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Lung cancer has the highest incidence of morbidity and mortality throughout

the globe. A large number of patients are diagnosedwith lung cancer at the later

stages of the disease. This eliminates surgery as an option and places complete

dependence on radiotherapy or chemotherapy, and/or a combination of both,

to halt disease progression by targeting the tumor cells. Unfortunately, these

therapies have rarely proved to be effective, and this necessitates the search for

alternative preventive approaches to reduce the mortality rate of lung cancer.

One of the effective therapies against lung cancer comprises targeting the

tumor microenvironment. Like any other cancer cells, lung cancer cells tend to

use multiple pathways to maintain their survival and suppress different immune

responses from the host’s body. This review comprehensively covers the role

and the mechanisms that involve the nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) in lung adenocarcinoma and methods

of treating it by altering the tumor microenvironment. It focuses on the insight

and understanding of the lung cancer tumor microenvironment and

chemokines, cytokines, and activating molecules that take part in

angiogenesis and metastasis. The review paper accounts for the novel and

current immunotherapy and targeted therapy available for lung cancer in

clinical trials and in the research phases in depth. Special attention is being

paid to mark out single or multiple genes that are required for malignancy and

survival while developing targeted therapies for lung cancer treatment.
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Highlights

• The tumor microenvironment is intricate and complex and involves a wide variety

of chemokines and cytokines.

• Disease progression is promoted in the tumor environment, resulting in

inflammatory responses via the activation of NF-κB.
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• With the development of new targeted therapies,

molecular-based therapies have extended their spectrum

beyond EGFR, VEGFR, and HER2/neu receptors to the

receptor tyrosine kinases (RTKs).

• It is also imperative to evaluate optimal combinatorial

approaches, optimal drug sequencing, and redefining

and streamlining clinical trials.

Introduction

Lung cancer has the highest mortality rate compared to all

other cancers (Mao et al., 2016; Siegel et al., 2016). In 2012,

1.8 million cases were reported worldwide for lung cancer,

which constituted 13% of all cancers reported globally (Torre

et al., 2012). In the United States alone, 243,820 new cases of lung

cancer were reported, which claimed 162,510 lives (Siegel et al.,

2016). The male-to-female ratio is 2:1 and is diagnosed mostly in

men aged 60 and above (Mao et al., 2016). Its occurrence is the

highest in the regions of Eastern, Central, and Southern Europe for

both genders and among women in eastern Asia and North

America (Stuber et al., 2008). The major cause of its occurrence

is considered to be environmental factors, such as the presence of

radon, lead, and other toxic pollutants in the air (Pope et al., 2002).

It is also noted that with the prevalence of smoking, particularly in

developing countries, the number of cases being reported for lung

cancer is proportionally increasing. The mortality rate of lung

cancer was recorded to be over 75% with a ratio of 2.2:1 for men to

women among people of age 60 years andmore (Siegel et al., 2016).

Based on the morphological forms, lung cancer is divided

into two main categories, non-small cell lung cancer (NSCLC)

and small cell lung cancer (SCLC). The non-small cell lung

cancer (NSCLC) is further divided into adenocarcinoma,

squamous cell carcinoma, and large cell carcinoma (Cheng

et al., 2016). Adenocarcinoma is more prevalent than

squamous cell carcinoma in most of the countries around the

globe (de Groot and Munden, 2012). It has been observed that a

fivefold more number of cases are reported in women as

compared to men in Japan, China, and Saudi Arabia (de

Groot and Munden, 2012). The reason for the rise in

adenocarcinoma cases is linked with cigarette components,

use of electronic cigarette (e-cigarette), and environmental

factors (Lortet-Tieulent et al., 2014). Before 1979, squamous

cell carcinoma was regarded as more prevalent than other

forms of cancer and is still a more common type of lung

cancer in India, Russia, and the Netherlands (Cheng et al., 2016).

Tumor microenvironment in lung
cancer

Lung adenocarcinoma is a complex disease with a wide array

of oncogenes involved along with the cytokines and chemokines,

all of which play a significant role in tumor growth and

angiogenesis (Grunewald et al., 2006; Li et al., 2011)

(Figure 1). The study of cell and molecular biology of lung

cancer has emanated from the circuit pathways comprising

different key factors that play critical roles in the development

of a full-fledged lung cancer. Among these factors, several factors

have also been studied for their role at the genetic and epigenetic

level and, thus, are considered important for carcinogenesis and

metastasis. A variety of compounds/drugs have been developed

to specifically target farnesyltransferase, epidermal growth factor

receptor (EGFR), and vascular endothelial growth factor receptor

(VEGFR). These compounds/drugs have shown encouraging

results in clinical trials (Gore et al., 2000; Morabito, 2016).

