 5)
at 1, 2, 4, 8, 12 h after intramuscular injection of TNF-α (0.1 mg/ml). (B). TNF-α (0.1 mg/ml) could induce the high expressions of p-P65, MLCK,
MEF2C, and MyoC. Expression levels were detected 2 h after injection of TNF-α or DMSO and the differences were statistically significant. (C). The
mRNA expression levels ofMLCK,MEF2C, andMyoCwere higher in theMTrPs group and TNF-α group than in the control group, with GAPDH as
the internal reference mRNA. (D). Using GAPDH as cytoplasmic protein internal reference and Lamin B as cytosolic protein internal reference, the
nuclear protein expression of MEF2C was higher in both MTrPs and TNF-α groups than in the control group. *p < 0.05, **p < 0.01.
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PCR tests. The expression of the TNF-α and Phospho-NF-κB p65 in

the MTrPs was significantly upregulated compared to that in the

control group as measured through Western blotting (Figure 3B),

consistent with the qRT-PCR results (Figure 3C). In addition to this,

MLCK and MEF2C were upregulated in the MTrPs tissue and

induced MEF2C nuclear translocation (Figure 3D). MyoC, as the

downstream of MEF2C, was enhanced the expression (Figure 3C).

In previous studies, MLCK was confirmed to directly phosphorylate

MEF2C and exerted its biological functions by promoting its nuclear

translocation.

Peripheral injection of TNF-α induces the overexpression of

a subset of NF-κB target genes, including MLCK, MEF2C, and

MyoC. These results suggest that TNF-α injected into the

peripheral gastrocnemius muscles may activate signaling

pathways of abnormal muscle development, thereby inducing

abnormal muscle hypertrophy and producing nociception.

Inhibition of phosphorylation of NF-κB p65 suppressed

activation of MEF2C and reversed the pain behaviors induced

by MTrPs.

Our study showed that may be NF-κB involved in MTrPs

muscle hypertrophy. Therefore, inhibition of phosphorylation of

NF-κB p65 (Maslinic acid, 5 mg/ml, 30 ul * three points) was

injected intramuscularly and mechanical withdrawal thresholds

were measured in the MTrPs group 0.25, 0.5, 1, 2, 4, 8, 12 and

24 h after muscle injection, and the analgesic effect of Maslinic acid

reached its peak by 1 h (Figure 4A). TheMTrPs tissue was extracted

at 1 h for Western blotting aND qRT-PCR tests. Western blotting

showed that the phosphorylation level of NF-κB p65, the expression

of MLCK and MEF2C was downregulated, and the expression of

MyoC downstream was also inhibited compared with MTrPs +

DMSO group (Figure 4B). In addition, Maslinic acid inhibits TNF-

induced MEF2C nuclear translocation (Figure 4C). The mRNA

expression of MLCK, MEF2C, and MyoC were consistent with the

Western blotting results (Figure 4D).

To prove that peripheral TNF-α mediated peripheral pain

sensitization and abnormal muscle hypertrophy via the NF-κB
pathway, a rescue experiment was performed on healthy rats.

After Maslinic acid (5 mg/ml, 30 ul * three points) intramuscular

injection 1h, we made a recombinant TNF-α (0.1 mg/ml, 30 ul *

three points) injection successively. The decrease in mechanical

withdrawal thresholds induced by recombinant TNF-αwas partially
reversed by the administration of maslinic acid (Figure 5A). MLCK,

MEF2C, and MyoC expressions were rescued by Maslinic acid

injection (Figure 5B). The mRNA expression of MLCK, MEF2C,

and MyoC were consistent with the Western blotting results

(Figure 5C). These findings suggest that peripheral TNF-α was

involved in the peripheral pain sensitization and abnormal muscle

hypertrophy induced by MTrPs through the NF-κB pathway.

