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Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infects both

people and animals and may cause significant respiratory problems, including

lung illness: Corona Virus Disease 2019 (COVID-19). Swabs taken from the

throat and nose of people who have the illness or are suspected of having it

have shown this pathogenic virus. When SARS-CoV-2 infects the upper and

lower respiratory tracts, it may induce moderate to severe respiratory

symptoms, as well as the release of pro-inflammatory cytokines including

interleukin 6 (IL-6). COVID-19-induced reduction of IL-6 in an inflammatory

state may have a hitherto undiscovered therapeutic impact. Many inflammatory

disorders, including viral infections, has been found to be regulated by IL-6. In

individuals with COVID-19, one of the primary inflammatory agents that causes

inflammatory storm is IL-6. It promotes the inflammatory response of virus

infection, including the virus infection caused by SARS-CoV-2, and provides a

new diagnostic and therapeutic strategy. In this review article, we highlighted

the functions of IL-6 in the coronavirus, especially in COVID-19, showing that

IL-6 activation plays an important function in the progression of coronavirus

and is a rational therapeutic goal for inflammation aimed at coronavirus.
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Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a betacoronavirus

closely related to Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), the organisms responsible

for Middle East respiratory sickness (MERS) and severe acute respiratory syndrome

(SARS), respectively (COVID-19). MERS-CoV and SARS-CoV cause high mortality, with

the majority of cases resulting from an inflammatory viral pneumonia that progresses to

acute respiratory distress syndrome 1 (ARDS1). ARDS2 was detected in 81 percent of fatal

patients infected with COVID-19. In light of this, a recent letter published in The Lancet
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recommends that all COVID-19 patients be examined for

hyperinflammation to identify those who may benefit from

immunosuppression or immunomodulation to prevent acute

lung injury (ALI). The coronavirus family consists of four

“established” human coronaviruses (HCOVs), two of which

have been identified since the 1960s: HCOV-OC43 and

HCOV-229E. These two viruses produce a milder respiratory

illness and, after rhinoviruses, are the most frequent cause

(10–30 percent) of the common cold (Hamre and Procknow,

1966; McIntosh et al., 1967; van der Hoek, 2007). Following

increased coronavirus screening, two new HCoVs, HCoV-NL63

and HCoV-HKU1, were found lately (van der Hoek et al., 2004;

Woo et al., 2005). Recent research suggests that HCoV-NL63,

-229E, and -OC43 are also the result of zoonotic transmission

from bats (de Wilde et al., 2018).

Considering the importance of interleukin 6 (IL-6) in airway

disease, preliminary studies using humanized monoclonal

antibodies against the IL-6 Receptor (Tocilizumab) to target

this cytokine therapeutically in response to COVID-19

infection have shown promising results, but additional

research is required. It has been shown that the antimalarial

drug hydroxychloroquine (Plaquenil) inhibits the expression of

toll-like receptors (TLRs) and the production of IL-6, and hence

may have an anti-COVID-19 impact (Wang et al., 2020).

Overview of IL-6

IL-6 is a prototype cytokine with pleiotropic activity and

functional redundancy that is necessary for host defense (Akira

et al., 1993; Tanaka and Kishimoto, 2014; Tanaka et al., 2016a).

Due to infection and tissue damage, IL-6 is produced rapidly by a

variety of cells, including immune-mediated cells, mesenchymal

cells, endothelial cells, fibroblasts and cancer cells, and even

many other cells, which promotes host defense by stimulating

acute phase reactions, hematopoiesis, and immune responses

(Akira et al., 1993; Tanaka et al., 2014; Tanaka et al., 2016a).

Because these processes are necessary for the elimination of

pathogenic microorganisms and tissue healing, IL-6 is a

crucial cytokine in host defense. Monocytes and macrophages

produce IL-6 in response to infections or tissue injuries by

stimulating pattern recognition receptors with pathogen-

associated molecular patterns (PAMPs) or damage-associated

molecular patterns (DAMPs) and serum IL-6 levels rise to several

tens to hundreds of pg/ml, depending on the infection or injury,

but in healthy condition, it is not higher than 4 pg/ml (Tanaka

et al., 2012; Tanaka et al., 2014; Kang et al., 2015).