Signal transduction pathways that are responsible for cell

proliferation and survival include mitogen-activated protein

kinases (MAPKs) (Vicent et al., 2004), a serine/threonine

kinase AKT (Brognard et al., 2001), and NF-κB (Jones et al.,

2000), which are hijacked or altered to facilitate these functions

and maintain tumorous growth.

NF-κB is the key mediator of the tumor microenvironment and

is constitutively active in different tumor cells. The key signaling

pathway, involved in a wide array of functions, is activated in the

case of lung adenocarcinoma both in murine models and humans

(Karin and Greten, 2005; Karin, 2006; Meylan et al., 2009; Basseres

et al., 2010). The T-cell infiltration in the tumors is associated with

immunosurveillance and tumor immunoediting, thus increasing the

patient quality of life and survival rate. NF-κB has been a potent

factor involved in protumor responses by boosting and recruiting

the immunosuppressive cells, which include the regulatory T cells

(Tregs) andmyeloid dendritic cells (mDCs). These cells activate and

release chemokines and cytokines alongwith the growth factors such

as VEGF that initiate tumor growth and angiogenesis. Mutations in

NF-κB enhance angiogenesis and metastasis by ultimately inducing

mutations. Type 1 interferons including IFN alpha and beta and

interferon gamma have pivotal roles in cancer immunosurveillance

and priming of T cells in tumors. The effector functions of interferon

gamma play a significant role in cancer immunoediting and natural

killer cell activation. T-cell priming also activates the complement

system and mediates the antitumor responses. A crosstalk at the

molecular level between the interferon and theNF-κB pathway plays

a significant role in the tumor microenvironment (Muthuswamy

et al., 2012; Hopewell et al., 2013).

The antitumor responses of theNF-κB trigger signaling cascade
result in T-cell recruitment at the tumor site, leading to tumor

regression and activation of chemokines and cytokines possessing

the C–C motif and CCL2, respectively (Xia et al., 2014). NF-κB
mediates both protumor and antitumor responses along with

interferon activation and T-cell activation (Figure 2) (Zhang

et al., 2021). The roles of different mediators, which include Toll-

like receptors, lymphotoxin beta (LTB), intercellular adhesion

molecule 1 (ICAM1), interferon beta, chemokines, and cytokines,

are linked to the NF-κB activation and promotion of tumor

regression, leading to better disease prognosis (Liu et al., 2017).
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Under the action of the aforementioned mediators and

immunomodulatory genes, NF-κB regulation in inflammatory

and immune responses opens up new avenues of research and a

better prognosis of lung adenocarcinoma, which can be solved by

immunotherapy. The Pathways and inhibitors for NF-κB activation

have been shown in Figure 3.

T-cell proliferation is regulated by the cytotoxic

T-lymphocyte-associated antigen 4 (CTLA-4) and programmed

death cell receptor 1 (PD-1). They are associated withNF-κB. The
tumor microenvironment is complex and consists of intricate

crosstalk of different signaling factors, chemokines, cytokines,

and genes that need investigation and focus to target the soil

rather than the seed of the tumor cells (Muthuswamy et al., 2012).

Disease progression is promoted in the tumor environment,

resulting in inflammatory responses via the activation of NF-κB
(Akca et al., 2011). It has recently been found that in tumor cells,

T cell-mediated immune response is also regulated by the

activation of NF-κB, hence actively participating in cancer

immunosurveillance (Zhu et al., 2016).

Domains of the nuclear factor kappa-
light-chain-enhancer of activated B cells

Five family members of NF-κB have been identified in

mammalian cells. These are RelA (REL-associated protein A)

(p65), RelB (REL-associated protein B), c-Rel, NF-κB1 (p50/

p105), and NF-κB2 (p52/p100). All of these contain an

N-terminal domain called RHD (Rel homology domain) that

makes them a member of this family and is used in forming a

homo/heterodimer that can bind to the DNA (Hayden and

Ghosh, 2004). p65, RelB, and c-Rel also contain a domain

called the trans-activator domain (TAD), through which they

bind with p50 or p52 members, resulting in their activation in a

trans manner. p50 and p52 lack TAD on their C-terminals. Also,

the p50 and p52 homodimers are transcription repressors and, in

this configuration, develop a threshold for NF-κB activation

(Ghosh et al., 1998).

However, in a normal physiological condition, NF-κB dimers

are present in cells but are withheld within the cytoplasm by their

inhibitors that mask their NLS (nuclear localization sequence)

domain. These inhibitors are considered to be specific for each

member of the family that includes IκBα, IκBβ, IκBγ, IκBϵ, and
BCL-3, and they keep a tight check on the activation of NF-κB
pathways (Lin et al., 2010).

