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The treatment of diabetic kidney disease (DKD) has been the key concern of the

medical community. Herbal medicine has been reported to alleviate intestinal

dysbiosis, promote the excretion of toxic metabolites, and reduce the secretion

of uremic toxins. However, the current understanding of the modulation of the

gut microbiota by herbal medicine to delay the progression of DKD is still

insufficient. Consequently, we reviewed the knowledge based on peer-

reviewed English-language journals regarding regulating gut microbiota by

herbal medicines in DKD. It was found that herbal medicine or their natural

extracts may have the following effects: modulating the composition of

intestinal flora, particularly Akkermansia, Lactobacillus, and Bacteroidetes, as

well as adjusting the F/B ratio; increasing the production of SCFAs and restoring

the intestinal barrier; reducing the concentration of uremic toxins (p-cresol

sulfate, indole sulfate, TMAO); inhibiting inflammation and oxidative stress.
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1. Introduction

Diabetic kidney disease (DKD) is one of the most severe

complications of diabetes mellitus (DM) and a significant cause

of chronic kidney disease (CKD) and end-stage renal disease

(ESRD). There is evidence that approximately 30–40% of diabetic

patients will develop DKD (Gheith et al., 2016; Barutta et al.,

2020). The prevalence of DKD is on the rise, along with DM,

which results in enormous health care expenditures, making it a

health problem and a social one (Williams et al., 2020). As a

result, the treatment of DKD has been a significant concern in the

medical community. The use of sodium-glucose

cotransporter2 inhibitors and RAS inhibitors has been proven

beneficial in patients with DKD (Saglimbene et al., 2018; van Baar

et al., 2018). However, the risk of developing ESRD remains

relatively high, which makes the need to explore new therapeutic

approaches and targets particularly important.

Herbal medicines are commonly used to treat kidney

disease in many countries, particularly China. It has been

demonstrated in human clinical studies and animal

experiments that herbal medicines protect kidney function.

A systematic review and meta-analysis comprising

20 randomized controlled studies showed significant

improvement in proteinuria and renal function due to herbal

medicine treatment for DKD. The patients tolerated the

treatment well, with a very low incidence of adverse events

(Zhang et al., 2019). Nevertheless, the exact mechanism by

which botanical drugs exert their therapeutic effects remains

unclear. Among the possible mechanisms of action are the

regulation of metabolic disorders, inflammatory response

modulation, oxidative stress, antifibrosis, and regulation of

microRNAs(Lu et al., 2019).

The gut microbiota plays an influential role in the dynamic

homeostasis of health and disease by participating in immunity,

metabolic regulation, and nutrient absorption (Kim et al., 2021).

It is believed that the bidirectional relationship between the gut

microbiota and the kidney (the gut-kidney axis) contributes to

the pathogenesis of CKD (Monteiro and Berthelot, 2021). Several

studies have confirmed intestinal microbiota and metabolite

altered in CKD patients. Previous studies have shown that

herbal medicines and their natural extracts may have specific

protective effects on renal function. These effects can slow the

progression of renal disease, but the exact mechanism is still not

completely clear. It has been speculated that botanical drugs may

exert their pharmacological effects by acting on the gut-kidney

axis: modulating the gut microbiota, restoring the integrity of the

intestinal barrier, and inhibiting inflammation. Based on a review

of peer-reviewed English journals, we examined the role of

intestinal microbiota in human physiopathology, the potential

mechanisms of gut microbiota contributing to renal diseases, and

the effects of botanical drugs and their active ingredients on

retarding renal disease progression by affecting the gut-

kidney axis.

2. Gut microbiota and metabolisms

2.1 Gut microbiota

It is well known that the human gastrointestinal tract has a

surface area of approximately 250–400 m2, in which billions of

trillions of microorganisms are colonized (Thursby and Juge,

2017). It has been reported that the amount of microorganisms in

the human intestinal tract is approximately ten times greater than

that of human cells (Zhu et al., 2010), which is 100 times wider

than the genomes of the human body (Gill et al., 2006). A study

identified 2172 prokaryotic species isolated from the human

body and found that these species were derived from

12 different bacterial phyla. 93.5% of the bacteria isolated

were from the phylum of Firmicutes, Proteobacteria,

Actinobacteria, and Bacteroidetes, accounting for 31.1%,

29.5%, 25.9%, and 7.1%, respectively (Hugon et al., 2015).

The gut microbiota is closely associated with the host and can

be considered a “vital organ" (Amon and Sanderson, 2017). In

healthy individuals, the intestinal flora is in harmony with the

host, a process known as symbiosis. Lifestyles and external

factors (e.g., diet, disease, antibiotics), as well as geographical

factors, are continuously influencing the composition and

function of the gut microbiota. When this balance is

disrupted, dysbiosis occurs. (Stavropoulou et al., 2020). It has

been suggested that the gut microbiota is in constant

communication with organs or systems such as the brain

(Dinan and Cryan, 2017), kidney (Evenepoel et al., 2017),

blood vessels (Karbach et al., 2016), and immune system

(Takiishi et al., 2017). The gut microbiota plays a vital role in

the dynamic homeostasis of health as well as the pathological

state by participating in immunity, metabolic regulation, and

nutrient absorption of the host (Kim et al., 2021).

2.2 Microbiota metabolism

The intestinal microbiota participates in various metabolic

processes in the human body under physiological conditions.

One of the most prominent functions is the fermentation of foods

in the large intestine. In addition, the gut microbiota plays an

essential role in the synthesis of vitamins (e.g., B and K) and

essential amino acids (threonine, lysine, etc.), the production of

short-chain fatty acids (SCFAs), as well as the stimulation of the

immune system and the integrity of the intestinal barrier

(Sonnenburg and Bäckhed, 2016; Yang et al., 2018).

2.2.1 Short-chain fatty acids
Colonic SCFAs are composed primarily of acetate (60%),

propionate (25%), and butyrate (15%), which have a variety of

functions, such as regulating energy metabolism, maintaining the

epithelial barrier, and mediating inflammation and immunity.

(Cummings et al., 1987).
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SCFAs constituted the primary energy source of the intestinal

tract and provide 60–70% of the energy source for intestinal

epithelial cells (Flint et al., 2012), which maintains the integrity of

the epithelium. Studies have shown that SCFAs, particularly

butyrate, are capable of maintaining the intestinal barrier by

regulating the expression of tight junction proteins, which may

be mediated by the activation of AMP-activated protein kinases

or by the downregulation of claudin two expressions (Daly and

Shirazi-Beechey, 2006; Peng et al., 2009). Moreover, acetate,

propionate, and butyrate treatment ameliorated renal

dysfunction upon renal ischemia-reperfusion in acute kidney

injury models (Antza et al., 2018). SCFAs have also been found to

be involved in the biosynthesis of mitochondria, which may have

a positive effect on hypoxia in renal epithelial cells (Andrade-

Oliveira et al., 2015). Additionally, SCFAs may exert their

protective effects through their interaction with the G protein-

coupled receptors GPR43 and GPR109a (Li et al., 2020).