The role of IL-6 in inflammation

The purpose of acute inflammation is to transport white

blood cells (neutrophils, lymphocytes, monocytes, etc.) and

plasma proteins (complements, antibodies, etc.) to the

inflammatory site to kill and remove inflammatory factors. In

addition to these cells collected from local lesions, various

cytokines, such as IL-6 and tumor necrosis factor-α (TNF-α),
are also produced during inflammation (Kaur et al., 2020). In

acute inflammation, IL-6 enters the liver through blood and

induces a large number of acute phase proteins, such as

C-reactive protein (CRP), serum amyloid A (SAA), etc. At the

same time, the abnormal synthesis of IL-6 also plays a

pathological role in chronic inflammation and autoimmunity.

When the high concentration of SAA persists, it will promote the

generation of chronic inflammatory disease complications and

organ failure (Heinrich et al., 1990; Gillmore et al., 2001; Tanaka

et al., 2014). Persistent acute inflammation will develop into

chronic inflammation, which will eventually lead to tissue

damage. IL-6 is an important regulator for the transformation

of inflammation from the acute phase to the chronic phase.

The role of IL-6 in disease

IL-6 can mediate a variety of signaling pathways, regulate cell

proliferation, differentiation, apoptosis, angiogenesis and

metastasis, and play a role in a variety of diseases. In

rheumatoid arthritis (RA), the expression of TLRs signaling

pathway can be used as the activation pathway of IL-6. IL-6

plays a key role in osteoclast mediated bone resorption. In RA

patients, the levels of IL-6 and IL-6R in serum and synovial fluid

of affected joints are elevated (Pandolfi et al., 2020).

STAT3 pathway is considered to be an important signal

transducer downstream of gp130 signal. STAT3 itself is a

carcinogenic gene and plays a key role in connecting

inflammation and cancer. It can participate in tumor

angiogenesis by up regulating the expression of matrix

metalloproteinase-9 (MMP-9) (Kujawski et al., 2008; Yu et al.,

2009; Kishimoto, 2010).

Signaling pathway of IL-6

IL-6 interacts with its specific receptor IL-6R, and its complex

IL-6/IL-6R interacts with and activates gp130, which is a signal

transducer shared by the IL-6 family of cytokines. The hexamer

complex composed of IL-6/IL-6R/gp130 performs various

physiological and biochemical functions of IL-6 by activating

different signal pathways (including classic signaling and trans-

signaling).

The combination of IL-6 and membrane-bound IL6R (mIL-

6R) can mediate classic signaling, while the combination of IL-R

and soluble IL-6R (sIL-6R) can mediate trans-signaling. The

hexamer complex composed of IL-6/IL-6R/gp130 first activates

Janus kinase (JAK) and starts the enzymatic reaction. Two

common pathways include JAK/STAT pathway and SHP-2/
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ERK pathway. Src homology phosphotyrosine phosphatase 2

(SHP-2) connects to mitogen-activated protein kinase (MAPK),

phosphorylates growth factor receptor-bound protein 2 (GRB2)

associated binding protein 1 (Gab1), and transfers it to the cell

membrane to coordinate the ongoing activation of MAPK and

phosphatidylinositol 3-kinase (PI3K). PI3K/Akt pathway

contributes to the activation of nuclear factor kappa-B(NF-

κB). (Heinrich et al., 2003; Mihara et al., 2012; Tanaka et al.,

2014; Baran et al., 2018; Jiang et al., 2021).

When the level of IL-6 in serum is low, the classic signaling

pathway plays a leading role, which can play an anti-

inflammatory role; When the concentration of IL-6 increases,

IL-6R starts trans-signaling transduction, and proinflammatory

reaction occurs in a wider cell population (Lee et al., 2014).