Pathways for the nuclear factor kappa-
light-chain-enhancer of activated B cells

NF-κB is a multifunctional transcription factor that can be

activated via various extracellular signals generated due to

FIGURE 1
Tumormicroenvironment.Thecharacteristicsof lungtumorsareoftendeterminedbyfibroblasts,endothelialcells,andmyeloidcellsexisting inthe
tumor microenvironment. Extracellular matrix (ECM) constituting keratin, fibronectin, and collagen functions to provide structural support to tumor
cells.Angiogenesisoccursduetothepresenceofplatelet-derivedgrowthfactor (PDGF)andvascularendothelial growth factor (VEGF)at thetumorsite.
The CXC-chemokine ligand (CXCL) family members bind to the neutrophil receptor CXCR2 to help the tumor cells recruit neutrophils.
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FIGURE 2
Role of NF-κB cancer immunosurveillance. Proinflammatory cytokines and oncogenes activate NF-κB resulting in the expression of
proinflammatory mediators such as chemokine CXCL 1-3, interleukin-8 (IL-8), and (C-X-C motif) ligand. The recruitment of myeloid-derived
suppressor cells (MDSCs) inhibits the antitumor response. Inflammation, angiogenesis, and metastasis are stimulated via multiple chemokines. On
the other hand, interferon (IFN)-γ produced by T cells or natural killer (NK) cells stimulates the secretion of CXCL9–11, which, in turn, inflicts
antiangiogenic and antimetastatic effects.

FIGURE 3
Pathways and inhibitors for NF-κB activation. These signaling cascades are modulated within the non-canonical and canonical pathways using
the receptor, adapter protein, IKKα, proteasome, NF-κB-inducing kinase (NIK), nuclear translocation, REL-associated protein A (RELA), REL-
associated protein B (RELB), and NF-κB essential modulator (NEMO) inhibitors.
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genotoxic or endoreticulum stress, including growth factors,

cytokines, carcinogens, intracellular stimuli, and tumor

promoters (Tak and Firestein, 2001).

A canonical pathway can be activated by proinflammatory

growth factors, microbial infections, and cytokines including

TNFα. TNFα on binding with TNFR1 (TNFα receptor 1)

causes its transmerization leading to the recruitment of several

proteins that phosphorylate and activate IKK (IκB kinase

complex) (Lin et al., 2010). The IKK complex consists of

three subunits involved in its catalytic reactions: IKKα/IKK1,
IKKβ/IKK2, and an essential regulatory subunit, IKKγ/nuclear
factor-κB essential modulator (NEMO) (Karin, 1999). In the

canonical pathway, IKKβ plays an important role as it gets

phosphorylated on its serine residues 32 and 36 and results in

its ubiquitination and degradation, thereby freeing NF-κB p50,

p65, and c-Rel (Karin, 1999). The NLS domains present on these

NF-κBmolecules are now exposed andmodified to allow binding

to the DNA or to transcriptional factors such as CBP (cAMP

response element-binding protein) (Chen and Greene, 2004).

Also, in the case of DNA damage by radiation and genotoxic

agents, the IKKB-NF-κB cascade can be elicited. In this scenario,

the pathway is activated by the activation of ATM (ataxia

telangiectasia-mutated kinase) that phosphorylates the IKKγ
domain bound to a complex called PIDDsome (Tinel and

Tschopp, 2004). This complex consists of a receptor-

interacting protein (RIP1), p53-induced death domain, and

NF-κB essential modulator (NEMO). When NEMO is

phosphorylated, it detaches itself from the complex and moves

into the cytoplasm, resulting in the transactivation of IKKβ, and
this serves as the initiation of the canonical pathway (Lee et al.,

2012).

Apart from the aforementioned pathway, cells have a non-

canonical pathway involving non-death receptor members of the

TNF receptor family (Muppidi et al., 2004). These include the

cluster of differentiation 40 (CD40), lymphotoxin beta, and B-cell

activating factors (Muppidi et al., 2004). These receptors are

activated by their specific ligands, resulting in the stabilization

and auto-activation of NIK (NF-κB-inducing kinase), which

further phosphorylates the IKKα member of the NF-κB family

(Kratz et al., 2016). IKKα, in response to its activation, undergoes

a conformational change and cleaves its p100 to produce a

functional NF-κB heterodimer containing the newly cleaved

p52 and RelB, which is then translocated to the nucleus to act

as a functional transcription factor (Kratz et al., 2016).

Canonical and non-canonical pathways are regulated by

c-IAP (inhibitor of apoptosis) proteins. These proteins

suppress the non-canonical pathway by causing ubiquitination

of NIK under normal conditions (Kocab and Duckett, 2016).

However, K-Ras can bind to and activate NF-κB through TBK1

(TANK-binding kinase 1) in the non-canonical pathway and

contribute to oncogenic K-Ras-mediated lung carcinogenesis.