2.2.2 Uremic toxins
Proteins that reached the large intestine were degraded by

intestinal flora into metabolites such as ammonium, amines,

thiols, phenols, and indoles (Meijers et al., 2018). Some of the

protein fermentation products have toxic effects and are called

uremic toxins (Gryp et al., 2017), which played an essential role

in the progression of DKD. P-cresol sulfate, indole sulfate, and

trimethylamine N-oxide (TMAO) is the most representative

uremic toxins of intestinal origin, with their precursors being

p-cresol, indole and trimethylamine (TMA) respectively (Pahl

and Vaziri, 2015; Fernandez-Prado et al., 2017; Gryp et al., 2020).

Hepatic enzymes then transformed these metabolites into uremic

toxins (Mosterd et al., 2021). Several studies have indicated that

indole sulfate and p-cresol sulfate could compromise the kidney

and cardiovascular system and thus contribute to the progression

of CKD and cardiovascular complications (Liabeuf et al., 2010;

Wu et al., 2011; Vanholder et al., 2014). Experimental studies

have shown that indole sulfate and p-cresol sulfate, as protein-

bound uremic toxins, can induce oxidative stress and promote

tubulointerstitial fibrosis, resulting in persistent deterioration of

renal function (Fukagawa and Watanabe, 2011). Indole sulfate

could increase the oxygen consumption of the proximal tubule,

thereby causing hypoxia in the kidney (Hasegawa et al., 2017).

P-cresol sulfate has the capacity to alter insulin signaling through

the activation of ERK1/2, which triggers insulin resistance in

mice (Koppe et al., 2012).

As a flora-dependent product, TMAO is primarily eliminated

by the kidney. With the progression of CKD, the kidney filtration

function decreases with the accumulation of TMAO in the body.

An increase in TMAO levels could lead to impaired glucose

tolerance and elevated fasting blood glucose in mice (Gao et al.,

2014; Fang et al., 2021), which was also observed in DM patients

(Winther et al., 2019). The critical role of TMAO in the

development of kidney disease has been demonstrated. A

study of plasma metabolites in patients with CKD showed

that there was a significant correlation between plasma

TMAO with its precursor and glomerular filtration rates (Guo

et al., 2021). Another study showed a positive correlation

between plasma TMAO levels and serum creatinine, blood

urea nitrogen, total 24-h UTP, and urine microprotein levels.

HE staining showed that TMAO exacerbated renal tubular injury

(Fang et al., 2021). Moreover, these manifestations, such as renal

fibrosis and inflammation, can be inhibited by the TMA

formation inhibitor 3, 3-Dimethyl-1-butanol (Sun et al., 2017).

3. Gut microbiota and metabolic
characters in DKD

3.1 Gut microbiota changes in DKD

In the past decades, studies have demonstrated that

alterations in the gut microbiota were correlated with

metabolic disorders and closely involved in the progression of

DM and DKD. In comparison with healthy subjects, DM patients

exhibit a significant decrease in the relative abundance of gut

microbiota (Larsen et al., 2010). A relatively high content of

Gram-negative bacteria belonging to phylum Bacteroidetes and

Proteobacteria in the intestine has been observed, whose main

compounds of the bacterial outer membrane are

lipopolysaccharides (LPS), which act as an inflammation

stimulating factor and induce the aggregation of inflammation

(Allcock et al., 2001). It has been observed that Changes in the

Firmicutes to Bacteroidetes (F/B) ratio are correlated with blood

glucose levels in DM (Li et al., 2020; Xia et al., 2021). In addition,

studies have found a decreased level of bifidobacteria in patients

with type 2 diabetes mellitus (T2DM), which can help with the

maintenance of a well-connected epithelial barrier and has some

anti-inflammatory effects (Sedighi et al., 2017). The altered

microbiota of DKD patients is similar to that of DM patients;

a study showed a much lower abundance and diversity of

intestinal flora in DKD patients than that in healthy subjects.

The amounts of Actinobacteria, Bacilli, Coriobacteriia, and

Negativicutes in the intestine of DKD patients were higher

than in the control group, whereas the abundance of

Alphaproteobacteria and Clostridia was lower (Du et al., 2021).

Tao et al. (2019)found that the composition and abundance

of gut microbiota in the DKD group were significantly different

from both healthy and DM groups, with Prevotella able to

distinguish DM patients from healthy subjects, while the

distinction between DM and biopsy-proven DKD patients

could be characterized by Escherichia-Shigella and Prevotella,

which may represent a genus characteristic of the DKD

microbiota. The gut microbiota changes during the

progression of DKD as well. Chen et al. (2021)found a lower

diversity of gut microbiota in the stage III DKD group than in the

healthy group, DM group, as well as groups with other stages of

DKD. They also found a positive correlation between Alistipes
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and 24-h urine protein quantity (24-h UTP), whereby a high level

of 24-h UTP is an injurious factor. However, the specific role of

these differential organisms in the pathogenesis of DKD still

requires further exploration.

3.2 Microbiota metabolic characteristics
in DKD

Patients with DKD may have a decreased production of

SCFAs and retention of proteins along with their fermentation

products due to controlled intake of potassium-containing diets,

medications, dialysis, reduced gastrointestinal motility, and co-

morbidities (Bammens et al., 2003; Friedman, 2009). As

compared to the healthy group, patients in the DKD group

had lower levels of serum acetic acid, propionic acid, butyric

acid, and total SCFAs (Zhong et al., 2021; Cai et al., 2022).

Patients with DM and DKD had similar metabolic changes.

However, no relevant studies have been found regarding the

metabolic dynamics of intestinal flora before, during, and after

the onset of DKD in patients with DM.

DKD patients also generally exhibit altered protein

metabolism in the colon. The shift in microbial metabolism

from carbohydrate to protein metabolism in patients with

CKD results in increased levels of protein fermentation end

products (uremic toxins) in the plasma (Mosterd et al., 2021).

It has been demonstrated that in ESRD patients, the species with

butyrate-forming enzymes were significantly decreased, which

resulted in higher levels of indole and p-cresol and lower levels of

butyrate (Wong et al., 2014). Other studies have also confirmed

the elevation of uremic toxins in the intestine of CKD patients

due to dysbiosis (Meijers et al., 2009; Yang et al., 2021). The

results of a systematic review confirmed the toxicity of indoles

and p-cresol sulfates and their adverse effects on the progression

of renal and vascular diseases (Vanholder et al., 2014). A meta-

analysis that enrolled 11 studies showed that elevated indole

sulfate and p-cresol sulfate levels in CKD patients were associated

with an increased mortality rate (Lin et al., 2015). In addition,

indole sulfate and p-cresol sulfate can induce epithelial-

mesenchymal transition by activating the RAS system, which

in turn promotes renal fibrosis (Sun et al., 2012; Lu et al., 2018).

It was found that TMAO levels were significantly higher in

CKD patients than in healthy subjects (median plasma TMAO

concentration, 30.33 μmol/L vs 2.08 μmol/L). Furthermore, a

significant increase in TMAO levels was also observed in mice

that received fecal transplants fromCKD patients (Xu et al., 2017;

Yang et al., 2021). Elevated TMAO levels in the circulating

system could impair kidney function and lead to progressive

renal fibrosis (Tang et al., 2015).

Due to the importance of the gut microbiota and its

metabolites in the pathogenesis of DKD and CKD, several

interventions for treating DKD have been developed by

modifying the gut microbiota and microbiota metabolites.

These interventions include dietary modification (Li et al.,

2020), resistant starch (Snelson et al., 2019), probiotics (Hsiao

et al., 2021), prebiotics (Koppe and Fouque, 2017), synbiotics

(Rossi et al., 2016), and some adsorbents (Schulman et al., 2015),

which have also been shown to be useful to protect renal

function.