Specificity of IL-6

IL-6 is an important member of the cytokine network, a

central mediator of cytokine release syndrome (CRS) toxicity,

and plays a central role in acute inflammatory response (Lee

et al., 2014). IL-6 can induce the production of CRP and

procalcitonin (PCT), which is directly related to inflammation

and infection, facilitating the diagnosis of early inflammation and

early warning of sepsis. Therefore, IL-6 can be used as a

biomarker of disease severity and prognosis in CRS. A large

number of clinical data show that CRS is related to the severity of

COVID-19 and is the key cause of severe COVID-19 26–28. A

variety of cytokines, including IL-6, are involved in severe

COVID-19, and anti-inflammatory treatment is of great

significance in the protection of severe patients. Therefore, the

role of IL-6 in COVID-19 is irreplaceable by other cytokines.

The function of IL-6 in SARS-CoV and
MERS-CoV

IL-6 in SARS-CoV

From 2002 to 2003, SARS-CoV, a new coronavirus, caused a

severe respiratory epidemic worldwide (Yu et al., 2019). SARS is

characterized by influenza-like symptoms, a high fever, myalgia,

dyspnea, lymphopenia, and severe breathing problems caused by

lung infiltrates (pneumonia) (De Clercq, 2006). The N proteins

and RNA of SARS-CoV were found in lung, bronchial epithelial

cells andmacrophages, suggesting that these cells may be infected

with SARS-CoV. Monoclonal antibodies against MCP-1 and

TGF-1, as well as monoclonal antibodies against IL-6,

substantially interacted with the angiotensin converting

enzyme 2 (ACE2) and the S proteins of SARS-CoV produced

by most cells (He et al., 2006). Sheng et al. (Sheng et al., 2005)

collected information on SARS-associated coronavirus-infected

hospitalized patients in Taiwan University Hospital, and

determined a series of plasma inflammatory cytokines,

including IL-1β, IL-6, IL-8 and TNF-α. The fast rise of the

inflammatory cytokines IL-6, IL-8, and TNF-α was shown to

be associated with the development of SARS-associated ARDS.

The significance of IL-6 in the acute phase of SARS, however,

remained unknown.

The IL-6 cytokine’s mRNA expression was observed to be

higher in SARS patients’ peripheral blood mononuclear cell

(PBMC) (Yu et al., 2005; Dosch et al., 2009). After sufficient

immunosuppressive medication, the levels of IL-6 and TNF in

the acute phase grew dramatically and recovered to normal,

according to a study of SARS-CoV infected patients (Hsueh et al.,

2004). Wang et al. (Bai et al., 2008) found that the S proteins of

SARS-CoV was involved in the synthesis of pro-inflammatory

cytokine during the virus-host cell contact stage. IL-6 is one of the

primary cytokines released by activated macrophages in excess

amounts. The level of IL-6 expression was found to be greater in

SARS patients and was associated with the severity of their

sickness (Liu et al., 2020a). Before and during the treatment

of many early SARS patients, the amount of IL-6 and TNF-α
induced by T cells or monocyte activators was higher than the

normal value, and some people still increased after treatment.

This indicated that SARS may cause long-term imbalance of

cytokines. Future research should focus on improving antiviral

therapy and trying to use relevant cytokine inhibitors to limit

damage (Jones et al., 2004).

IL-6 in MERS-CoV

In 2012, MERS-CoV was discovered and causes a spectrum

of severe respiratory disease known as MERS. There were

1,728 confirmed MERS infections in 27 countries as of

26 April 2016, with 624 deaths (Wise, 2012; Zaki et al., 2012;

Hijawi et al., 2013; Korea Centers for Disease, 2015; de Wit et al.,

2016) (http://www.who.int/csr/don/26-april-2016-mers-saudi-

arabia/en/ (2016)).

MERS is most commonly referred to as lower respiratory

tract (LRT) disease and involves cough, fever, dyspnea, and

pneumonia. Between 20 and 40 percent of infected individuals

may develop ARDS, multiple organ failure and death. MERS is

another fatal zoonotic coronavirus illness, comparable to SARS; it

causes respiratory failure and severe kidney damage (also has the

effect on the growth of kidney cells under laboratory conditions).

Patients with underlying diseases have been reported more

frequently and more fatal. The majority of human MERS

infections are linked to medical institution infection

prevention and control (IPC) failures. According to reports,

the detection rate of all viruses detected in health care

workers (HCWs) is about 20%.