NF-κB can also be activated by the components contained in

tobacco; among these, nicotine and methylnitrosamino-1-(3-

pyridyl)-1-butanone (NNK) are seen in a panel of NSCLC cell

lines (Kim et al., 2016). As in smokers’ lungs, NF-κB is constantly

activated, and it is possible that it allows cancer cell proliferation

and escape from apoptosis in the very early stage of lung cancer

development (Chen, 2005).

Chemokines and cytokines in the
tumor microenvironment

The tumormicroenvironment is intricate and involves a wide

variety of chemokines and cytokines. In this section, we will

discuss these chemokines and cytokines.

Vascular endothelial growth factor

Vascular endothelial growth factor (VEGF) is the most

significant regulator of angiogenesis and is the requisite for

the growth and viability of tumors in the microenvironment

(Koch et al., 2011). VEGF chemokine induces the expression of

the C-X-C motif Chemokine ligand 12 (CXCL12) are

chemokines formed by the activation of myofibroblasts and

tumor macrophages. CXCL12 chemokines have a high

expression of the epidermal growth factor and promotes the

formation of new vessels in the tumor cells, consequently

increasing the chances of metastasis (Koch et al., 2011). A

strong interaction exists between the cell surface receptors and

C-X-C chemokine receptor type 4 (CXCR4) in lung cancer

(Takahashi, 2011).

Role of chemokine receptors in non-small
cell lung cancer

The CXCR4 chemokine plays a very significant role in non-

small cell lung cancer (NSCLC) metastasis and is an important

component of the tumor microenvironment (Wu et al., 2010).

The high levels of CXCR4 chemokine are investigated using

immunohistochemistry. CXCR4 is involved in the role of pleural

spaces with its levels correlated with the expression of the

CXCL12 chemokine, which is present in the advanced stages

of the disease. The CXCL12 chemokine has a high expression on

stromal cells, neoplastic cells, and vascular and endothelial cells

in the patients suffering from lung adenocarcinoma study of

cancer patients at stages I and II (Chen, 2005; Grunewald et al.,

2006; Li et al., 2011). CXCL12 expression in NSCLC cells

(in vitro) indicates the correlation between CXCL12 and

CXCR4 chemokines, which induces the extracellular signal-

regulated kinase (ERK) pathways and growth-forming factor

activation. They are the keynote chemokines associated with

tumor growth along with the accessory cells such as the T

regulatory cells. These chemokines act in the paracrine and
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autocrine fashion and attract other growth-promoting and

inflammatory cytokines, which mediate the process of

angiogenesis and tumor growth (Chen, 2005; Grunewald

et al., 2006; Li et al., 2011).

In the later part of this review, we turn our focus to the

current and available immunotherapies, anticancer drugs, and

vaccines that are available for lung adenocarcinoma.

Molecular-based targeted therapies for
lung cancer

Extensive research is being carried out to pinpoint the key

players playing pivotal roles in malignancy and/or cell survival

while exploiting this knowledge to develop targeted therapies for

lung cancer treatment. As described in Table 1, several new drugs

have been developed, which target these specific factors, and their

clinical trials have revealed positive and encouraging results

(Dunn et al., 2006).

Epidermal growth factor receptor
inhibitors

Epidermal growth factor receptor (EGFR) pathways are

mostly observed to be dysregulated in human cancers,

attracting researchers for targeted anticancer therapy (Sharma

et al., 2007). The noted EGFR family includes the following

members, EGFR (epidermal growth factor receptor 1, also known

as HER1 or ERBB1), HER2 (ERBB2/NEU or EGFR2), HER3

(ERBB3 or EGFR3), and HER4 (ERBB4 or EGFR4). The EGFR

family consists of receptor tyrosine kinase (TK), a

transmembrane receptor involved in cellular growth and

proliferation (Sharma et al., 2007). Upon binding of the

ligand, the EGFR intracellular domain dimerizes and activates

the TK domain and its autophosphorylation, which runs an

intracellular cascade that leads to the inhibition of apoptosis,

while the increase in cellular proliferation, angiogenesis, and

invasion ultimately leads to tumor generation and metastasis

(Shigematsu and Gazdar, 2006). Of note, mostly EGFR (ERBB1)

along with ligands is found overexpressed in NSCLC tumors. It is

possible that the members of the EGFR family of receptors can

heterodimerize with each other, so in order to identify the

pharmacological therapeutic target, it is important to have a

robust grip of knowledge about the ERB receptors expressed in

tumor cells (Dunn et al., 2006).