4. Herbal medicine, gut-kidney axis,
and dkd/ckd

Herbal medicine has been shown to have positive effects on

the treatment of DKD in clinical studies. With the increasing

understanding of the importance of gut microbiota and their

metabolites in the pathogenesis of CKD and DKD, several studies

have begun to explore whether herbal medicines (Table1) and

their natural extracts (Table2) could exert renoprotective effects

by affecting the gut microbiota and their metabolites through the

gut-kidney axis.

4.1 Botanical drugs

4.1.1 Rheum palmatum L
The main official parts of Rheum palmatum L. are the root

and rhizome. Research has shown that Rheum palmatum L. has

several pharmacological properties such as anti-inflammatory,

antioxidant, and most importantly, it protects against renal

fibrosis (Wang et al., 2022). Rheum palmatum L. can also

decrease the abundance of conditionally pathogenic microbes

such as Alcaligenaceae, Methanosphaera, and Clostridiaceae in

the intestine of 5/6 Nephrectomy rats compared to the CKD

model, restoring the functions of the intestinal barrier and

alleviating renal fibrosis (Ji et al., 2020). Ji et al. (Ji et al.,

2021)further investigated the relationship between Rheum

palmatum L. enema and TMAO. 5/6 Nephrectomy rats were

divided into the model group, Rheum palmatum L. high-dose

group (2.10 g/kg/day), and Rheum palmatum L. low-dose group

(1.05 g/kg/day). After 8 weeks of enema treatment, renal

interstitial fibrosis and tubular atrophy were significantly

reduced in both high-dose, and low-dose group, serum levels

of TMAO and TMA as well as inflammatory factors such as IL-6,

TNF-ɑ, IFN-y was found to be decreased. It may be related to the

increase in the abundance of commensal organisms and the

decrease in the abundance of conditionally pathogenic species.

Another study by the same research team found that Rheum

palmatum L. enema (0.2 g/ml×5 ml) increased the content of

SCFAs in the intestine of 5/6 Nephrectomy rats by increasing the

abundance of SCFA-producing flora such as Akkermansia-

muciniphila, lactobacillus-acidophilus, Bacteroides-caccae, and

Faecalibaculum-rodentium, thereby regulating tight junction

proteins and repairing the damaged intestinal barrier, which

reduced inflammation and improved kidney functions (Ji et al.,
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2022). In the three studies described above, Rheum palmatum L.

granules were used. Due to the fact that its extraction process is

unknown, it has yet to be determined whether granules can

replace the efficacy of expressed Rheum palmatum L. The use of

aqueous decoctions in conjunction with UPLC analysis may be

considered in future studies.

TABLE 1 Summary of the effects of herbal medicine on gut microbiota and laboratory indexes.

Botanical
drugss/Herbal pairs/
Formulas

Subjects Effects
on gut microbiota

Primary outcomes References

Rheum palmatum L 5/6 nephrectomy rats Decreased Akkermansia, Methanosphaera, and
Clostridiaceae

Decreased Scr, IL-1b and IL-6 levels Ji et al. (2020)

Increased bacteroidetes, bacteroidales,
bacteroidia, prevotella et al

Decreased serum TMAO, TMA, IL-6,
TNF-ɑ, IFN-y levels; reduced urine output

Ji et al. (2021)

Increased akkermansia-muciniphila,
lactobacillus-aci-dophilus, bacteroides-caccae,
and faecalibaculum-rodentium

Reduced Scr, inflammation levels,
improved kidney pathology

Ji et al. (2022)

Poria cocos 5/6 nephrectomy rats Ameliorated microbial dysbiosis Improved Ccr, lowered blood pressure,
Scr, urea concentrations, and proteinuria

Feng et al.
(2019)

Morus alba L Streptozotocin and high-
fat diet-induced DN rats

Increased Bacteroidetes, Proteobacteria, and
Clostridia

Reduced FBG and urine glucose levels;
enhanced insulin sensitivity; alleviated
proteinuria and chronic renal damages

Yao et al.
(2018)

Rehmannia glutinosa
(Gaertn.) DC. and Cornus
officinalis Siebold and Zucc

Adenine-induced CKD
rats

Increased Ruminococcaceae UCG-014,
Ruminococcus 1, Pre-
votellaceae_NK3B31_group, Lachnospiraceae
NK4A136 group and Lachnospiraceae UCG-001;
decreased Desulfovibrio

Decreased 24 h urine protein; improved
inflammation and hyperplasia of fibrous

Zhang et al.
(2021)

Astragalus mongholicus
Bunge and Salvia
miltiorrhiza Bunge

Cyclosporin A-induced
chronic nephrotoxicity
mice

Modified the ratio of Firmicutes to Bacteroidetes,
increased abundance of Lactobacillus and
Akkermansia

Decreased IL-6, Scr, BUN, and UA;
improved the pathology of kidney and
colon

Han et al.
(2021)

Scutellaria baicalensis
Georgi and Styphnolobium
japonicum (L.) Schott

Hypertensive
Nephropathy rats

Decreased Firmicutes/Bacteroidetes ratio and
Clostridiaceae, increased Lactobacillus

Decreased the blood pressure; ameliorated
renal structure damage; decreased the
levels of Cr, BUN, and mALB

Guan et al.
(2021)

Shenyan Kangfu tablet db/db mice Decreased Bacteroidetes, increased Firmicutes Reduced stimulated blood glucose and
HbA1c levels, alleviated renal dysfunction,
glomerular and tubular damage, and renal
inflammation (TNF-α and IL-1β)

Chen et al.
(2021)

Tangshen formula Streptozotocin injection
and uninephrectomy-
induced DN rats

Increased the abundance of bifidobacteria,
reversed the increased Bacteroidetes-to-
Actinobacteria ratio

Reduced levels of indoxyl sulfate and
metabolic endotoxemia/
Lipopolysaccharide; decreased MCP-1
and TNF-α

Zhao et al.
(2020)

QiDiTangShen granules db/db mice Decreased Lactobacillus, Bacteroides, and
Lachnospir-aceae_NK4A136_group, increased
Alloprevotella

Reduced urinary albumin excretion and
attenuated the pathological injuries of the
kidney; decreased serum levels of total bile
acid and bile acid profiles

Wei et al.
(2021)

Shenqi Yanshen Formula Adenine-induced mice Increased f_Succinivibrionaceae and
o_Aeromonadales

Decreased Scr and BUN levels; reduced
the degree of renal fibrosis; reduced TNF-
α, IL-1β, and IL-6 expression

Zhang et al.
(2022)

Qing-Re-Xiao-Zheng
Formula

Streptozotocin and high-
fat diet-induced DN mice

Increased Rikenellaceae and Akkermansia Decreased urinary albumin, serum
cholesterol, and triglycerides levels;
attenuated renal injuries; suppressed
TLR4 and NF-κB expression

Gao et al.
(2021)

Jianpi Yishen decoction 5/6 nephrectomy rats Increased butyrate-producing bacteria such as
Phascolarctobacterium, Coprococcus, decreased
Clostridium_XIVb

Decreased the levels of BUN, U-ALB, and
TNF-a, improved kidney function

Zheng et al.
(2020)

