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Neurodegenerative diseases (NDs) are sporadic maladies that affect patients’ lives
with progressive neurological disabilities and reduced quality of life.
Neuroinflammation and oxidative reaction are among the pivotal factors for
neurodegenerative conditions, contributing to the progression of NDs, such as
Parkinson’s disease (PD), Alzheimer’s disease (AD), multiple sclerosis (MS) and
Huntington’s disease (HD). Management of NDs is still less than optimum due to
its wide range of causative factors and influences, such as lifestyle, genetic variants,
and environmental aspects. The neuroprotective and anti-neuroinflammatory
activities of Moringa oleifera have been documented in numerous studies due to
its richness of phytochemicals with antioxidant and anti-inflammatory properties.
This review highlights up-to-date research findings on the anti-neuroinflammatory
and neuroprotective effects of M. oleifera, including mechanisms against NDs. The
information was gathered from databases, which include Scopus, Science Direct,
Ovid-MEDLINE, Springer, and Elsevier. Neuroprotective effects of M. oleifera were
mainly assessed by using the crude extracts in vitro and in vivo experiments. Isolated
compounds from M. oleifera such as moringin, astragalin, and isoquercitrin, and
identified compounds of M. oleifera such as phenolic acids and flavonoids
(chlorogenic acid, gallic acid, ferulic acid, caffeic acid, kaempferol, quercetin,
myricetin, (-)-epicatechin, and isoquercitrin) have been reported to have
neuropharmacological activities. Therefore, these compounds may potentially
contribute to the neuroprotective and anti-neuroinflammatory effects. More in-
depth studies using in vivo animal models of neurological-related disorders and
extensive preclinical investigations, such as pharmacokinetics, toxicity, and
bioavailability studies are necessary before clinical trials can be carried out to
develop M. oleifera constituents into neuroprotective agents.
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1 Introduction

Neurodegenerative diseases (NDs) are of serious concern as
they developed surreptitiously, progressively, and often irreversible
with a high social burden. In addition, the exhibited symptoms and
complications such as memory and personality disturbances,
personality changes, aphasia, gait disturbance, bradykinesia, and
tremors derived from NDs are debilitating and progressing timely
(Vöglein et al., 2021). Neurodegeneration is termly known as
aggravating occurrence in the central nervous system (CNS)
associated with the deterioration of neuronal cells, thus, causing
neuronal cell death and cognitive impairment (Chen et al., 2016).
Several factors contribute to neurodegeneration, such as aging,
environmental influences, genetic variation, and inflammation.
Despite the poorly described etiology, neuroinflammation has
been found to contribute significantly to several
neurodegenerative pathways. The pro-inflammatory cytokines
liberation from the neuroinflammatory reaction is commonly
observed as the pathophysiology of depression and dementia, as
well as multiple sclerosis (MS), Alzheimer’s disease (AD),
Huntington’s disease (HD) and Parkinson’s disease (PD).
Numerous studies on NDs have demonstrated that
neuroinflammation, microglial activation and oxidative stress
play a critical function in the development and pathophysiology
of the disease (Chen et al., 2016; Solleiro-Villavicencio and Rivas-
Arancibia, 2018; Simpson and Oliver, 2020).

The abnormal structures of neurofibrillary tangles formed from
the aggregation of hyperphosphorylated tau protein and the
oligomers of β-amyloid (Aβ) peptides have been reported as
classic disease pathogenesis markers (Guzman-Martinez et al.,
2019). However, increasing discovery of elevated inflammatory
markers with associated functional immune risk genes has
suggested the vital role of neuroinflammation in AD
pathogenesis (Leng and Edison, 2021). The activated microglia
as the key player of neuroinflammation display important
influences on the progression of NDs markedly by the
production of various immune responses with multifaceted
interactions with Aβ, tau proteins, and the CNS (Eikelenboom
et al., 2002). Co-occurrence of regulated IL-1 cytokine-activated
microglia together with neurofibrillary tangles and Aβ plaques have
been observed in the AD pathology (Henkel et al., 2003). The
activation of microglial cells has been described as a doubled-edge
sword as it provides both neuroprotection and neurotoxicity in
CNS (Wyss-Coray and Mucke, 2002). Microglial cells are the
source of tumor necrosis factor-α (TNF-α), glutamate and
oxidative stress, such as reactive oxygen and nitrogen species
(RONS) (Figuera-Losada et al., 2014; Chen et al., 2016; Kabir
et al., 2022). Aggregated proteins exhibited stimulation via the
toll-like receptor (TLR) signaling pathway, activating the microglia
and allowing the release of these substances, which can be
neurotoxic at high doses (Chen et al., 2016). Therefore,
understanding the mechanisms related to neuroinflammation
has been of great interest as it is peculiarly attributable to NDs
(Guzman-Martinez et al., 2019). Neurotropic viral infections can
also trigger neuroinflammatory responses via neuroimmune
activation in the NDs progression (Rock et al., 2004; Chen et al.,
2016). Hence, inflammatory pathways have been suggested as a
potential medicinal target for NDs (Pålsson-Mcdermott and O’

Neill, 2020).