FIGURE 4
(A) Effect of Maslinic acid on mechanical withdrawal thresholds in MTrPs rats (n = 5). M.A. (5 mg/ml) after intramuscular injection at 0.25, 1, 2, 4,
and 8 h rescued the decrease of mechanical withdrawal threshold in MTrPs rats. (B). Expression of p-P65, P65, MLCK, MEF2C, and MyoC was
detected 1 h after M.A. or DMSO injection, and the protein expression of p-P65, MLCK, MEF2C, and MyoC in the M.A. group was significantly lower
than that in the MTrPs group. (C). The nuclear protein expression of MEF2C in the M.A. group was lower than that in the control group, with
GAPDH as the cytoplasmic protein internal reference and Lamin B as the cytosolic protein internal reference. (D). The mRNA expression levels of
MLCK, MEF2C, and MyoC in the M.A. group were significantly lower than those in the MTrPs group, using GAPDH as the internal reference mRNA.
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Peripheral injection of dexmedetomidine
inhibited NF-κB p65, MLCK, MEF2C, and
MyoC expression, which were
upregulated in MTrPs

Two concentrations of DEX (10 μg/ml and 100 μg/ml, 30 μl *

three points) were injected into peripheral gastrocnemius

muscles in MTrPs animals (n = 12, two groups, six per

group). And mechanical withdrawal thresholds were measured

at 0.25, 0.5, 1, 2, 4, 8, 12 and 24 h after injection. and the study

results showed that the analgesic effect of DEX reached its peak

by 2 h (Figure 6A). After injection of 2 h, the MTrPs rats were

killed and tissue was flash frozen in liquid nitrogen for tests. The

expressions of TNF-α, Phospho-NF-κB p65, MLCK, MEF2C,

and MyoC proteins in the MTrPs group were decreased dose-

dependently compared to the MTrPs group (Figure 6B). The

mRNA level regulation followed the same trend as the protein

level identified from Western blotting described above

(Figure 6C). These results further illustrated that DEX has the

ability to inhibit hyperpathia and abnormal muscle hypertrophy

mediated by TNF-α/NF-κB pathway.

DEX acted locally in the MTrPs
microenvironment, and not systemically

To test whether the same effect occurs in systemic

administration, DEX (100 ug/ml) was injected to two MTrPs

group rats (n = 12, six per group) via the tail vein and peripheral

gastrocnemius muscles separately. After administration for 2 h,

samples were extracted for tests. The experimental results

showed that the administration cannot decrease the

expression levels of MLCK, Phospho-NF-kB p65, MEF2C, and

MyoC via the tail vein (Figures 7A,B). Thus, the effects of DEX

act on MTrPs microenvironment, instead of the central system.

Discussion

In the present study, we found the following results. 1) Using

SuperCore biopsy needle, trapezius samples were obtained from

MTrPs patients and high throughput mRNA sequencing (mRNA-

seq) was performed to compare the expression between patients

with MTrPs and healthy controls. Sequencing results showed

FIGURE 5
(A) The changes in mechanical pressure pain thresholds in the Control group of rats injected with Maslinic acid (5 mg/ml) 1 h in advance
followed by TNF-α (0.1 mg/ml) were not statistically different from the control group. (B). The expression of p-P65, P65, MLCK, MEF2C, and MyoC
was detected 2 h after injection of M.A. and TNF-α. There was no statistical difference in expression levels between the two groups. (C). The mRNA
expression levels of MLCK, MEF2C, and MyoC in the M.A. and TNF-α injection groups were not significantly different, and GAPDH was used as
the internal reference mRNA. *p < 0.05, **p < 0.01.
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MEF2C was significantly higher in participants with MTrPs than in

healthy controls. To validate the results obtained by sequencing, we

performed MEF2C immunohistochemistry and

immunofluorescence staining paraffin sections of human MTrPs

tissue specimens. We found that the expression of MEF2C was

increased and activated nuclear translocation. These findings

illustrate that MEF2C may have participated in the formation of

MTrPs. 2) Injection of recombinant TNF-α promoted MLCK,

MEF2C, and MyoC expression via NF-κB p65 signaling pathway

in healthy rats. This indicated that TNF-α can lead to abnormal

muscle fibers hypertrophy. 3) Inhibition of NF-κB p65 reversed the

pain behaviors and increased mechanical withdrawal thresholds

induced by MTrPs. Moreover, the expression and nuclear

translocation of MEF2C was also inhibited. This indicated that

the NF-κB p65 signaling pathway was involved in peripheral pain

sensitization and abnormal muscle fiber hypertrophy induced by

MTrPs. 4) DEX can be acting at the peripheral level to attenuate

inflammation and inhibit the NF-κB p65 signaling pathway

activation and consequently reduces the expression of MEF2C.