Sanhuang Yishen capsule Streptozotocin and high-
fat diet-induced DN rats

Increased Lactobacillus, RuminococcaceaeUCG-
005, Allobaculum, Anaerovibrio, Bacteroides and
Candidatus_Saccharimonas

High-dose SHYS reduced the serum levels
of Cr, BUN, and 24-h urine protein; The
middle-dose SHYS reduced 24-h urine
protein and serum BUN levels; reduced
oxidative stress, and inflammatory
response

Su et al. (2022)

Abbreviations: Cr, creatinine; Scr, Serum creatinine; Ccr, creatinine clearance; BUN, blood Urea Nitrogen; UA, uric acid; mALB, microalbumin; U-ALB, U-mAlb, urine microalbumin;

ACR, Urine albumin/creatinine.
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4.1.2 Poria cocos
Poria cocos is a fungus; its sclerotium, called fu-ling, has a

long history of pharmaceutical use. Modern studies have shown

that Poria cocos have anti-inflammatory, antioxidant, anti-

fibrotic, and nephroprotective effects (Ríos, 2011). As reported

by Feng et al. (2019), Poria cocos (250 mg/kg/day) and periodic

acid A (a component of Poria cocos, 10 mg/kg/day) were able to

ameliorate flora dysbiosis, protect the epithelial barrier, and

retard renal fibrosis in 5/6 nephrectomy rats. Additionally,

both of them improved endogenous creatinine clearance,

decreased blood creatinine and urea nitrogen concentrations,

and reduced proteinuria in rats. However, the study did not

demonstrate the specific changes in the flora after PC and PCA

treatments. Further study is necessary to confirm the changes in

the flora.

4.1.3 Morus alba L
Morus alba L. is a botanical drug with a long history of

application and contains abundant active ingredients, including

polyphenols and polysaccharides. The role of Morus alba L. in

TABLE 2 Summary of the effects of natural extracts on gut microbiota and laboratory indexes.

Ingredients Subjects Effects
on gut microbiota

Primary outcomes References

Emodin 5/6 nephrectomy rats Increased Lactobacillus; reduced Enteroroccus,
Escherichia coli, and C. perfringens

Reduced urea concentrations and
urinary protein excretion; decreased
urea and indoxyl Sulfate levels;
improved renal function

Zeng et al.
(2016)

Emodin-NP 5/6 nephrectomy rats Returned the microbial balance, increased butyrate-
producing bacteria

Reduced IL-1β, IL-6, and LPS levels in
serum; improved intestinal barrier
functions, downregulated TLR4,
MyD88, and NF-κB expression in
intestinal TLR4 signaling pathway;
Improved renal function and inhibited
tubulointerstitial injury

Lu et al. (2021)

Resveratrol db/db mice Increased Bacteroides, Alistipes, Rikenella, Odoribacter,
Parabacteroides, and Alloprevotella abundance

Decreased Scr, blood urea nitrogen, and
urine 24-h microalbuminuria levels;
improved intestinal barrier function;
ameliorated intestinal permeability and
inflammation

Cai et al.
(2020)

Resveratrol butyrate
ester (RBE)

Adenine-fed rats High-dose RBE increased the abundance of
Akkermansia, Blautia, and Enterococcus

Reduced renal expression of
GPR41 and Olfr78 protected adenine-
treated rats against hypertension and
renal dysfunction

Hsu et al.
(2022)

Punicalagin High-fat diet-induced mice Increased SCFAs producing bacteria Akkermansia,
Eubacterium_coprostanoligenes_group and
Lachnospiraceae

Decreased CREA, UA, and BUN levels;
ameliorated kidney architecture and
function

Hua et al.
(2022)

Rehmannia
glutinosa leaves total
glycoside

db/db mice Increased Erysipelotrichaceae and Acetatifactor Decreased blood sugar and lipid levels
as well as BUN, mALB, and Scr levels;
alleviated pathological changes

Xu et al. (2020)

Total flavones of
Abelmoschus
manihot

Uninephrectomy, potassium
oxonate, and
proinflammatory diet-
induced rats

Decreased Bacteroidales and Lactobacillales and
increased Erysipelotrichales

Inhibited IL1b, TNF-α, NF-κB;
decreased BUN, Scr, and SUA

Tu et al. (2020)

Curcumin T2DM and DN patients Increased Bacteroides Bifidobacterium and Lactobacillus Attenuated U-mAlb excretion, reduced
plasma MDA as well as LPS content;
increased IκB

Yang et al.
(2015)

Fisetin Potassium oxonate and
adenine-induced mice

Decreased Firmicutes, increased Bacteroidetes and
Epsilonbacteraeota

Reduced serum uric acid, Scr, and BUN
levels

Ren et al.
(2021)

Bupleurum
polysaccharides

Streptozotocin induced mice Increased Candidatus_Arthromitus; BCP increased
Rikenellaceae, Ruminococcus, Oscillospira, and
Roseburia; BPs increased Helicobacter and Eubacterium

Decreased blood glucose, cr and
U-ALB; reduced TNF-α, IL-6;
improved gut barrier

Feng et al.
(2019)

Cordyceps cicadae
polysaccharides

Streptozotocin and high-fat
diet-induced DN rats

Increased Verrucomicrobia, Actinobacteria, et al.,
decreased Proteobacteria, and Deferribacteres et al

Reduced collagen I, fibronectin, andα-
SMA; decreased TNF-α, IL-1β, and IL-
6; alleviated insulin resistance;
decreased 24 h urine volume, urine
protein, ACR, BUN and Scr, increased
urine creatinine and Ccr

Yang et al.
(2020)

Abbreviations: Cr, creatinine; Scr, Serum creatinine; Ccr, creatinine clearance; BUN, blood Urea Nitrogen; UA, uric acid; mALB, microalbumin; U-ALB, U-mAlb, urine microalbumin;

ACR, Urine albumin/creatinine.
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DKD treatment has also been investigated. Treatment with

Morus alba L. reduced blood glucose and urinary protein

levels, improved insulin resistance, and attenuated renal

tubular interstitial fibrosis in high-fat diet (HFD) and

streptozotocin (STZ) induced rats (Yao et al., 2018). These

effects may be attributed to the fact that Morus alba L.

increased the Bacteroidetes and Proteobacteria phylum in the

intestine of DKD rats, with a decrease in the former phylum

associated primarily with hyperglycemia, whereas the proportion

of β-Proteobacteria in the latter phylum was found to be

positively associated with blood glucose levels (Larsen et al.,

2010). Since Morus alba L. was administered as a powder mixed

with conventional feed, this study’s specific dose of

administration was not described. It may be advantageous to

utilize extracts or aqueous decoctions in future studies.

4.2 Herbal pairs

4.2.1 Rehmannia glutinosa (gaertn.) DC. And
cornus officinalis Siebold and Zucc

The main official part of Rehmannia glutinosa (Gaertn.) DC. is

the dried rhizome, while the central official part of Cornus officinalis

Siebold and Zucc. Is the mature dried fruit pulp. Both of them have

been used for thousands of years as a standard pair inChinese herbal

formulas. Modern pharmacological studies have shown that they

have some anti-inflammatory and anti-diabetic effects (Liu et al.,

2017; Ye et al., 2020) and that the Rehmannia glutinosa (Gaertn.)

DC. and Cornus officinalis Siebold and Zucc. Pair can additionally

be used in the treatment of CKD. A study conducted by Zhang et al.