Erlotinib and gefitinib are molecular TKIs of EGFR, of which

only the former is presently approved for NSCLC treatment in

the United States (Miller et al., 2012). Significant improvement

was observed in phase III clinical trials of erlotinib along with a

placebo given to the patient previously treated antecedently with

an advanced NSCLC (Miller et al., 2012). For this study practice,

731 subjects who had previously received one to two

chemotherapies were recruited in a ratio pattern of 2:1 in

order to administer erlotinib/placebo. The response rate

observed was 8.9% and <1% in the erlotinib and placebo

categories, respectively.

Gefitinib also responded positively in phase II trials, but its

adequate survival rate was not observed in phase III trials. Some

researchers theorized that it was because erlotinib was

administered at MTD (maximum tolerated dose), while

gefitinib was below its MTD (Cataldo et al., 2011). Moreover,

the acceptability criteria for both were also different in gefitinib

trials, and the patients recruited made progress within 90 days of

the previous chemotherapy. Gefitinib is currently provided to a

patient who benefits from it or who is involved in clinical trials

(Cataldo et al., 2011; Fuertes et al., 2013).

Gefitinib and erlotinib have both been studied in different

groups of patients along with cytotoxic chemotherapy, but no

overall positive response has been observed (Cataldo et al., 2011).

However, it is proposed in some retrospective analytical studies

that patients who never smoked may derive benefits from this

combination. However, tumor mutation in EGFR and its

amplification status are strongly associated with EGFR TKI

therapy’s positive response. All of these trials have also

revealed that a patient deprived of these features can also

respond positively (Sun et al., 2007).

Kirsten rat sarcoma virus gene mutations
and inhibitors

KRAS is a proto-oncogene product that plays a role in the

cellular proliferation mechanism. Among the mutations

observed in the RAS family, 90% are found in KRAS proteins

in smoker NSCLC patients with rare survival (Pao et al., 2005).

Normally, EGFR and KRAS mutations are not associated, but

KRAS mutations have been observed to develop as a result of

resistance to the EGFR therapy at the primary level (Riely et al.,

2009). Currently, many agents targeting Kirsten rat sarcoma

virus gene (KRAS) pathways at their different steps have been

developed and are in clinical trials. Among these,

farnesyltransferase inhibitors (FTIs) have been studied; in

particular, tipifarnib and lonafarnib are orally available TKIs

that are being analyzed in combination with cytotoxic

chemotherapy (Kim et al., 2005).

B-Raf proto-oncogene (BRAF) is also found to be an

important downregulating agent for the RAS pathway and is

considered a balanced therapeutic target (Brose et al., 2002).

Sorafenib is an orally available dual-action multikinase inhibitor

drug that acts as an antiangiogenic agent and functions as a

BRAF inhibitor. Additionally, it inhibits VEGFR and PDGFR

(Wilhelm et al., 2008; Scagliotti et al., 2010). Early trials of this

drug revealed adequate tolerance as a cytostatic agent and with

prolonged disease stabilization. Phase II trials for sorafenib are in

progress in previously treated NSCLC patients (Scagliotti et al.,
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2010). MEK inhibitors have recently been developed, which

downregulate the RAS/RAF pathway reaction. The preclinical

and initial clinical trials have revealed their covenant antitumor

activity in NSCLC patients, while phase II studies are in progress

(Brose et al., 2002; Wilhelm et al., 2008; Fuertes et al., 2013).

Histone deacetylase inhibitors

Histone deacetylase (HDAC) inhibitors have been observed

to arrest cellular differentiation, growth, and apoptosis in tumors

acquired in cell culture in melanoma, leukemia, prostate, breast,

ovarian, and lung cancers (Marks et al., 2004). Many HDAC

inhibitors have been observed in arresting tumor proliferation in

cancerous animal models. The inhibitors include depsipeptide

MS-27-275, oxamflatin, and suberanilohydroxamic acid (SAHA)

(Kumar et al., 2015). It has been observed that SAHA inhibits

tumor growth in methylnitrosourea-induced mammary

carcinoma (Zhu et al., 2013). SAHA and its second hybrid

polar hydroxamic acid-based HDAC inhibitor have been

approved for clinical trials (Sun et al., 2007).

Angiogenesis inhibitors

High expression of vascular endothelial growth factor

receptors (including all family receptors VEGF-A, -B, -C, -D,

and -E) is observed in NSCLC patients and is strongly related to

tumor progression and poor prognosis (Smith et al., 2010).

Several molecular therapeutic agents designed to target these

receptors are in clinical and preclinical trials (Batchelor et al.,

2010). The monoclonal antibodies against these receptors are

extensively studied (Perren et al., 2011).