Thus suggesting that DEX might have clinical applications in the

therapy of MTrPs/MPS.

MEF2C, a key transcription factor for muscle development, is

the first DNA binding transcription factor activity known to have

muscle properties that bind tomuscle-specific gene promoters and

regulate muscle development (Potthoff and Olson 2007; Mokalled

et al., 2012; Liu et al., 2014). Skeletal muscle expression of MEF2C

is essential to maintain the integrity and normal morphology of

postnatal muscle fibers (Potthoff et al., 2007a; Potthoff et al.,

2007b). Low expression of MEF2C has been confirmed to be

associated with multiple muscle atrophy conditions, including

cancer cachexia-induced skeletal muscle wasting (Shum et al.,

2012; Judge et al., 2020). Although very few studies investigated

the role of MyoC in skeletal muscle, it has been thoroughly

established as a prohypertrophic protein that binds and

stabilizes the dystrophin-glycoprotein complex (DGC), having

the effects of stabilizing the muscle fiber membrane (Joe et al.,

2012b). In addition, overexpression of MyoC leads to muscle

hypertrophy by increasing the cross-sectional area and weight

of skeletal muscle in transgenic mice compared with wild-type

mice (Joe et al., 2012b). By overexpressing myocilin in transgenic

mice, several protein complex components are redistributed and

Akt, a key muscleizer, is phosphorylated (Joe et al., 2012a). Judge,

FIGURE 6
(A) Effect of DEX on mechanical withdrawal threshold in MTrPs group rats. Increased mechanical withdrawal threshold in MTrPs rats (n = 6) at
1 and 2 h after intramuscular injection two concentrations of DEX (10ug/ml and 100ug/ml). (B). The expression of TNF-α, p-P65, P65, MLCK, MEF2C,
and MyoC was detected 2 h after injection of two different concentrations of dexmedetomidine (10 μg/ml and 100 μg/ml) into the gastrocnemius
muscle of MTrPs rats, and the protein levels were found to be significantly inhibited. (C). The mRNA expression levels of MLCK, MEF2C, and
MyoC were significantly lower than those of the MTrPs group after dextromethorphan injection, with GAPDH as the internal reference mRNA.
*p < 0.05, **p < 0.01.
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Sarah M et al. identified MEF2C as a key upstream transcription

factor required to maintain MyoC expression in skeletal muscle,

MEF2C gain-of-function inhibits the downregulated of MyoC and

prevents skeletal muscle wasting and dysfunction caused by cancer

(Judge et al., 2020). The importance of MEF2C in cardiomyocyte

hypertrophy has been well established (Feng et al., 2008; Papait

et al., 2017; Zhao et al., 2021).

Studies have shown that local injection of the pro-

inflammatory factor TNF-α can induce hyperalgesia in rats

(Schäfers et al., 2003). Inflammation is a crucial feature of

MTrPs (Carp et al., 2007; Shah et al., 2008; Grosman-Rimon

et al., 2016). Our research group verified in previous unpublished

studies that TNF-α was highly expressed in MTrPs. Under a light

microscope, the typical feature of MTrPs were abnormally

FIGURE 7
(A) The expression of TNF-α, p-P65, P65, MLCK, MEF2C, and MyoC was detected in MTrPs rats after 2 h of tail vein injection and local
gastrocnemius injectionwith the same concentration of dexmedetomidine (100 μg/ml), and it was found that the protein levels in the gastrocnemius
group were significantly lower than those in the MTrPs and intravenous injection groups. (B). The mRNA expression levels of MLCK, MEF2C, and
MyoC in the local injection of the dexmedetomidine group were lower than those in the MTrPs and intravenous injection groups, with GAPDH
as the internal reference mRNA. *p < 0.05, **p < 0.01.