Management of NDs is still less than optimum due to its wide
range of causative factors and influences, such as genetic variants,
lifestyle, and environmental factors. Anti-inflammatory drugs had not
revealed potential effectiveness in slowing disease progression (Jantan
et al., 2015; French et al., 2017). Naproxen sodium (Aleve), celecoxib
(Celebrex) and other non-steroidal anti-inflammatory drugs
(NSAIDS) have been used for AD in phase III clinical trials,
involving approximately 2,625 participants in 5–7 years span.
Although it has been proposed to reduce the occurrence of AD by
delaying or preventing the onset, as well as any associated age-related
cognitive decline, no significant effect on diseases occurrence and
alleviation was observed at least in the first phase of the trial (Lyketsos
et al., 2007). The trial has also found contradicting results as some
participants showed aggravated syndromes. Based on these
observations, the search continues for other therapeutic targets.
However, due to the complexity of the NDs and related
complications, many of the potent agents have not shown positive
results in clinical trials along with possible adverse effects. Hence, the
use of herbal medicine as multi-component agents to modulate the
complex immune system is of interest (Jantan et al., 2015; French et al.,
2017; Durani et al., 2018). The use of herbal medicine as a multi-
component agent to modulate the complex immune system in disease
prevention presents a new alternative approach (Alagan et al., 2019;
Jantan et al., 2021). Among the phytoconstituents, polyphenolic
compounds’role as potent neuroprotective agents has been
deliberated for the contribution in mediating the inflammation-
related cell signaling pathways such as mitogen activated protein
kinases (MAPK) and nuclear factor-kappa B (NF-κB) (Jantan et al.,
2021). To explore the neuroprotective potential of medicinal herbs, the
Neuroprotective Potential Algorithm (NPE) that consists of bioassays
(e.g., oxidative stress, Aβ fibrillation, acetylcholinesterase (AChE)
inhibition, neuroinflammation) was developed (Liu et al., 2016).
Some of the Ayurvedic plant extracts that have been appraised
using the NPE include Azadirachta indica, Cinnamomum cassia,
Curcuma longa, Moringa oleifera, Phyllanthus emblica, and Punica
granatum. Besides, in vivo studies on various herbal medicines, such as
Nigella sativa (Babar et al., 2018), P. amarus (Alagan et al., 2019) and
M. oleifera (Ekong et al., 2017) have proposed compelling potential of
herbal medicine as anti-neuroinflammatory and neuroprotective
agents.

Intriguingly, this review discussed specifically M. oleifera, a
plant that is well known to have high polyphenolic content. In
several studies, the extract was found to exert immunomodulatory
effects by modulating the levels of NF-κB expression, cytokines,
TNF-α, IL-1, IL-6 and nitric oxide (NO), consequently suppressing
the inflammatory reaction (Jaja-Chimedza et al., 2017; Luetragoon
et al., 2020). Thus, the current review aims to present published
research findings on the anti-neuroinflammatory and
neuroprotective properties of M. oleifera as well as its bioactive
secondary metabolites, and their mechanisms of action. Articles
published in peer-reviewed journals on the anti-
neuroinflammatory and neuroprotective effects and mechanisms
of M. oleifera and its constituents were gathered from databases,
which include Scopus, Science Direct, Ovid-MEDLINE, Springer,
and Elsevier. Specific keywords used are “Moringa”,
“neurodegenerative diseases”, “neuroprotective”, “anti-
neuroinflammation”, “in vitro studies”, and “in vivo studies”
were used during data collection. An insight into their anti-
neuroinflammatory and neuroprotective activities and
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mechanisms of action may provide the basis for the possibility of
developing the plant constituents into neuroprotective agents.

2 Neuroinflammatory pathways
associated with neurodegenerative
diseases and potential therapeutic
targets

Neuroinflammation is one of the prominent causative factors in
development of NDs (Acioglu et al., 2021). It is initiated by microglia,
the resident immune cells of CNS that constituted 5%–10% of the
brain cells (Leng and Edison, 2021; Sandhu and Kulka, 2021). As
activated microglia can produce a wide range of neurotoxic molecules
which also includes the inflammatory cytokines and reactive oxygen
intermediates, it was proposed that anti-inflammatory therapies may
provide new targets for the treatment of these diseases (Catorce and
Gevorkian, 2020; Pålsson-Mcdermott and O’ Neill, 2020). Hence, the
inflammatory activation of microglia in response to neurodegenerative
diseases has been intensively studied (Azam et al., 2021; Sobue et al.,
2021). Inflammatory therapeutic targets can enhance the function of
endogenous immunomodulatory molecules, where the
immunoregulatory system involves various regulations of protein
and gene expression in the TLR signaling pathway. TLRs are a

family of microbe-sensing receptors that play a crucial role in
regulating the immune system. TLRs signal through the
recruitment of specific adaptor molecules and lead to the activation
of transcription factors NF-κB and IRFs. There are 10 members of the
TLR family (TLR1-TLR10) in humans (Kawasaki and Kawai, 2014;
Frasca and Lande, 2020).