Rossigno et al. (Rossignol, 2016) reported that oral

administration of 100 mg/kg nitazoxanide 2 h prior to a 1 ml

intraperitoneal injection of 4 percent thioglycollate (TG)
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decreased plasma IL-6 levels by 90 percent compared to vehicle-

treated mice 6 h after TG administration. Although the clinical

relevance of these results has not been determined, they suggest

that nitazoxanide may improve the prognosis of MERS-CoV

patients by reducing the overproduction of pro-inflammatory

cytokines such as IL-6. According to recent research, the S

protein of MERS-CoV does not increase the production of

TNF or IL-6, but rather suppresses their generation by

Lipopolysaccharide (LPS). This shows that the activation of

these factors found in previous research was related to active

viral replication, since macrophages were infected with an active

virus at the time (Al-Qahtani et al., 2017). IL-6 expression was

elevated in severe MERS-CoV infections compared to moderate

ones (Liu et al., 2020a). Nitazoxanide is a broad-spectrum

antiviral drug with in vitro activity against coronavirus, which

can be used to treat viral respiratory infection and inhibit the

production of IL-6 (Rossignol, 2016). A phase 2b/3 clinical trial

by Haffizulla et al. (Haffizulla et al., 2014) showed that

nitazoxanide 600 mg twice a day for five consecutive days was

related to the shortening of the duration of symptoms in patients

with acute non complex influenza. At present, nitazoxanide is a

potential drug to treat MERS, so it is of great significance to

evaluate its therapeutic effect when used alone or in combination

with other candidate drugs such as oseltamivir (Rossignol et al.,

2009).

IL-6 in COVID-19

In December 2019, COVID-19 first came into public view.

Globally, as of 6: 49p.m. Central European summer Time

(CEST), 26 August 2022, there have been 596, 873,

121 confirmed cases of COVID-19, including 6,

459,684 deaths, reported to World Health Organization

(WHO). As of 23 August 2022, a total of 12,

449,443,718 vaccine doses have been administered (https://

covid19.who.int/). The nucleic acid sequences of COVID-19

are coronavirus-specific, and they vary from the known

human coronavirus specializations. These sequences are

identical to those found in severe SARS or MERS coronavirus.

The combination of the S protein and ACE2 in COVID-19

provides a severe public health danger to human transmission

(Xu et al., 2020; Hu et al., 2021b).

Critical patients with COVID-19 had increased plasma levels

of cytokines, similar to SARS, suggesting that an inflammatory

storm is involved in illness development (Luo et al., 2020).

Inflammatory cytokine (IL-6, IL-1, and IFN) blockade, stem

cell therapy, immune cell reduction, transfusion of

convalescent plasma, and artificial extracorporeal liver support

are all potential therapies for COVID-19 (Al-Qahtani et al.,

2017), and we believe that IL-6 blockade is a viable technique

for COVID-induced CRS. CRS is a systemic inflammatory

response defined by a rapid rise in a high number of pro-

inflammatory cytokines (Teijaro, 2017; Norelli et al., 2018;

Shimabukuro-Vornhagen et al., 2018), which may be induced

by infection, certain medications and other situations. CRS is

more frequent in immune-related conditions and treatments,

such as chimeric antigen receptor-T (CAR-T) therapy, organ

transplantation sepsis (Chousterman et al., 2017) and viral

infections. We observed that elevated IL-6 levels were

consistently reported in several COVID-19 studies (Huang

et al., 2020; Lai et al., 2020; Xu et al., 2020; Hu et al., 2021b),

suggesting that it might be used as a disease severity predictor

(Luo et al., 2020). In patients with COVID-19, IL-6 levels were

linked to death in a large retrospective cohort study (Tanaka

et al., 2012). In the dendritic cell-T cell interaction, IL-6 is

required for the production of T helper 17 (Th17) cells

(Mackay and Arden, 2015). According to Xu et al. (McIntosh

et al., 1967) elevated IL-6 might account for the highly active

Th17 cells seen in COVID-19 patients. Animal investigations of

SARS-CoV have shown that suppressing NF-κB, a critical

transcription factor of IL-6, or infecting animals with SARS-

CoV missing the coronavirus envelope (E) protein, a potent

stimulant to NF-κB signaling, enhanced animal survival with

lower IL-6 levels (Zhang et al., 2020). The E proteins of SARS-

CoV-2 (Ref sequence QHD43418.1) and SARS-CoV (Ref

sequence NP 828854.1) are 95 percent similar, as found.