FIGURE 8
The proposed role of MEF2C in the inflammatory pathogenesis of MTrPs.
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contracted muscle fibers (Zhang et al., 2020b; Jin et al., 2020; Jin

et al., 2020). In this study, our group provides preliminary

evidence for a pathogenic mechanism of MEF2C in skeletal

muscle leading to pathological myofiber hypertrophy

associated with chronic inflammation. We detected activation

of the NF-κB signaling pathway in the gastrocnemius muscle of

healthy rats after TNF-α injected and developed nociceptive

hyperalgesia. And the injection of the NF-κB inhibitor

Maslinic acid reversed nociceptive hypersensitivity suggesting

that the NF-κB signaling pathway plays a key role in the

inflammatory pain of MTrPs. Multiple inflammatory factors

can activate the NF-κB signaling pathway, and the activated

NF-κB signaling pathway can in turn promote the expression of

multiple inflammatory factors (Lawrence, 2009; Sun, 2017).

Activated NF-κB p65 undergoes nuclear translocation and

binds to the promoter of MLCK to amplify MLCK, the

mechanism that has been well studied in intestinal smooth

muscle (Wang et al., 2021). After injection of Maslinic acid,

the expression levels ofMLCK exhibited the same tendency as the

NF-κB p65. In the present study, we found that there is also a

mechanism of NF-kB regulation of MLCK in skeletal muscle.

MLCK leads to p300/PCAF recruitment by directly

phosphorylating MEF2C, increasing acetylation of skeletal

muscle-specific genes, and enhancing skeletal myogenesis (Al

Madhoun et al., 2011).

In this study, overall, we found that upregulated MEF2C is

due to the activation of NF-κB signaling pathway. In contrast,

inhibition of NF-κB signaling pathway can suppress MEF2C

expression. This makes clear the upstream and downstream

relationships involved. Overexpression of TNF-α in healthy

rats increases MEF2C and activates the NF-κB signaling

pathway, which is a classical inflammatory signaling pathway.

Considering the results above, we propose the perspective that

inflammatory cytokine (TNF-α) regulates the expression of

MEF2C via the NF-κB/MLCK signaling pathway and in turn

mediates inflammatory muscle fibers hypertrophy in MTrPs.

Our results offer a novel perspective on abnormal muscle fibers

hypertrophy and contribute to our understanding of the

pathophysiological process of MTrPs (Figure 8).

Furthermore, the main methods currently used for local

injection treatment of MTrPs are botulinum toxin, local

anesthetics, dry needling, etc. Several clinical studies of

botulinum toxin injections for the treatment of MTrPs have

shown that the effects remain controversial (Ho and Tan, 2007;

Gerwin, 2012; Soares et al., 2012). Dry needling can relieve pain

in MTrPs in the short term, but its long-term therapeutic effects

and relieving the dysfunction of MTrPs are still debatable (Liu

et al., 2015; Pérez-Palomares et al., 2017; Liu et al., 2018). And, it

has been confirmed that ultrasound-guided local anesthetic drug

injections of MTrPs are less effective than ultrasound-guided dry

needling, but the pain-relieving effects are obvious (Diep et al.,

2021). The anti-inflammatory effect of DEX and its inhibition of

NF-κB have been well studied (Wang et al., 2017; Wang et al.,

2019; He et al., 2021). However, there are no studies on the use of

DEX for the treatment of MTrPs. In this study, the

phosphorylation of the NF-κB signaling pathway and the

expression of MEF2C were inhibited after injection of DEX in

the rat gastrocnemius muscles. More importantly, study results

demonstrated that local injection administration was an effective

pathway by comparing tail vein administration to local injection

administration. These results illustrate that DEX has the potential

to be used in the clinical treatment of MTrPs, but further clinical

trials are needed to examine this possibility.
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