(2021) found that treatment with Rehmannia glutinosa (Gaertn.)

DC. and Cornus officinalis Siebold and Zucc. Mixture (1:2,

3.75 g/kg/d) for 14 days improved the abundance of gut

microbiota in adenine-induced CKD rats compared to the model

group. Which is characterized by an increase in potentially

nephroprotective beneficial species such as Ruminococcaceae

UCG-014, Pre-votellaceae_NK3B31_group, and Lachnospiraceae

UCG-001, as well as a decrease in pathogenic bacteria such as

Desulfovibrio that may damage the intestinal epithelial barrier. This

also indicates that Rehmannia glutinosa (Gaertn.) DC. and Cornus

officinalis Siebold and Zucc. Pair may be capable of protecting

against CKD by modulating the gut microbiota and affecting the

production of uremic toxins. The efficacy of Rehmannia glutinosa

(Gaertn.) DC. and Cornus officinalis Siebold and Zucc. The paired

application was also found to be superior to that of Rehmannia

glutinosa (Gaertn.) DC (3.75 g/kg/d) or Cornus officinalis Siebold

and Zucc (3.75 g/kg/d) alone in terms of the restoration of the flora.

4.2.2 Astragalus mongholicus Bunge and Salvia
miltiorrhiza bunge

The main official part of Astragalus mongholicus Bunge is

the root, and the medicinal parts of Salvia miltiorrhiza Bunge are

the root and rhizome. As a combination, they can alleviate kidney

damage and protect kidney functions in the treatment of CKD

(Huang et al., 2018). Studies have found that the combination of

Astragalusmongholicus Bunge and Salvia miltiorrhiza Bunge (2:

1, 8.4 g/kg/d) restored the abundance and diversity of intestinal

flora in cyclosporin A-induced mice and modified the ratio of

Firmicutes to Bacteroidetes (F/B), thereby attenuating the

disorder of intestinal flora to some extent (Han et al., 2021).

In addition, the increased abundance of Lactobacillus and

Akkermansia, which serve as lactic and butyric acid-producing

probiotics, respectively, can alleviate renal fibrosis by modulating

bacterial metabolites to ameliorate renal inflammation, reduce

uremic toxins production, and restore the intestinal barrier

(Belzer et al., 2017; Lopes et al., 2018). Furthermore, similar

results were obtained in cyclosporin A-induced mice that

received fecal transplantation from Astragalus mongholicus

Bunge and Salvia miltiorrhiza Bunge-treated mice (Han et al.,

2021).

4.2.3 cutellaria baicalensis Georgi and
Styphnolobium japonicum (L.) schott

The main official part of Scutellaria baicalensis Georgi is the

root, while the main official part of Styphnolobium japonicum

(L.) Schott is the flower. The Scutellaria baicalensis Georgi and

Styphnolobium japonicum (L.) Schott are both traditional

Chinese medicines with various pharmacological properties

that can also be used to alleviate kidney injuries. Guan et al.

(2021)found that Scutellaria baicalensis Georgi (0.9 g/kg/d)

treatment increased intestinal Prevotella-9 and Akkermansia

abundance in spontaneously hypertensive rats, while

Styphnolobium japonicum (L.) Schott (0.9 g/kg/d) treatment

increased the abundance of Corynebacterium and Prevotella-9.

The Scutellaria baicalensis Georgi and Styphnolobium

japonicum (L.) Schott combination (0.9 g/kg/d each) increased

Lactobacillus and decreased Clostridiaceae, while the former was

associated with tight junction expression as well as intestinal

permeability and the latter with indole production (Niwa, 2013;

Robles-Vera et al., 2018). A decreased F/B ratio was also observed

after Scutellaria baicalensis Georgi and Styphnolobium

japonicum (L.) Schott combined treatment. It was

hypothesized that the combination of Scutellaria baicalensis

Georgi and Styphnolobium japonicum (L.) Schott could

improve dysbiosis, promote the production of SCFAs,

decrease the production of indoles, inhibit inflammation and

oxidative stress, and thus ameliorate hypertension-induced renal

injuries.

4.3 Herbal formulas

4.3.1 Shenyan Kangfu tablet
Shenyan Kangfu tablet (SYKFT) is a Chinese medicinal

formula consisting of 13 botanical drugs that can be used to

treat DKD (Chen et al., 2021), which includes Panax
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quinquefolius L (17.4 g), Panax ginseng C.A.Mey (5.8 g),

Rehmannia glutinosa (Gaertn.) DC (58.1 g), Eucommia

ulmoides Oliv (34.9 g), Dioscorea oppositifolia L (58.1 g),

Salvia miltiorrhiza Bunge (29.1 g), Leonurus artemisia (Lour.)

S.Y. Hu (58.1 g), Smilax glabra Roxb (58.1 g), Old-enlandia

diffusa (Willd.) Roxb (29.1 g), Glycine max (L.). Merr (58.1 g),

Imperata cylindrica (L.). Raeusch (87.2 g), Alisma plantago-

aquatica L (29.1 g), and Platycodon grandiflorus (Jacq.) A. DC

(58.1 g). Clinical studies have confirmed the safety and efficacy of

SYKFT in the treatment of DKD (Kou et al., 2014). Further study

by Chen et al. (2021) found that SYKFT (both 2 g/kg/d and

1 g/kg/d) could downregulate the abundance of phylum

Bacteroidetes, elevate the abundance of phylum Firmicutes,

reduce glycated hemoglobin and fasting glucose levels as well

as urinary microprotein, improve renal thylakoid expansion and

inflammatory response in db/db mice, resulting in a series of

protective effects against DKD. They proposed that the renal

inflammation in DKD is associated with changes in the gut

microbiota and that the anti-DKD effect of SYKFT may be

related to the regulation of the flora. The mechanisms by

which SYKFT exerts its renal protective effect may be

associated with the modulation of the gut microbiota and

related proteins. It was not reported whether the effects of

different doses of STKFT on gut microbiota were different,

despite the study being designed with different doses of STKFT.

4.3.2 Tangshen Formula
Tangshen Formula (TSF) is a Chinese medical formula used

to treat DKD, which is found to improve glomerular filtration

rate and reduce urinary protein in DKD patients (Li et al., 2015).

There are seven ingredients in TSF, including Astragalus

mongholicus Bunge, Euonymus alatus (Thunb.) Siebold,

Rehmannia glutinosa (Gaertn.) DC., Citrus × aurantium L.,

Cornus officinalis Siebold and Zucc., Rheum palmatum L.,

and Panax notoginseng (Burkill) F.H.Chen (in the ratio of 10:

5:4:3.4:3:2:1). Zhao et al. (2020), on the other hand, demonstrated

the therapeutic effects of TSF via the regulation of gut microbiota

and their metabolites. TSF (1.36 g/kg/d) significantly increased

the abundance of bifidobacterial and reversed the increased

Bacteroidetes-to-Actinobacteria ratio in STZ-induced DKD

rats. It is believed that the levels of indole sulfate and LPS in

the intestine were reduced by altering gut microbiota

composition, resulting in reduced renal inflammation in DKD

rats. The study findings would be enhanced if a positive control

group could be established.