Given that the E protein is a virulence determinant and

mediates the coronavirus immune response (Kai and Kai,

2020; Moore and June, 2020), it is reasonable to presume that

both viruses provoke an identical immune response. Therefore,

targeting IL-6 for COVID-induced CRS may be advantageous

(Figure 1).

Patients with severe COVID-19 had a greater IL-6/IFN

ratio than those with mild COVID-19, which might be due to a

stronger cytokine storm promoting lung injury (Lagunas-

Rangel and Chavez-Valencia, 2020). This raises the issue of

whether IL-6 inhibition is exclusively helpful in individuals

who have high IL-6 serum expression levels. If this is the case,

IL-6 testing may become a necessary component of the rating

system. Moreover, the expression level of IL-6 may not be

sufficient to indicate its functional downstream effects. A test

that distinguishes functional IL-6 from total IL-6 might be

beneficial for directing treatment decisions. CRP, an acute-

phase inflammatory protein generated by IL-6-dependent

hepatic biosynthesis, is a reliable indicator of IL-6

bioactivity and is used to predict the severity of CRS and

evaluate the success of IL-6 blocking in CAR-T cell-induced

CRS patients (van der Hoek et al., 2004; de Wilde et al., 2018).

Unknown is the CRP level in virus-induced CRS. With a few

exceptions (Hu et al., 2021b), the majority of studies (Liu et al.,

2020b; Luo et al., 2020; Smilowitz et al., 2021) found an

association between elevated CRP levels and severe

COVID-19. In the future, however, further biomarker

research will be necessary for risk stratification and

therapeutic effect monitoring. In the inflammatory network,
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there are several pharmacological agents that target IL-1, IL-

18, TNF, and IFN, as well as JAK/STAT signaling (Table 1).

Regular testing for inflammatory cytokines should be

performed if these medications are effective (Liu et al.,

2020a). Relevant clinical trials showed that in the study on

the treatment of COVID-19 inpatients with anti-IL-6 receptor

antibody tocillizumab, there was no support for the conjecture

that “the use of anti-IL-6 drug intervention can improve the

symptoms of COVID-19, such as hypoxia and respiratory

failure, and reduce the risk of death” (Stone et al., 2020;

Declercq et al., 2021). However, tocillizumab may still be

effective in severe patients, so further research should be

conducted in the future (Soin et al., 2021).

Regulatory mechanisms of IL-6

The possible mechanism of CRS in severe COVID-19

patients is that SARS-CoV-2 infects with alveolar epithelial

cells through ACE2 receptor. The loss of epithelial cells and

increased cell permeability lead to the release of the virus.

SARS-CoV-2 stimulates the innate immune system, leading

macrophages and other innate immune cells, including IL-6,

to generate a large number of cytokines and chemokines.

Antigen-presenting cells may also initiate adaptive

immunity (mainly dendritic cells). T cells and B cells are

antiviral cells that indirectly or directly stimulate the

generation of proinflammatory cytokines. In addition, when

inflammatory chemicals stimulate the alveoli, a large amount

of inflammatory exudate and erythrocytes enter the alveoli,

resulting in dyspnea and respiratory arrest (Figure 2).

In an infected lesion, IL-6 generates warning signals in the

whole body. Pathogen-recognition receptors (PRRs) on immune

cells, including monocytes and macrophages, identify PAMPs in

lesions (Kumar et al., 2011). Among the PRRs are TLRs, retinoic

acid-inducible gene-1-like receptors, nucleotide-binding

oligomerization domain-like receptors, and DNA receptors.

They stimulate the synthesis of inflammatory cytokine mRNA

such as IL-6, TNF and IL-1 by activating many signaling

pathways, including NF-κB. Additionally, TNF and IL-1

activate transcription factors, leading to the generation of IL-6.