Lipopolysaccharides (LPS) is a bacterial toxin known to induce
neuroinflammation by targeting the activation of TLR4 pathway
through respective receptors (Boonen et al., 2018; Batista et al.,
2019). LPS has been used as an important model in the study of
NDs (Batista et al., 2019; Catorce and Gevorkian, 2020). (Figure 1).
Subsequently, important signaling, such as TRIF-related adaptor
molecule (TRAM) adapter, TIR-domain-containing adaptor-
inducing interferon-β (TRIF) and myeloid differentiation
primary response protein 88 (MyD88) are recruited to further
activate the downstream pathways (Ruckdeschel et al., 2004; Gray
et al., 2011). These adapters instigated signal transduction
pathways that in turn activated the NF-κB, IRFs, or MAPK
associated with pro-inflammatory cytokines expression (eg; NO,
TNF-α, and IL-6), chemokines, and type I interferons (IFNs)
(Kawasaki and Kawai, 2014; Batista et al., 2019; Zhou et al.,
2022) necessary to combat infection. However, TLR4 activation
and its subsequent inflammatory pathways also contribute to glial
reaction, ultimately leading to neuronal loss and damage that

FIGURE 1
Schematic illustrations of associated signal transducing pathways in LPS-induced neuroinflammation via TLR4 signaling pathways. The inhibition of
targeted signal transducing pathways is represented by the red lines. The figure was adapted andmodified fromGribar et al. (2008), Lu et al. (2008) and Jantan
et al. (2021). The figure was created with Biorender.com. Abbreviations: AP-1, Activator protein 1; COX-2, Cyclooxygenase-2; ERK, extracellular signal-
regulated kinase; IL, interleukin; IRF3, IFN regulatory factor 3; iNOS, Nitric oxide synthase; IKKi, kinase I kappa B kinase I; IKK, inhibitor of nuclear factor-κB
(NF-κB) kinase; IRAK1, interleukin-1 receptor-associated kinase 1; IRAK4, interleukin-1 receptor-associated kinase 4; JNK, c-Jun N-terminal kinase; LPS,
Lipopolysaccharides; MYD88, Myeloid differentiation primary response 88; NF-κB, nuclear factor kappa light chain enhancer of activated B cells; P38 MAPK,
P38mitogen-activated protein kinase; RIP1, receptor-interacting serine/threonine kinase 1; TLR4, Toll-like receptor 4; TRIF, TIR-domain-containing adapter-
inducing interferon-β; TIRAP, Toll-interleukin 1 receptor (TIR) domain-containing adapter protein; TRAF3, TNF receptor-associated factor 3; TRAM, TRIF-
related adaptor molecule; TRAF6, Tumor necrosis factor (TNF) receptor-associated factor 6; TAK1, Transforming growth factor beta-activated kinase 1; TNF-
α, Tumor necrosis factor-alpha; TANK, TRAF family member-associated NF-kappa-B activator; TBK1, TANK Binding Kinase 1.
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resulted in cognitive impairment and shifted behavior (Batista
et al., 2019).

Inflammation plays a central role in the immune system and can
be destructive on several levels (Chen et al., 2018; Simpson and Oliver,
2020). Many age-related diseases related to alterations in anti-
inflammatory or pro-inflammatory cytokines involve TLRs (Zhong
et al., 2020; Baidya et al., 2021). Hence, potent therapeutic agent that
targets cell signaling pathways by mediating the inflammatory
mediators may provide a compelling approach to mitigate NDs. In
addition, therapeutic agent with high antioxidant properties can be a
potent agent to inhibit oxidative stress along with these signaling
networks predispose to neurodegeneration (Ramanan and Saykin,
2013; Tan et al., 2019; Jantan et al., 2021). Oxidative stress is described
by the escalated reactive species in which the chronic state causes the
alteration in redox signaling and leads to cell damage (Halliwell, 2012;
Solleiro-Villavicencio and Rivas-Arancibia, 2018). These reactive
species able to mediate signaling that activate astrocytes and
microglia (Pawate et al., 2004). Besides, it can activate the
associated signaling pathways and allows the production of
proinflammatory cytokines such as TNF, IL- 6 and IL-1β (Hsieh
and Yang, 2013). Oxidative stress is one of the extracellular stimuli of
the MAPK signaling pathway, which is the centerpiece that converts
the stimuli to various cellular activities like apoptosis, proliferation,
and differentiation as well as inflammatory responses (Kim and Choi,
2010).

There is a growing interest among researchers in studying TLR as a
natural product target to mitigate inflammation. For example, a
previous study discovered that the elicited soybean extract was able
to attenuate expression of pro-inflammatory cytokines by modulating
TLR3/TLR4 activation in high-fructose, high-fat diet mice (Atho’illah
et al., 2021). Another study demonstrated that lauric acid; a major
constituent of coconut oil has a protective role against LPS-induced
inflammation in rat liver by mediating TLR4/MyD88 pathway (Khan
et al., 2020). The important role of natural compounds in modulating
the TLR signaling pathway, resulting in the maintenance of a healthy
immune system has been emphasized in these studies. In addition, the

potential of dietary polyphenols (eg; kaempferol, quercetin, and gallic
acid) in mediating multiple signaling pathways have also been
previously discussed (Jantan et al., 2021). Hence, the high content
of these polyphenolic compounds and rich source of antioxidants in
M. oleifera suggests its values and neuroprotective potential.