A monoclonal antibody named bevacizumab, possessing the

equal potential to bind with all VEGF isoforms, gained success in

clinical trials (Perren et al., 2011). Recently, different studies have

revealed that the addition of carboplatin and paclitaxel to

bevacizumab showed encouraging survival benefits in first-line

treatment of advanced nonsquamous NSCLC patients (Dahlberg

et al., 2010). In combination with other therapies, bevacizumab is

still in trials for lung cancer treatment.

VEGFR TKIs are molecular inhibitors designed to target the

ATP pocket of TK in the intracellular domain of VEGFR that

leads to the blockage of its cellular cascade (Choueiri et al., 2010).

Zactima is an orally available molecular inhibitor that is capable

of binding to VEGFR2 to a greater extent as compared to EGFR

(Robert, 2010). The recent use of zactima in combination with

docetaxel in phase II trials on patients with advanced NSCLC has

revealed an improved and progression-free survival rate as

compared to only docetaxel therapy and has been approved

for phase III trials recently (Robert, 2010). AZD2171, along

with carboplatin and paclitaxel, showed an efficient antitumor

activity as second-line therapy and is well-tolerated in advanced

NSCLC patients (Ramalingam et al., 2010). The phase II/III trials

of this combination therapy are also in progress (Dunn et al.,

2006).

New targets and perspectives

With the development of new targeted therapies,

molecular- based therapies have extended their spectrum

beyond EGFR, VEGFR, and HER2/neu receptors to the

receptor tyrosine kinases (RTKs). The most important RTK

is the platelet-derived growth factor (PDGF), which is an

attractive target for oncology field researchers. Its

expression has been observed in fibroblasts, smooth

muscles, the brain, testes, and kidneys (Clark, 2013). The

overexpression of PDGF and PDGFR has also been

observed in a large proportion of glioblastoma tumors. It

establishes an autocrine stimulatory loop that is thought to

be important in tumor establishment and proliferation

(Zarghooni et al., 2010). The same loop is diagnosed in

various cancers like meningioma, neuroendocrine cancer,

ovarian, pancreatic, gastrointestinal, prostate, and lung

cancers. As far as the inhibitors of PDGF/PDGFR are

concerned, CDP680 (cell tech) is under phase I trials (Raica

and Cimpean, 2010), whereas clinical trials for SU101 are

stopped at phase III due to their acute pharmacokinetic

variability (Raica and Cimpean, 2010). In addition to the

RTK-targeted therapy, many other kinases in the cytoplasm

are thought to play a major role in cell cycle regulation, gene

expression, cell death, and metabolism. These kinases are

considered an important joint for these pathways and could

be important molecular targets for anticancer therapy (Marks

et al., 2001; Heist and Christiani, 2009). One of the very first

anti-CTLA-4 blocking antibodies ipilimumab (IgG1) was

tested and approved for melanoma cancer patients (Phan

et al., 2003). Tremelimumab (IgG2) also belongs to the

same pharmacological class, and both these monoclonal

antibodies are undergoing clinical trials for NSCLC

patients. T-lymphocyte-associated protein 4 (CTLA-4)

(CD152) belongs to the B7/CD28 family that inhibits T-cell

functions (Chan et al., 2014). It is regarded as an immune

checkpoint receptor as it diminishes signaling through CD28,

which induces immunosuppression (Rudd et al., 2009). CTLA-

4 is expressed on tumor cells, exhausted conventional T cells,

and infiltrating Tregs (Huang et al., 2016). Apart from its

involvement in immunosuppression, its role in disease

progression is still unknown.

Indoleamine 2,3-dioxygenase

Indoleamine 2,3-dioxygenase (IDO) is an

immunosuppressive enzyme that mediates the catabolism of
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tryptophan. IDO is produced both in tumor cells and antigen-

presenting cells (Platten et al., 2012).

IDO induces immune tolerance in the tumor

microenvironment through the depletion of tryptophan, and

its toxic catabolites subsequently inhibit T-cell proliferation

and T-cell immune response (Hwu et al., 2000). Furthermore,

IDO has the ability to inhibit T-cell immunity by inducing the

differentiation and maturation of Tregs (Nakamura et al., 2007).

IFN-γ is the most potent inducer of IDO (Basu et al., 2006). NF-

κB transcription factors are crucial for the expression of

proinflammatory cytokines in DCs (Ouaaz et al., 2002) and

have been implicated in IDO induction (Du et al., 2000). It

has been recognized that IDO emerging from tumors has the

capacity to inhibit antitumor immunity and promote metastasis

(Uyttenhove et al., 2003; Sakurai et al., 2005). Smith et al. (2012)

observed that IDO is involved in the development of lung cancer

metastasis in a mouse model. Chung et al. (2014) identified that

the IDO activity contributes to interferon-γ-induced apoptosis in
NSCLC. Karanikas et al demonstrated that IDO is not only

contributing to tumor immune escape but may also mediate the

immune conditioning of the peri-tumoral lung area (Karanikas

et al., 2007). A comprehensive study published by Creelan et al

explicated that IDO may partake in the resistance of NSCLC to

therapy, and further studies will be necessary to investigate the

antineoplastic effects of IDO inhibitors, such as 1-methyl-D-

tryptophan (D-1MT) (Creelan et al., 2013). Yang et al. (2013)

established that IDO inhibitors reduced the number of regulatory

T cells and presented therapeutic activities against Lewis lung

cancer in a mouse model. Astigiano et al. (2005) suggested that

IDO has the potential to be used as a prognostic marker in

NSCLC. Another conclusive study published by Schafer et al.