4.3.3 Qidi Tangshen granules
Qidi Tangshen granules (QDTS) are composed of seven herbal

medicines, including Rehmannia glutinosa (Gaertn.) DC.,

Astragalus mongholicus Bunge, Euryale ferox Salisb., Cornus

officinalis Siebold and Zucc., Hirude nipponica Whitman,

Rheum palmatum L., and Scleromitrion diffusum (Willd.)

R.J.Wang (Gao et al., 2018). QDTS has been shown to be able

to counteract kidney injuries and reduce proteinuria in DKDmice

(Wang et al., 2019). A study further investigated the mechanisms

of action of QDTS and concluded that it could modulate the gut

microbiota composition of db/db mice (Wei et al., 2021). It was

manifested by a reduced abundance of Lactobacillus, Bacteroides,

and Lachnospir-aceae_NK4A136_group after QDTS treatment

(3.37 g/kg/day), which according to their analysis, were

positively correlated with indicators of kidney damage. An

increment in the abundance of Alloprevotella has also been

observed, which can produce SCFAs. Additionally, there was an

improvement in the profile of bile acids. But there is no indication

of the ratios of the seven components of the QDTS aqueous extract

in the paper. It has been suggested that QDTS may exert its anti-

DKD effects via the gut microbial-bile acid axis.

4.3.4 Shenqi Yanshen formula
In the Shenqi Yanshen formula (SQYSF), there are seven

natural Chinese medicinal drugs, including Panax ginseng

C.A.Mey., Astragalus mongholicus Bunge, Rheum palmatum

L., Epimedium sagittatum (Siebold and Zucc.) Maxim.,

Ligusticum striatum DC., Rehmannia glutinosa (Gaertn.) DC.

and vinegar-processed carapax trionycis (Zhang et al., 2022). It

was shown that SQYSF (3.6 g/kg/d) significantly reduced the

blood creatinine and urea nitrogen levels in adenine-induced

CKD mice, and HE staining showed improvement in renal

fibrosis. The expression of inflammatory factors such as TNF-

α, IL-1β, and IL-6 was also significantly reduced, which may be

related to the increased abundance of f_Succinivibrionaceae and

o_Aeromonadales in the intestine (Zhang et al., 2022). The article

does not describe the specific ratios of the components in the

SQYSF used, and an HPLC analysis may be required to clarify the

major components.

4.3.5 Qingre Xiaozheng formula
Qingre Xiaozheng formula (QRXZF) is formulated based on

TCM theory for the treatment of DKD. According to Gao et al.

(2021), QRXZF is composed of Astragalus mongholicus Bunge,

Angelica Sinensis (Oliv.) Diels, Concha Ostreae, Rheum

palmatum L., and four other botanical drugs (not mentioned

in the paper). They found that QFXZF could reduce urinary

protein and cholesterol levels in DKD mice. Moreover, they also

noticed that QFXZF (15.6 g/kg/d) could increase the abundance

of Rikenellaceae and Akkermansia in the intestine of HFD and

STZ-induced DKD mice. The former could promote the

production of SCFAs, while the latter could reduce intestinal

mucosal damage and decrease serum LPS levels. Therefore,

QRXZF may exert its pharmacological effects by regulating

the disturbed intestinal microbiota, protecting the integrity of

the intestinal barrier, and thereby decreasing serum LPS and

relieving kidney inflammation. There are, however, few relevant

studies on this formula. HPLC or UPLC analysis, as well as

positive control group settings, may be required in order to

enrich this study.
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4.3.6 Jianpi Yishen decoction
Jianpi Yishen decoction (JPYS) is a formula mainly used to

treat CKD composed of Astragalus mongholicus Bunge,

Atractylodes macrocephala Koidz., Dioscorea oppositifolia L.,

Cistanche deserticola Ma, Wurfbainia compacta (Sol. Ex

Maton) Skornick. and A.D.Poulsen, Salvia miltiorrhiza Bunge,

Rheum palmatum L. and Glycyrrhiza glabra L. in a 30, 10, 30, 10,

10, 15, 10, 6 g respectively. Zheng et al. (2020) found that JPYS

(10.89 mg/kg/d) could restore the intestinal flora of 5/

6 nephrectomy CKD rats, characterized by increased butyrate-

producing bacteria such as Phascolarctobacterium and

Coprococcus and decreased conditionally pathogenic bacteria

represented by Clostridium_XIVb. Additionally, it resulted in

an improvement in renal function and restoration of the blood

reticulocyte count and blood calcium level in CKD rats.

4.3.7 Sanhuang Yishen capsule
Sanhuang Yishen capsule (SHYS) is an herbal formula for the

treatment of chronic kidney diseases, including DKD and Ig A

nephropathy, which is composed of Astragalus mongholicus

Bunge (15 g), Panax quinquefolius L (12 g), Dioscorea

oppositifolia L (12 g), Cornus officinalis Siebold and Zucc

(12 g), Cuscuta Chinensis Lam (12 g), Polygonatum sibiricum

Redouté (12 g), Rehmannia glutinosa (Gaertn.) DC (15 g),

Euryale ferox Salisb (12 g), Rosa laevigata Michx (12 g),

Leonurus japonicus Houtt (10 g), Salvia miltiorrhiza Bunge

(12 g), Conioselinum anthriscoides (H.Boissieu) Pimenov and

Kljuykov (12 g), Atractylodes lancea (Thunb.) DC (10 g),

Paeonia lactiflora Pall (10 g). And Gypsophila Vaccaria (L.)

Sm (6 g). A previous study suggested that SHYS has some

protective effects on DKD (Xiu-Hai et al., 2011). A study

further explored the relationship between SHYS (1.62 g/kg/d)

in regulating gut microbiota and renoprotective effects. They

found that SHYS was able to reduce the F/B ratio and increase the

abundance of beneficial bacteria such as Allobaculum,

Ruminococcaceae UCG-005, and Lactobacillus in the intestine

of HFD and STZ-induced DKD rats, which may be a possible

mechanism for its nephroprotective effect. In addition, the

combined analysis of untargeted metabolomics and 16 S

rRNA sequencing results revealed that the altered gut

microbiota might be related to metabolic processes such as

the tricarboxylic acid cycle, arginine biosynthesis, and tyrosine

metabolism (Su et al., 2022).

4.3.8 Bekhogainsam decoction
Bekhogainsam decoction (BHID) is an ancient Chinese

medicinal formula with a long history of application, created

by Zhang Zhongjing, a prominent physician in the Eastern Han

Dynasty. BHID is composed of Gypsumfibrosum, Anemarrhena

asphodeloides Bunge, Panax ginseng C.A.Mey., Glycyrrhiza

glabra L. and Oryzasativa L. seeds. Meng et al. (2020) utilized

metabolomics combined with intestinal flora analysis to attempt

to explain the mechanism of BHID in the treatment of DKD.

They found that after oral administration of BHID (0.5 g/kg/d),

there was a significant difference in the abundance of

Actinobacteria phylum between the BHID-treated group and

control groups. BHID may exert an inhibitory effect on chronic

renal inflammation by regulating Actinobacteria. In addition,

BHID was also found to be able to promote the growth of

probiotics such as Clostridiales and Peptococcus and

counteract bacterial dysbiosis in STZ-induced DKD mice.

Moreover, it shows that BHID may be more effective in

restoring the gut microbiota in DKD mice compared with

metformin. This study also established an overall correlation

between network pharmacology, metabolomics, and gut

microbiota analysis, which falls in line with system biology.