3 Taxonomy and distribution of Moringa
oleifera

M. oleifera is a species belonging to the Moringaceae family along
with 12 other different Moringa species (Thapa et al., 2019). Besides
being commonly known as the ‘horseradish’ or ‘drumstick’ tree, M.
oleifera is also locally known as ‘kacang kelor’ in Malay or ‘Murunggai’
in Tamil (Adamu et al., 2021). Among theMoringa species,M. oleifera
is the most notable due to its significant Ayurveda reputation and is
sometimes aptly known as the miraculous tree. Each part of the tree
has respective benefits and uses (Figure 2) (Leone et al., 2015).

M. oleifera plant is a tropical deciduous perennial
dicotyledonous tree that is indigenous to many South Asian
countries (Leone et al., 2015; Bhattacharya et al., 2018).
Formerly, it was mainly found in the foothills of Himalayas,
India, well spread from northeast Pakistan to northern West
Bengal (Mahmood et al., 2010). Nowadays, M. oleifera has been
introduced and grown naturally in many places around the globe,
especially in subtropical and tropical countries, making it one of
the fastest growing and naturally distributed plant species. M.
oleifera is also a highly anticipated plant due to its minimal
needs for plant growth making it relatively easy to cultivate. The
plant can simply be propagated from direct seeding or cutting due
to its high germination rate (Thapa et al., 2019).M. oleifera (syn.M.
ptreygosperma Gaertn.) can easily grow in humid and dry tropical
climates, of any soil type and temperature between 18 and 28 °C
(Anwar et al., 2007; Mahmood et al., 2010). It can stand heavy clay,
pH of 5.0–9.0, and wide-ranging rainfall with an annual
requirement of approximately 250–3,000 mm. M. oleifera can

FIGURE 2
Different parts of M. oleifera tree (A) leaves, (B) flowers and sepal, (C) stem and bark, (D) pods, and (E) seeds. Photos are from self-captured images.
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also grow up to 5–10 m in height and 45 cm in diameter (Prabu
et al., 2019). Hitherto,M. oleifera was found in the wild and all over
the grassland (Mahmood et al., 2010).

4 Phytochemistry of Moringa oleifera

M. oleifera is popularly used as a food additive and health
supplement due to its abundant nutritional ingredients, such as
vitamins, essential amino acids, minerals and oleic acids (Anwar
et al., 2007). It also contains bioactive compounds that potentially
contribute to its pharmacological properties and gives beneficial
effects on humans (Padayachee and Baijnath, 2012; Luetragoon
et al., 2020; Padayachee and Baijnath, 2020). M. oleifera is
famously known to possess abundant phytochemicals that are
mainly made up of phenolic acids (e.g., chlorogenic acid, gallic
acid, and ellagic acid), flavonoids (e.g., kaempferol and quercetin),
glucosinolates (GLSs), and isothiocyanates (ITCs) (Kumar et al., 2020;
Lopez-Rodriguez et al., 2020; Adamu et al., 2021). The antioxidant
properties ofM. oleifera are often attributable to the presence of these
phytochemicals, especially the polyphenolic compounds (phenolic
acids and flavonoids). However, GLSs and ITCs have also been
gaining interest as important phytochemicals of M. oleifera as it
has been shown to exhibit antioxidant and anti-inflammatory
activities by altering the detoxification and activation of enzymes
(Maldini et al., 2014; Fahey et al., 2018). GLSs contain thioglucosidase
(myrosinase) that allows hydrolytic reactions in response to aqueous
contact. Consequently, different compounds including ITCs will be
constructed after the structural reorder (Dinkova-kostova and Kostov,
2012). In M. oleifera, glucomoringin is the primary GLSs while
moringin is the relative ITC present (Galuppo et al., 2013;
Borgonovo et al., 2020). Meanwhile, 4-[(4′-O-acetyl-α-L-
rhamnosyloxy) benzyl] isothiocyanate and 4-[(α-L- rhamnosyloxy)
benzyl] isothiocyanate (moringin) are among the most abundant
formed ITCs (Waterman et al., 2014). Other than that, nitrile
glycosides like niazirin and niazirinin, as well as carotenoids and
tocopherols were also found in M. oleifera (Adamu et al., 2021).