(2016) pointed out that IDO inhibitors, as an adjuvant therapy,

can promote antitumor immunity against lung cancer. Further

studies will be required to investigate the immunosuppressive

role of IDO in lung cancer, in order to facilitate the development

of efficient anticancer immunotherapy.

Non-small cell lung cancer stem cells

The aggressiveness of non-small cell lung cancer and

resistance to different drugs depicted its heterogeneity and

increased the plausibility of stem cell presence. The gross

root hindrance for taking control of cancerous cells is to

TABLE 1 Novel and current immunotherapies available for lung cancer in clinical trials and in the research phases.

Molecule System Receptor/target Mechanism of action Reference

Erlotinib Inhibitor EGFR Inhibits intracellular phosphorylation of tyrosine kinase-
associated EGFR

Kim and Murren (2000)

Gefitinib Inhibitor EGFR Reduces cell proliferation via inhibiting EGFR Ciardiello et al. (2000)

Tipifarnib Inhibitor Farnesyltransferase Inhibits Ras kinase before the kinase pathway becomes
hyperactive

Venkatasubbarao et al.
(2005)

Lonafarnib Inhibitor Farnesyltransferase Inhibits Ras kinase before the kinase pathway becomes
hyperactive

Lee et al. (2004)

Sorafenib Inhibitor VEGFR, PDGFR, and Raf
family kinases

Induces autophagy, resulting in suppressed tumor
growth

Eisen et al. (2006), Gridelli
et al. (2007)

Afatinib Inhibitor EGFR/HER2 blocker and TK
protein inhibitor

Inhibition of HER2, HER4, and EGFR. Afatinib also
inhibits transphosphorylation of HER3

Cordier et al. (2011), Wind
et al. (2017)

Crizotinib Inhibitor ALK protein Inhibits ALK protein Forde and Rudin (2012)

Nivolumab Monoclonal
antibody

PD-1 molecule Binds to the PD-1 molecule and induces programmed
tumor cell death

Taneja (2012)

Bevacizumab Monoclonal
antibody

VEGF Prevents interaction with its receptor by selectively
binding to VEGF.

Han et al. (2016)

Cetuximab Monoclonal
antibody

EGF receptor Inhibition of enhanced apoptosis, cell proliferation, and
reduced invasiveness, angiogenesis, and metastasis

Suwa et al. (1999)

Pembrolizumab Monoclonal
antibody

PD-1 molecule Binds to PD-1molecule and induces programmed tumor
cell death

McDermott and
Pembrolizumab (1998)

Oxamflatin Inhibitor Histone deacetylase Inhibits cell differentiation, proliferation, motility, and
survival

Kim et al. (1999)

Vorinostat
(suberanilohydroxamic acid)

Inhibitor Histone deacetylase Inhibits cell differentiation Xu et al. (2007)

Vandetanib Inhibitor VEGF Inhibits VEGFR, EGFR, and RET tyrosine kinases Commander et al. (2011)

EGFR receptor-2 tyrosine
kinase

Cediranib (AZD2171) Inhibitor VEGF Limits the growth of new blood vessels and starves tumor
cells

Wedge et al. (2005)
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stop uncontrolled proliferation, which is the hallmark of

undifferentiated/stem cells. Moreover, cancer stem cells have

the ability to hideout in the dormant/quiescent phase of growth,

which can also be contributed by stem cells, and this capability

acts as one of the devils causing intrinsic and acquired drug

resistance. Several studies demonstrated the plasticity of

different cancer cells including NSCLC (Gupta et al., 2009;

Leung et al., 2010; Akunuru et al., 2012; Sterlacci et al., 2014). A

number of studies observed a correlation between metastatic

invasion and stemness of NSCLC, reviewed by Gottschling et al.

(2012). An epithelial-to-mesenchymal transition (EMT), which

is considered another hallmark of cancer cells, has also been

found to be associated with stem cell presence. NSCLC

possessing stem cells showed low sensitivity to different

cancer drugs (Perona et al., 2011). Moreover, ionization

surviving cancers exhibit the mesenchymal phenotype with a

higher expression of stem cell markers, for example, CD44 and

CD24 (Gomez-Casal et al., 2013; Sterlacci et al., 2014). The

aforementioned studies are indicating the significance of stem

cell studies in prognosis and in stem cell therapeutics.