In the event of tissue damage, IL-6 also transmits a warning

signal. DAMPs, which are produced by dead or damaged cells in

noninfectious inflammations such as burns or trauma, either

directly or indirectly exacerbate inflammation. During sterile

surgical operations, an increase in serum IL-6 levels precedes an

increase in body temperature and serum acute phase protein

concentration (Nishimoto et al., 1989). DAMPs from damaged

cells include, among others, mitochondrial DNA, high mobility

group box 1 (HMGB1), and S100 proteins (Bianchi, 2007).

HMGB1 binding to TLR2, TLR4, and the receptor for

advanced glycation end products (RAGE) may trigger

inflammation; nevertheless, blood mtDNA levels in trauma

patients are hundreds of times higher than in controls,

causing TLR9 stimulation and NF-κB activation (Zhang et al.,

2010). The S100 family consists of more than 25 proteins, some

of which interact with RAGE to generate sterile inflammation

(Sims et al., 2010).

FIGURE 1
Comparison of IL-6 and other cytokines in healthy individual and SARS-CoV-2 infected people.
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In response to various stimuli, in addition to immune-

mediated cells, IL-6 is generated by mesenchymal cells,

endothelial cells, fibroblasts and a range of other cells

(Akira et al., 1993). The stringent gene transcriptional and

post-transcriptional regulation of IL-6 production is

necessitated by the fact that IL-6 acts as a signal to alert the

presence of an emergency. A multitude of transcription factors

control the IL-6 gene’s transcription (Figure 3). The 5′
flanking region of the human IL-6 gene has binding sites

for NF-κB, specificity protein 1 (SP1), nuclear factor IL-6

(NF-IL-6), activator protein 1 (AP-1) and interferon

regulatory factor 1 (IRF-1) (Libermann and Baltimore,

1990; Akira and Kishimoto, 1992; Matsusaka et al., 1993).

The IL-6 promoter is active when cis-regulatory elements are

stimulated by IL-1, TNF, TLR-mediated signal and forskolin

(Tanaka et al., 2014).

The mechanism of COVID-19

ACE2 has been identified as the primary receptor for binding

SARS-CoV S protein. Researchers have designed and discovered

small molecule compounds and peptides that can bind to the

SARS-CoV-specific receptor ACE2, preventing SARS-CoV S

protein from binding to ACE2 and fusing with the host cell

membrane to prevent viral infection (Zhang et al., 2020). This

suggests that drugs targeting the virus-acting receptor can be

designed. Xu et al. (Xu et al., 2020) confirmed ACE2 as the

receptor of SARS-CoV-2 by studying the binding capacity of the

structural model of SARS-CoV-2 S protein to human

ACE2 receptor. SARS-transmembrane CoV’s spike

glycoprotein (S protein) binds to the cellular membrane

ACE2; SARS-CoV then attaches to target cells, followed by

SARS-CoV-S protein priming by cellular surface proteases

such as transmembrane protease serine 2 (TMPRSS2),

resulting in the fusion of viral and cellular membranes and

SARS-CoV entry and replication in target cells. In addition,

elimination of ACE2 reduces viral infection and replication

considerably in mice infected with SARS-CoV. It is thus

believed that the SARS-CoV S protein’s binding to ACE2 is

crucial for SARS-CoV infection (Kai and Kai, 2020). Alveolar

epithelial cells bind to SARS-CoV-2. The virus then activates the

innate and adaptive immune systems, resulting in a flood of

cytokines, including IL-6, being produced (Figure 4).

TABLE 1 Study on IL-6 in SARS-CoV-2, SARS-CoV and MERS-CoV.