Interestingly different part of M. oleifera contains different
chemical constituents. The leaves are rich in polyphenolic contents,
mainly the complex glycosylated flavonoids (eg: quercetin-3-
O-glucoside (isoquercitrin), kaempferol-3-O-glucoside (astragalin),
quercetin-3-O-rutinoside (rutin) and phenolic acids (eg.,
chlorogenic acid, caffeic acid and derivatives) (Maldini et al., 2014;
Lopez-Rodriguez et al., 2020). These glycosylated flavonoids through
hydrolysis readily produce the aglycones, quercetin, and kaempferol
(Devaraj et al., 2011; Kumar et al., 2020; Adamu et al., 2021). In
addition, M. oleifera leaves contain many flavonoids, such as -(-)
epicatechin, myricetin, and rutin (Zhang et al., 2011; Leone et al.,
2015). Common phenolic compounds such as caffeic acid, chlorogenic
acid, gallic acid, and ferulic acid are found in fruits, seeds, and roots
(Singh et al., 2009). The seeds of M. oleifera are widely known for the
presence of GLSs (Lopez-Rodriguez et al., 2020), while the stems and
flowers contain phenolic compounds and glucosinolates (Saucedo-
Pompa et al., 2018). Ironically, some compounds that are known to
provide anti-nutritional potentials like tannins, saponins, oxalates,
and phytates are also present sparsely in M. oleifera. However, the
concentrations of these compounds are often reduced after processes
such as maceration and drying (Lopez-Rodriguez et al., 2020). Plant
maturity also plays a critical role in determining their nutraceutical

potential as higher phytochemical contents were reported in more
mature trees (Lopez-Rodriguez et al., 2020).

Flavonoids and phenolic acids are strong antioxidants in M.
oleifera that may contribute to its anti-inflammatory, anti-diabetic,
and neuroprotective activities (Maldini et al., 2014; Kumar et al.,
2020). Besides, the GLSs and ITCs present in M. oleifera, have
demonstrated anti-inflammatory and antioxidant activities, with
anticancer, chemopreventive, and anti-bacterial potentials (Anwar
and Bhanger, 2003; Lopez-Rodriguez et al., 2020). The alkaloids,
moringinine moringine are commonly found in the bark of M.
oleifera trunks and are responsible for their anti-diabetic properties
(Anwar et al., 2007; Kumar et al., 2020). Numerous studies on M.
oleifera have elucidated its significance in plant nutritional research,
supporting its claim as the miracle tree. The plant also contains
essential amino acids, such as methionine, and rich source of
minerals including phosphorous, iron, calcium, and potassium
(Kumar et al., 2020). The seeds are known to have higher lipid
content than soybean, mainly palmitic acid, oleic acid and stearic
acid which are considered a suitable substitution for olive oil due to the
presence of many essential fatty acids. Moreover,M. oleifera leaves are
a good source of phytosterols (e.g., β-sitosterol) that may exert
hypolipidemic activity (Jain et al., 2010). M. oleifera leaves also
consist of other important phytochemicals, such as carotenoids (β-
carotene), pro-vitamin A, vitamin C, calcium, and potassium (Anwar
et al., 2007; Kumar et al., 2020). In this review, the
neuropharmacological potential of M. oleifera crude extract as well
as its important bioactive compounds was discussed.

5 Neuroprotective and anti-
neuroinflammatory effects ofM. oleifera
and its bioactive constituents

Traditionally,M. oleifera has been used for various purposes as the
panacea for many health conditions, wastewater treatment, and food
consumption (Kasolo et al., 2010; Popoola and Obembe, 2013).
Although scientific evidence is currently limited, some of the
Ayurveda claims on M. oleifera suggest it as an expectorant,
diuretic, antispasmodic, and stimulant agent for various kinds of
ailments, such as asthma, diabetes, diarrheal, fever, cough,
infection, and inflammation as well as neurological disorders like
epilepsy, anxiety, and paralysis (Mishra et al., 2011; Hannan et al.,
2014). For neurological diseases, the fresh root, flower, and seeds have
been suggested to act as stimulants, root juice as anti-epileptic, root
and fruit as anti-paralytic, root and bark as anti-viral and analgesic,
and lastly, root, bark, and seed as anti-inflammatory agent (Mishra
et al., 2011). The beneficial compounds of M. oleifera have provided
support for its potential and increased value in nutritional research as
a potent pharmaceutical and nutraceutical agent. Numerous studies
have suggested the potential ofM. oleifera (Mishra et al., 2011; Zahirah
et al., 2018; Kumar et al., 2020), and this review is particularly focused
on the neuroprotective aspect.

5.1 M. oleifera extracts

Different preparations from different parts of M. oleifera have
been used to study its neuroprotective and anti-neuroinflammatory
potential. For example, the neuroprotective potential ofM. oleifera leaf
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ethanol extract has been evaluated against aluminum (Al)-induced
transient cortical degeneration in albino Wistar rats (Ekong et al.,
2017). Upon treatment with the extract for 28 days, the histological
results revealed reduced degenerative characteristics in the
cytoarchitecture of the temporal cortex. However, no significant
difference was observed in serum Al for all groups. In addition,
while there was also an elevated neuron-specific enolase (NSE) and
glial fibrillary acidic protein (GFAP) expression in the Al group, the
Moringa-treated group with Al-induced conditions also observed
declined expression for both NSE and GFAP. It has been indicated
that M. oleifera leaves showed protective potential against
neurotoxicity in Al-induced rats. Other than that, the fruit of M.
oleifera has also shown anti-AGE activities that were higher than the
synthetic antiglycation agent, amino-guanidine (AG) in the bovine
serum albumin (BSA)-fructose, and BSA-methylglyoxal assays (Liu
et al., 2016).