4.3.9 Jowiseungki decoction
Jowiseungki decoction (JSD) is a formula composed of

Rheum palmatum L., Mirabilitum, and Glycyrrhiza glabra L.

in a ratio of 4:2:1, which was also created by Zhang Zhongjing.

There are relatively fewer studies on JSD for DKD. Meng et al.

(2020) found that JSD (0.5 g/kg/d) was able to restore the

intestinal flora composition of STZ-induced DKD mice, which

in turn participated in the metabolic disorders and chronic

inflammation of DKD, manifested by the reduction of fasting

glucose, triglycerides, urinary albumin, and the reduction of renal

tissue damage. The modified microbiota includes

Alphaproteobacteri, Atopobiaceaem, Acetatifactor,

Butyricicoccus, Ker-stersia, Peptococcus, and

Coriobacteraceae_UCG-002.

4.4 Natural extracts

4.4.1 Resveratrol
Resveratrol is a phytochemical of the stilbene family with

anti-inflammatory, anti-oxidative stress, and anti-glycosylation

properties, as well as a preventive effect on DM and its

complications (Galiniak et al., 2018). According to Cai et al.

(2020), resveratrol (10 mg/kg/d) reduced serum levels of urea

nitrogen, creatinine, and 24-h UTP in db/db mice, along with

decreased intestinal permeability and increased Parabacteroides,

Alistipes, as well as Bacteroides, which are closely related to anti-

inflammatory factors and exhibit anti-inflammatory properties.

Similar results were also obtained by a fecal transplant from

resveratrol-treated mice into db/db mice, suggesting that

resveratrol may exert a nephroprotective effect by altering the

composition of the intestinal flora. Resveratrol butyrate ester

(RBE) is the esterification product of resveratrol and butyrate

ester. A study randomly divided adenine-induced CKD rats into

three groups to receive resveratrol (50 mg/L), low-dose RBE

(25 mg/L), and high-dose RBE (50 mg/L), respectively. Both

resveratrol and RBE were found to have nephroprotective

effects. Alistipes, Blautia, and Parabacteroides which can

produce SCFAs, were altered in the intestinal tract of CKD
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rats after the administration of resveratrol (Hsu et al., 2022). The

high-dose RBE group showed an increase in the abundance of

Akkermansia, Blautia, and Enterococcus, all of which are

considered to be beneficial species (Cani and de Vos, 2017;

Hanchi et al., 2018; Liu et al., 2021).

4.4.2 Punicalagin
Punicalagin is the main component of pomegranates, which

has powerful antioxidant and anti-inflammatory effects. In

addition, studies have shown that punicalagin also has a

protective effect against DKD (An et al., 2020). A study was

conducted in which mice were randomly divided into control,

DM, metformin (150 mg/kg/d), low-dose punicalagin

(50 mg/kg/d), and high-dose punicalagin groups (100 mg/kg/

d), and treated accordingly. The results showed that PU could

amend the dysbiosis induced by high-fat diet feeding and

increase the abundance of SCFAs as well as SCFAs-producing

bacteria such as Eubacterium_coprostanoligenes and

Lachnospiraceae in the intestine (Hua et al., 2022), thereby

inhibiting the expression of inflammation-related genes and

enhancing the intestinal barrier. The enhanced intestinal

barrier could, in turn, counteract the elevated levels of LPS

within the circulation due to bacterial ectopics. Additionally,

punicalagin was also observed to be capable of countering insulin

resistance induced by high-fat diets (Hua et al., 2022).

4.4.3 Rehmannia glutinosa leaves total glycoside
As a primary component of Rehmannia glutinosa leaf, the

pharmacological activity of Rehmannia glutinosa leaves total

glycoside (DHY) has been widely studied. A study was

conducted to investigate the mechanism of DHY against renal

injuries; db/db mice were divided into model, metformin

(250 mg/kg/d), irbesartan (50 mg/kg/d), Dihuangye total

glycoside capsule (520 mg/kg/d), and DHY groups (2.6 g/kg/

d). After the application of DHY, it was found that the blood

urea nitrogen, creatinine, urinary trace protein, fasting glucose,

and total cholesterol levels were significantly reduced. The

alteration of intestinal flora showed an increase in

Erysipelotrichaceae and Acetatifactor levels (Xu et al., 2020). It

has been speculated that DHY may regulate glucolipid

metabolism by altering intestinal flora and exhibiting kidney

protection effects.

4.4.4 Emodin
Emodin is the main active ingredient of Rheum palmatum L.

Rheum palmatum L. enema has been widely used in the

treatment of CKD, and studies about Emodin treatment have

also been carried out. A study showed that emodin (1 mg/d) by

colonic irrigation reduced urea levels, urinary protein amount,

urea, and indole sulfate in CKD rats. Emodin was able to adjust

the intestinal microbiota, reduce the abundance of Clostridium

and increase Lactobacillus in 5/6 nephrectomy CKD rats (Zeng

et al., 2016). The former was positively associated with uremic

toxins production, while the latter was negatively correlated.

Therefore, the renoprotective effect of Emodin may be mediated

by the adjustment of the intestinal microbiota and the reduction

of uremic toxins. However, emodin has a lower solubility and

adheres to the intestinal mucosa for only a shorter period of time.

Lu et al. (2021), on the other hand, modified Emodin by

combining a nano-targeted drug delivery system with Emodin

and creating the emodin-nanoparticle system (emodin-NP).

They found that emodin-NP could regulate intestinal flora,

enhance the intestinal barrier, reduce serum LPS, IL-6, and

IL-1β levels, improve renal function and inhibit renal fibrosis

in 5/6 nephrectomized rats. The abundance of Saccharibacteria,

Clostridiales, Butyricicoccus, and Lachnospiraceae was increased

after treatment with a low dose of emodin-NP (1.15 mg/kg every

2 days). In contrast, the abundance of Clostridium, Aloprevotella,

Romboutsia, Oscillibacter, Ruminococcus, and Turicibacter was

increased in the high dose emodin-NP (4.6 mg/kg, every 2 days)

group, and treatment with emodin (4.6 mg/kg/d) increased

Streptococcus. They concluded that emodin-NP administered

once every 2 days was equivalent to emodin administered

once daily. Nevertheless, emodin-NP is a 2-day enema, while

the emodin group is a 1-day enema. Could the difference in the

number of enemas also affect the final results obtained since each

enema has a corresponding effect on the intestinal environment?

4.4.5 Total flavones of abelmoschus manihot
The total flavones of Abelmoschus Manihot (TFA) are a

main active component of a Chinese medicinal preparation,

Huangkui capsules. Huangkui capsules have been widely used

in clinical practice for the treatment of CKD, and their safety and

effectiveness have been confirmed (Li et al., 2021). Tu et al.

(2020) found that TFA (136 mg/kg/day) improved dysbiosis in

chronic renal failure rats while inhibiting gut microbial-derived

microinflammation to exert renoprotective effects. It was

demonstrated by reducing Bacteroidales and Lactobacillales

while increasing Erysipelotrichales and their corresponding

metabolites. If different doses of TFA could be set in different

groups, the study would be more enriched.