Abbreviations Terms

ACE2 angiotensin converting enzyme 2

ALI acute lung injury

AP-1 activator protein 1

ARDS1 acute respiratory distress syndrome 1

CAR-T chimeric antigen receptor-T

CEST Central European summer Time

COVID-19 Corona Virus Disease 2019

CRP C-reactive protein

CRS cytokine release syndrome

DAMPs Damage-associated molecular patterns

Gab1 GRB2 associated binding protein 1

GRB2 growth factor receptor-bound protein 2

GvHD graft-versus-host disease

HCOVs human coronaviruses

HCWs health care workers

HMGB1 high mobility group box 1

IL interleukin

IPC infection prevention and control

IRF-1 interferon regulatory factor 1

JAK Janus kinase

LPS Lipopolysaccharide

LRT lower respiratory tract

MAPK mitogen-activated protein kinase

MAS macrophage activation syndrome

MERS Middle East respiratory sickness

MERS-CoV Middle East Respiratory Syndrome Coronavirus

mIL-6R membrane-bound IL6R

MMP-9 matrix metalloproteinase-9

NF-IL-6 nuclear factor IL-6

NF-κB nuclear factor kappa-B

PAMPs pathogen-associated molecular patterns

PBMC peripheral blood mononuclear cell

PCT procalcitonin

PI3K phosphatidylinositol 3-kinase

PRRs Pathogen-recognition receptors

RA rheumatoid arthritis

RAGE receptor for advanced glycation end products

SAA serum amyloid A

SARS severe acute respiratory syndrome

SARS-CoV Severe Acute Respiratory Syndrome Coronavirus

SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2

SHP-2 Src homology phosphotyrosine phosphatase 2

sIL-6R soluble IL-6R

SP1 specificity protein 1

TG thioglycollate

Th17 T helper 17

TLRs toll-like receptors

TMPRSS2 transmembrane protease serine 2

(Continued in next column)

TABLE 1 (Continued) Study on IL-6 in SARS-CoV-2, SARS-CoV and
MERS-CoV.

Abbreviations Terms

TNF-α tumor necrosis factor-α
WHO World Health Organization
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Future prospects

In controlled clinical trials throughout the world, IL-6 and IL-6R

antagonists are being evaluated for the treatment of COVID-19

patients with severe respiratory difficulties. Unanswered is whether

IL-6 antagonists and IL-6R antagonists will have varying degrees of

effectiveness. Inhibitors of the IL-6R may disrupt both cis and trans

signaling, as well as the recently identified trans presentation

signaling. IL-6 binds to mIL-6R on immune cells, which then

forms a complex with gp130 on Th17 cells, resulting in T cell

signaling thatmay be involved in ARDS (Tanaka et al., 2016b; Heink

et al., 2017; Kang et al., 2019). In contrast, IL-6 inhibitors can only

suppress cis and trans signaling. The primary goal of IL-6

antagonistic therapy is to decrease the need for advanced

treatment in individuals with severe COVID-19. The

development of antivirals and immunizations that prevent or

relieve illness should be a long-term goal.

Patients with severe COVID-19, similar to SARS and MERS

patients, have been proposed to have a CRS defined by an elevation in

IL-6, which indicates that it may aggravate lung damage, cause viral

inflammatory response and death. A prior cohort analysis found that

IL-6 expression was substantially higher in COVID-19 patients, but

that it varied greatly across ICU and non-ICU patients (Liu et al.,

2020a). Moreover, recent study has shown that the SARS-CoV S

protein promotes an upregulation of IL-6 and TNF in murine

macrophages, and IL-6 and IL-8 have been identified as significant

SARS-CoV-induced epithelial cytokines (Yoshikawa et al., 2009).

These data indicate that SARS-CoV-induced IL-6 and TNF play a

role in the disease’s pathogenesis, notably in terms of inflammation

and high fever (Wang et al., 2014). Anti-IL6R antibodyTocilizumab is

a humanized recombinant monoclonal antibody. Tocilizumab has

shown potential for treating severe CRS. Sixty-nine percent of patients

responded within 14 days after receiving one or two doses of

tocilizumab, with fever and hypotension receding within hours

and vasopressors being withdrawn within a few days (Kotch et al.,

2019). Tocilizumab’s effect has also been recorded in CRS linked with

sepsis, graft-versus-host disease (GvHD) and macrophage activation

syndrome (MAS), among others (Barut et al., 2017; Ibrahim et al.,

2020; Melgarejo-Ortuno et al., 2021). However, there is not enough

evidence to clearly show the clinical efficacy and safety of Tocilizumab

for severe patients with COVID-19, and its clinical application

and side effects need to be further explored (Cortegiani et al., 2021).