Besides that, the M. oleifera leaf methanol extract has been tested
in sub-chronic chlorpyrifos (CPF)-intoxicated Wistar rats for its
potential neuroprotective activities (Idoga et al., 2018). CPF is a
commonly used pesticide that is known to be a neurotoxicant as it
stimulates oxidative damage to the tissues and leads to an increase in
ROS. This has alternately affected the brain as it is most vulnerable to
oxidative stress. A previous study has shown that in the CPF-induced
group, the malondialdehyde concentration increased, while the
activities of acetylcholinesterase (AChE), superoxide dismutase
(SOD), glutathione peroxidase (GPX), and catalase (CAT)
decreased with evidence of neuronal degeneration, stipulated
oxidative stress. Comparatively, the pre-treated group with M.
oleifera extracts showed reduced oxidative damage as increased
activities were observed. The study suggested that high content of
antioxidants, vitamins, and flavonoids is present in the extracts. The
study also demonstrated that the neuroprotective potential was not
dose-dependent for which 250 mg/kg dose showed better activities
than 500 mg/kg.

The 70% ethanolic extract of M. oleifera seeds exhibited
neuroprotective potential in scopolamine-induced cognitive
impairment in mice (Zhou et al., 2018). In scopolamine-induced
groups, impaired cognitive development was observed with reduced
reactivity in the cholinergic system and neurogenesis. However, the
group pre-treated with the extract showed improved cholinergic
reactivity and neurogenesis. It is suggested that the neuro-
ameliorative potential of the extract is mediated by the improved
cholinergic system and hippocampal neurogenesis through Akt/
ERK1/2/CREB signaling pathways. In a study by Zeng et al. (2019),
the same extract was used to evaluate the potential in acute and
delayed stages of cerebral ischemic stroke, which is an injury that
results in motor, sensory and cognitive dysfunctions. This study has
observed the neuroprotective effect of the seed extracts in both stages
of ischemic stages by the increase in animal survival rate, improved
cognitive impairment, enhanced neuroplasticity, hippocampal
neurogenesis, and cholinergic systems as also supported by a
previous finding (Zhou et al., 2018).

Hashim et al. (2021) demonstrated that the ethanolic extracts of
Alpinia galanga rhizomes (ARE), Panax ginseng leaves (PLE), Alpinia
galanga leaves (ALE), M. oleifera leaves (MLE), Vitis vinifera seeds
(VSE), and Panax ginseng rhizomes (PRE) were determined for their
neuroprotective potential on human neuroblastoma (SHSY5Y) cells.
MLE has an overall high reading of DPPH, FRAP, ROS scavenging,
and nitro-blue tetrazolium (NBT) test via 2,7-

dichlorodihydrofluorescein diacetate (DCFHDA) assay. However,
the neuroprotection tests on SHSY5Y cells and 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
cytotoxicity revealed that PRE gave better neuroprotective activities,
and higher cytotoxicity as compared to MLE. Thus, the authors have
concluded that MLE has the most potential as a neuroprotective agent
because of its high antioxidant activities and low cytotoxicity. These
have been stipulated by the high content of polyphenol and
antioxidant compounds from the plant. The study has also
conducted LC–QTOF/MS analysis that confirmed the presence of
high phenolic content of MLE.

Besides, the aqueous and ethanolic extracts ofM. oleifera leaves
were evaluated for neuroprotective potential against H2O2-induced
oxidative stress in a PC12 cell line from transplantable rat
pheochromocytoma (Kim et al., 2022). The study has found that
despite all groups showing similar cell viability, the ethanolic
extract was observed to reduce more oxidative stress than
vitamin C (positive control group) in the malondialdehyde
(MDA) assay of mouse brain homogenates. The ethanolic
extract showed higher anti-oxidative activity than the aqueous
extract in the 2,2′-Azino-bis (3-ethylbenzthiazoline-6-sulfonic
acid) (ABTS) assay. It was suggested that higher activities of the
ethanolic extract were attributable to the higher phenolic content
as observed in the total phenolic content (TPC) assay as compared
to the aqueous extract. The study has also found that the
polyphenols, kaempferol and myricetin were the dominant
phytochemicals in M. oleifera leaves as determined by high-
performance liquid chromatography (HPLC) analysis. Thus, it
has been postulated that the ethanol extract of M. oleifera has
more potential as a neuro-protective agent due to its high
phytochemical content with viable anti-oxidative activities.

5.2 Bioactive constituents

Among the phytochemicals of M. oleifera, moringin, astragalin
and isoquercitrin have been isolated and investigated for
neuroprotective effects. Table 1 shows some of the phytochemicals
identified in M. oleifera that may potentially contribute to its
neuropharmacological activities as well as the proposed
mechanisms as discussed in previous studies.