Therefore, we need to focus on the exploitation of stem cells

in NSCLC as these hidden culprits need to be targeted for

effective therapy.

Development of immunotherapy for non-
small cell lung cancer

The future of immunotherapy lies with the perpetual

research in tumor immunology (Mikulski et al., 1979). In

1991, 16 patients with metastatic NSCLC were treated with

IL-2 in combination with TNF- α. The results of phase-I

clinical trials showed that low doses of TNF-α and IL-2

mediate tumor regression in advanced-stage NSCLC patients

(Yang et al., 1991). In 1992, Jansen et al. (1992) concluded that a

combination of IL-2 and IFN-α was ineffective for the treatment

of NSCLC patients. A study published in 1993 stated that the

administration of recombinant IL-2 therapy resulted in increased

circulating immune cells with a potential antitumor activity

(Scudeletti et al., 1993). In 1995, Ratto et al. (1995) showed

that adoptive immunotherapy might be given to patients with

stage-III NSCLC.

In 2001, Palmer et al. (2001) conducted a phase-I clinical

trial on the BLP25 liposomal vaccine and concluded that the

vaccine generated an immune response in lung cancer

patients. In 2005, Ishikawa et al. (2005) conducted a phase-

I clinical trial of α-galactosylceramide (KRN7000)-pulsed

dendritic cells and concluded that it was well tolerated and

could be administrated safely in patients with advanced

diseases. In 2006, telomerase peptide vaccination was

shown to induce immunogenic responses in patients with

NSCLC, and further clinical studies of these peptides were

warranted (Brunsvig et al., 2006). In 2008, Wu et al. (2008)

concluded that the combination of chemotherapy with

cytokine-induced killer cells could ameliorate patients’

cellular response and help patients in recovery. In a

different study, Li et al. (2009) stated that dendritic cell-

activated cytokine-induced killer cells enhanced the

outcomes of chemotherapy in NSCLC patients. A group of

researchers conducted a study of adoptive immunotherapy in

patients with NSCLC and suggested that T-cell

immunotherapy might be safe and feasible for patients with

recurrent NSCLC (Nakajima et al., 2010).

In 2011, Jensen et al. (2011) proposed that

radioimmunotherapy with cetuximab was particularly

efficacious in elderly patients with various comorbidities. In

2012, Pan et al. (2012) carried out a study on the monoclonal

antibodyNJ001andconcluded that it selectively reacted toNSCLC

and exhibited an antitumor activity. Wang et al. (2014) indicated

that haploidentical cytokine-induced killer cells were effective in

prolonging the survival of NSCLC patients. In 2015, Pujol et al.

(2015) showed that MAGE-A3 induced a specific immune

response in resected and unresected NSCLC patients. In 2016,

Rodriguez et al. (2016) conducted a study on CIMAvax-EGF (an

epidermal growth factor vaccine) and showed its efficacy in the

control of EGF-dependent NSCLC tumors. A pilot study was

carried out to analyze the efficacy of an autologous tumor-

derived autophagosome vaccine (DRibbles), and it was reported

that thevaccinegiven incombinationwithGM-CSFwascapableof

inducing an immune response against tumor cells (Sanborn et al.,

2017). Zhao et al. (2018) showed that blocking PD-1 in

combination with retronectin-activated cytokine-induced killer

cells was valuable in NSCLC patients with advanced diseases. In

2019, Koopman et al. (2019) demonstrated that enapotamab

vedotin (an AXL-specific antibody–drug conjugate) shows

promising therapeutic potential in NSCLC. Recently, Martin

et al. (2020) have showed that nivolumab is a promising

antibody for NSCLC patients. Another study conducted by

Arrieta et al. (2020) concluded that pembrolizumab in

combination with docetaxel improved the overall response

rate and progression-free survival in patients with advanced

diseases.

Conclusion

It has been established up until now that the tumor

microenvironment plays a major role in tumor formation,

survival, and in immune evasion in lung cancer. NF-κB plays

a dual function of either tumor clearance or tumor survival

depending upon the environment. In the presence of

interferons or generally a more TH-1 environment, it

performs an antitumor activity and helps in immune

clearance of the tumors, but in a more Th-2 cytokine-

mediated environment, NF-κB plays the opposite role and

helps in tumor survival and progression. The recent
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advances in immunotherapy and targeted therapy have offered

a glimmer of hope in lung cancer treatment. It is also imperative

to evaluate optimal combinatorial approaches,

optimal drug sequencing, and redefining and streamlining

clinical trials.
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