4.4.6 Isoquercitrin
Isoquercitrin is a natural flavonoid that exists in various

botanical drugs and can inhibit oxidative stress and

inflammation (Shen et al., 2020). In addition, a study has

demonstrated the role of isoquercitrin (80 mg/kg/d) in

reducing the production of uremic toxins in the intestine of

adenine-induced CKD mice. Interestingly, the mechanism of

action may be through the reduction of indole production by

inhibiting the activity of complex I in the bacterial membrane

respiratory chain, which reduces tryptophan transport, rather

than by modifying the composition of the gut microbiota (Wang

et al., 2020). It would be more informative for the study results if

isoquercitrin groupings of different doses and positive controls

could be established.
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4.4.7 Curcumin
Curcumin is a natural polyphenolic compound and one of the

major components of turmeric. Yang et al. (2015) found that

Curcumin (500 mg/d) upregulated the levels of bacteria that

favor the intestinal barrier in the gut of T2DM patients, such as

Bacteroides, Bifidobacterium, and Lactobacillus. They hypothesized

that the reduced plasma LPS and improved renal function observed

in patients with T2DM might be due to Curcumin’s regulation of

intestinal flora, which restored the epithelial barrier and reduced

chronic inflammation triggered by LPS. Randomized controlled

trials are needed to further elucidate the renal protective and gut

microbiota-modulating effects of Curcumin.

4.4.8 Fisetin
Fisetin is a natural compound widely present in various

plants. Previous studies have shown the effect of Fisetin in

slowing down the progression of renal fibrosis (Ren et al.,

2021). The anti-fibrotic effect of Fisetin was further explored

in a study. 16 S rRNA sequencing data showed that Fisetin

(100 mg/kg) reduced the F/B ratio, reversed the adverse

alteration of intestinal flora in hyperuricemia-induced CKD

rats, and protect renal functions that might be mediated by

the adjustment of gut microbiota composition and amino acid

metabolism (Ren et al., 2021).

4.4.9 Bupleurum polysaccharides
Bupleurum polysaccharides, a polysaccharide extracted from

the Chinese herbal medicine Chai Hu, have been shown to be

beneficial in animal models of diabetes (Pan et al., 2015). In a

study, bupleurum polysaccharides were extracted from two

different types of Bupleurums: Bupleurum chinense DC. and

Bupleurum smithii var. Parvifolium, and denoted by BCP and

BPs, respectively. Results have shown that the polysaccharides

(60 mg/kg/d) extracted from both types increased the abundance

of butyric acid-producing bacteria (Roseburia or Eubacterium) in

the intestine of STZ-induced DKD mice, reduced blood

creatinine and urinary protein levels, maintained the intestinal

barrier and suppressed chronic inflammation possibly by

enhancing the production of butyric acid (Pan et al., 2015).

4.4.10 Cordyceps cicadae polysaccharides
Cordyceps cicadae polysaccharides (CCP) is a medicinal

extract of the valuable Chinese medicine Cordyceps cicadae (a

medicinal parasitic fungus) with anti-inflammatory and

FIGURE 1
A summary of possible mechanisms by which herbal medicine may exert nephroprotective effects by influencing the gut microbiota. (Created
by Figdraw).
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antioxidant properties (Sharma et al., 2015). CCP treatment can

reduce blood creatinine and urine albumin levels and improve

insulin resistance and glucose tolerance in STZ-induced DKD

rats. It was also observed that CCP reduced the F/B ratio,

increased the abundance of beneficial organisms closely

related to intestinal barrier integrity, such as Bacteroides,

Lactobacillus, Bifidobacterium, and Akkermansia, as well as

beneficial organisms capable of producing SCFAs such as

Roseburia, and decreased the abundance of pathogenic LPS-

producing bacteria such as Proteobacteria. There was no

significant difference in the composition of gut microbiota

among CCP low-dose (75 mg/kg/d), medium-dose

(150 mg/kg/d), and high-dose groups (300 mg/kg/d).

Moreover, CCP is found to be able to protect intestinal

barrier integrity and inhibit the progression of inflammation

and renal fibrosis in DKD rats (Yang et al., 2020). It was found

that the effects of CCP were comparable to those of dimethyl

biguanide alone when the dose was 300 mg/kg.

According to the literature retrieved above, the most common

changes in the intestinal flora associated with herbal medicine or

natural extracts are changes in the abundance of akkermansia,

Lactobacillus, and bacteroidetes, as well as changes in the F/B ratio.

Akkermansia accounts for 1–4% of the total number of fecal

microorganisms in healthy individuals from early life and plays

an influential role in the physiopathology of the host. It was found

that akkermansia abundance was significantly lower in CKD

patients and was negatively correlated with IL-10 production (Li

et al., 2019). Akkermansia has been shown to increase mucus

thickness and intestinal mucosal barrier function (Ottman et al.,

2017). And as discussed above, it can produce butyric acid, reduce

intestinal mucosal damage, and decrease serum LPS levels as well

(Belzer et al., 2017; Lopes et al., 2018). Lactobacillus was able to

promote the production of SCFAs, improve the integrity of the

intestinal barrier, and improve renal function by reducing renal

injury and fibrosis-associated proteins (Niwa, 2013; Robles-Vera

et al., 2018). In addition, it reduces oxidative stress and

proinflammatory responses in the kidney and enhances immune

responses (Huang et al., 2021). As organisms capable of producing

SCFAs, Bacteroides possess certain anti-inflammatory and intestinal

barrier protection properties (Wei et al., 2021).

Even though some of these studies have shown an effect of

certain bacteria on some clinical parameters or metabolites of

DKD, most were conducted in animal models, whereas clinical

studies are scarce.Due to the fact that gutmicrobiota varies among

species, the correlation between gut microbiota and DKD should

be studied primarily in humans. Furthermore, most studies above

observed changes in intestinal flora before and after obtaining the

botanical drug and correlated laboratory indicators with these

changes, which is less persuasive. A further consideration is

whether the effect was caused by the intestinal flora and its

metabolites or by the active substances of the herbal medicine

transformed by the intestinal flora, which is more challenging to

determine. To further elucidate the mechanisms through which

herbal medicines regulate intestinal flora and their role in

improving DKD, future studies may need to use relevant

settings such as germ-free animals, antibiotic-treated animals,

and setting up fecal transplant groups, and more rigorous

experimental designs are needed.

5. Conclusion

A growing body of evidence suggests that the gut microbiota and

theirmetabolites play a significant role in the pathogenesis ofDMand

DKD. In this review, we summarized the effects of botanical drugs,

herbal pairs, formulas, and natural extracts on the intestinal flora of

patients or animal models of kidney disease. The potential

mechanisms of renoprotective effects by affecting the intestinal

flora (Figure Figure1) have also been discussed. In accordance

with the above studies, herbal or natural extracts have the

following effects: modulating the composition of intestinal flora,

particularly Akkermansia, Lactobacillus, and Bacteroidetes, as well

as adjusting the F/B ratio; increasing the production of SCFAs and

restoring the intestinal barrier; reducing the concentration of uremic

toxins (p-cresol sulfate, indole sulfate, TMAO); inhibiting

inflammation and oxidative stress. However, the number of such

studies is still relatively low, and the limitation of this paper is the low

inclusion of literature. Future studies may focus on the potential

mechanisms by which herbal medicine protects renal function via its

action on the gut-kidney axis. Understanding the role of botanical

drugs in alleviating kidney injuries and regulating gut microbiota can

provide new approaches and ideas for the treatment of DKD.
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