5.2.1 Gallic acid
Gallic acid is a low molecular weight polyphenolic compound

that is widely found in tea leaves (black tea and green tea), fruits
such as grapes and strawberries as well as polyphenols-rich plants,
such asM. oleifera (Badhani et al., 2015; Shabani et al., 2020.) It has
been gaining interest as a potent neuroprotective agent due to its
antioxidant activities and has been vastly examined for its diverse
pharmacological contributions in vivo and in vitro studies
(Mirshekar et al., 2018; Ko et al., 2022). Previous studies have
demonstrated the activities of gallic acid against neurological
disorders, such as PD, AD, ischemia and reperfusion,
depression, and anxiety (Shabani et al., 2020). As the
development of NDs is primarily associated with oxidative stress
and neuroinflammation (Kelsey et al., 2010; Shabani et al., 2020),
the high antioxidant and anti-inflammatory properties of gallic
acid have suggested its potential against NDs. As such, gallic acid
enhanced deoxyribose oxidation and neutralizes the free radicals
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TABLE 1 Phytochemicals identified in M. oleifera with neuropharmacological effects and their mechanisms of action.

Compound Chemical structure Bioassay methods Mechanisms of action References

Phenolic acids

Gallic acid Deoxyribose and hydrogen peroxidase assay Enhanced deoxyribose oxidation and
neutralizes free radicals.

Yen et al. (2002)

In vitro assay using glioma cell Dowregulated the PI3K/Akt and rat sarcoma
virus (Ras)/MAPK signaling pathways by
suppressing coding gene (ADAM17), p-Akt,
and p- extracellular signal-regulated kinase
(Erk) expression.

Lu et al. (2010)

In vitro using primary rat cortex neuronal
culture

Provide anti-oxidative activities and
suppressed regulation of proinflammatory
cytokines.

Maya et al.
(2018)

*Glutamate-induced neurotoxicity

In vivo male Sprague-Dawley Mediated with biomarkers of activated
astrocytes and microglia, proinflammatory
enzymes and cytokines, apoptotic cells.

Liu et al. (2020a)

*LPS-induced neuroinflammation

Chlorogenic acid In vitro assay using primary cortical neurons Mediation Nrf2-NF-κB pathways by the
activation of Sirt1 and further reduce the
apoptosis of brain neurons.

Zheng et al.
(2022)

In vivo male Sprague Dawley rats Suppressed hypoxia ischemia-induced
proliferation of glia to alleviate the brain
injury.*Hypoxia-ischemia brain injury

Inhibited the expression of TNF-α, IL-1β, and
nitric oxide synthase (iNOS) in the brain
tissue.

Ferulic acid In vitro assay using SH-SY5Y neuroblastoma
cells

Activated HO-1/Nrf2 system through carbon
monoxide and bilirubin production.

Catino et al.
(2016)

Prevented disruption of cell lines by up-
regulating the HO-1/Nrf2 system.

Caffeic acid In vivo male Swiss albino mice Supressed production of LPS-induced TNF-α
and IL-6.

Mallik et al.
(2016)

Reducing the levels of malondialdehyde and
GSH as well as inhibiting the c-Src/ERK
pathway of MAPK activation to alleviate
oxidative stress.

*LPS-induced neuroinflammation Facilitated downregulation of NF-κB-
dependent pro-inflammatory genes.

Flavonoids

Kaempferol In vitro assay using murine microglial
BV2 cells

Alleviated LPS-induced TNF-a, IL-1b, NO,
ROS production, prostaglandin E2 (PGE2),
and phagocytosis.

Park et al. (2011)

Facilitate the downregulation of TLR4, NF-
kB, p38 MAPK, c-Jun N-terminal kinase
(JNK), and protein kinase B (AKT)
phosphorylation.

In vivo rat model of neuropathic pain Inhibited microglial activation, reduced
cytokine production and alleviate pain

Chang et al.
(2022)

Chronic constriction injury (CCI)-induced
injury

Myricetin In vitro assay using mouse macrophage RAW
264.7

Inhibited NO and pro-inflammatory
cytokines.

Kim et al. (2013)

*LPS-stimulated cells Reduce expression of cyclooxygenase-2
(COX-2) and iNOS.

(Continued on following page)
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TABLE 1 (Continued) Phytochemicals identified in M. oleifera with neuropharmacological effects and their mechanisms of action.

Compound Chemical structure Bioassay methods Mechanisms of action References

Phenolic acids

(−)− Epicatechin In vivo male C57BL/6 mice (wild type) and
Nrf2 gene knockout (KO) mice

Reduced neutrophil infiltration and oxidative
stress.

Cheng et al.
(2016)

Facilitate activation of Nrf2 pathway, averted
expression of heme oxygenase-1 protein, and
reduced iron deposition.

*Traumatic brain injury (TBI)-induced

Quercetin In vitro assay using SK-N-MC human
neuroblastoma cell line
In vivo male Sprague-Dawley (SD) rat

Alleviated oxidative stress and inhibited cell
apoptosis.

Bahar et al.
(2017)

Exhibited antioxidant activity by apoptosis
regulation, iNOS/NF-κB, and HO-1/
Nrf2 related pathways.