Given the worldwide urgency of containing the COVID-19

pandemic, there are a few cautions to consider. Corticosteroids are

FIGURE 2
Changes of various immune cells and related substances in alveolus after SARS-CoV-2 invasion.
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often used to treat ARDS caused by sepsis. However, in SARS and

MERS patients, corticosteroids did not lower mortality and

delayed viral clearance (Channappanavar and Perlman, 2017).

Infectious disease authority and the WHO have thus decided that

systemic corticosteroids should not be administered to COVID-19

patients at this time. The reduction in inflammation generated by

IL-6 antagonism might, in theory, postpone viral clearance.

Nevertheless, inhibiting IL-6 induces a rapid drop in serum IL-

10, which may assuage concerns over the length of time required

for viral clearance (Tanaka et al., 2016b). Furthermore, it is

doubtful that one or two doses of an IL-6 antagonist would

cause consequences like fungal infections or jaw osteonecrosis,

FIGURE 3
Macro and micro aspects of SARS-CoV-2 invading respiratory system.

FIGURE 4
Schematic diagram of SARS-CoV-2 structure.
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which are common in people using these medications on a

monthly basis for chronic illnesses like RA. Tocilizumab was

first approved for rheumatic illnesses, then for CRS in patients

undergoing CAR-T cell treatment, and is now being repurposed

for the COVID-19 pandemic. Diamanti et al. found that compared

with HCWs, people using IL-6 inhibitors (such as RA patients)

had significantly lower vaccine antibody titers, but almost all

patients had antibody specific reactions induced in their bodies.

In the investigated RA patients, BNT162b2 vaccine showed good

safety (Picchianti-Diamanti et al., 2021).

Conclusion

As the pandemic grows, experts throughout the globe are

working to better understand the virus’s pathophysiology and

identify new targets and promising medications that may be used

to fight SARS-CoV-2. There are no confirmed antiviral

medicines with particular action against SARS-CoV-2, despite

some insights about viral pathophysiology and prospective

targets. Future pandemics involving more viruses, may use IL-

6-targeted treatments Chen et al., 2010, Hu et al., 2021a, Kim

et al., 2021, Li et al., 2016, Soy et al., 2020.
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Glossary

ACE2 angiotensin converting enzyme 2

ALI acute lung injury

AP-1 activator protein 1

ARDS1 acute respiratory distress syndrome 1

CAR-T chimeric antigen receptor-T

CEST central european summer time

COVID-19 corona virus disease 2019

CRP C-reactive protein

CRS cytokine release syndrome

DAMPs damage-associated molecular patterns

Gab1 GRB2 associated binding protein 1

GRB2 growth factor receptor-bound protein 2

GvHD graft-versus-host disease

HCOVs human coronaviruses

HCWs health care workers

HMGB1 high mobility group box 1

IL interleukin

IPC infection prevention and control

IRF-1 interferon regulatory factor 1

JAK janus kinase

LPS lipopolysaccharide

LRT lower respiratory tract

MAPK mitogen-activated protein kinase

MAS macrophage activation syndrome

MERS middle east respiratory sickness

MERS-CoV middle east respiratory syndrome coronavirus

mIL-6R membrane-bound IL6R

MMP-9 matrix metalloproteinase-9

NF-IL-6 nuclear factor IL-6

NF-κB nuclear factor kappa-B

PAMPs pathogen-associated molecular patterns

PBMC peripheral blood mononuclear cell

PCT procalcitonin

PI3K phosphatidylinositol 3-kinase

PRRs pathogen-recognition receptors

RA rheumatoid arthritis

RAGE receptor for advanced glycation end products

SAA serum amyloid A

SARS severe acute respiratory syndrome

SARS-CoV severe acute respiratory syndrome coronavirus

SARS-CoV-2 severe acute respiratory syndrome coronavirus 2

SHP-2 Src homology phosphotyrosine phosphatase 2

sIL-6R soluble IL-6R

SP1 specificity protein 1

TG thioglycollate

Th17 T helper 17

TLRs toll-like receptors

TMPRSS2 transmembrane protease serine 2

TNF-α tumor necrosis factor-α
WHO World Health Organization
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