*Manganese (Mn)-induced neurotoxicity

Isoquercitrin In vitro assay using mesenchymal stem cells Exhibited ROS scavenging activities. Li et al. (2016)

*ROS-Induced Damage

In vivo male C57BL/6J mice Attenuated impaired behaviors and loss of
dopamine neurons, elevated expression of
dopamine transporter and tyrosine hydroxylase.

Liu et al. (2021)

*1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-induced acute
mouse model of PD Reduced the expression of pro-apoptotic

signaling molecule Bax and supressing
MPTP-triggered oxidative stress.

In vivo male C57BL mice Suppressed inflammatory responses and
inhibited TLR4 and C5aR1 expression, as well
as down-regulated MAPK signaling
pathways.

Kim et al.
(2022b)

*LPS-induced neuroinflammation

Inhibited ROS generation.

In vitro assay using mesenchymal stem cells Exhibited ROS scavenging activities. Li et al. (2016)

*ROS-Induced Damage

Astragalin In vivo female C57BL/6 mice Modulated inflammatory cascade; decreased
release of INF-γ and IL-17 (pro-
inflammatory cytokines) and increased for
IL-10 (anti-inflammatory cytokine).

Liu et al. (2021)

*Neuropathy model

Inhibited inflammatory pathway and
impeded voltage-gated ion channels.

Isothiocyanates (ITCs)

Moringin In vivo female C57BL/6 mice Modulated inflammatory cascade; reduced
production of INF-γ and IL-17 (pro-
inflammatory cytokines) and increased IL-10
(anti-inflammatory cytokine).

Giacoppo et al.
(2017)

Inhibited inflammatory pathway and
impeded voltage-gated ion channels.

*Neuropathy model

(Continued on following page)
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effectively in dose-dependent manners (Yen et al., 2002). Gallic
acid was also observed to mediate the constriction of ADAM17 in
U87 and U251n cell lines as well as down-regulated the PI3K/Akt
and Ras/MAPK pathways (Lu et al., 2010). Besides, gallic acid
enhanced anti-oxidant activities and suppressed the regulation of
proinflammatory cytokines in glutamate-induced neurotoxicity in
rats (Maya et al., 2018). It also protects the neurons from
neurotoxicity and stabilized the Ca2+ homeostasis and IGF-1
expression. In another investigation, it was found to
significantly mitigate the elevated biomarkers of activated
astrocytes and microglia, as well as the proinflammatory
enzymes iNOS, apoptotic cells, and the related cytokines in LPS-
induced rat brain (Liu et al., 2020).

5.2.2 Chlorogenic acid
Chlorogenic acid is a group of hydroxycinnamates found in M.

oleifera. The HPLC analysis of M. oleifera leaves discovered the
presence of chlorogenic acids identified in the form of its isomers
which were 3-O-caffeoylquinic acid and 4-O- caffeoylquinic acid
(Braham et al., 2020). In a study utilizing high-performance thin-
layer chromatography (TLC) method, the contents of chlorogenic acid
inM. oleifera were different for each part. It was estimated to be .014%
in the root, .017% in the stem, .033% in the leaves, and .022% in the
flower (Alam, Alam, Sharaf-Eldin, & Alqarni, 2020). Evidence suggests
that chlorogenic acid exhibits the neuroprotective effect (Naveed et al.,
2018; Liu et al., 2022). Several studies have demonstrated the benefits
of chlorogenic acid in treating neurological disorders, such as
ischemia, PD, AD, depression, and cognitive impairments (Kumar
et al., 2019; Liu et al., 2020; Caruso et al., 2020; Hung et al., 2021). A
study by Oboh et al. (2013) found that chlorogenic acid exerted
neuroprotective properties on AD by blocking the activity of
acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) and
lowering the breakdown of AChE and BChE. A study of cerebral
ischemia discovered that chlorogenic acid modulated the
Nrf2 pathway and enhanced the expression of Nrf2, HO-1, and
NQO-1 to counteract the reperfusion-induced brain injury that
caused brain ischemia (Liu et al., 2020). Shah et al. (2021) study
has revealed that, chlorogenic acid suppressed oxidative stress by
supressing the ROS. It also alleviated the neuronal cell death brought
on by localized cerebral ischemia. In vivo and in vitro studies revealed
that chlorogenic acid has anti-inflammatory effects by the activation of
Sirt1 for Nrf2/NF-κB regulation and reduce the brain neurons
apoptosis (Zheng et al., 2022). The previous studies have
highlighted the chlorogenic acid neuroprotective and anti-
inflammatory properties.

5.2.3 Ferulic acid
Ferulic acid, a polyphenol found in M. oleifera, is known for

possessing anti-inflammatory and neuroprotective potential. A
quantitative analysis of phenolics isolated from M. oleifera has
demonstrated the presence of ferulic acid with a retention time
value of 12.89 min (Panwar and Mathur, 2020). Qadir et al. (2022)
study has identified the phenolics in theM. oleifera leaves methanolic
extract, which includes ferulic acid, by HPLC with a UV-visible
detector. In NMR-based analysis, ferulic acid was one of the
phytoconstituent detected among the targeted metabolites profile in
the M. oleifera leaf (Managa et al., 2021). Furthermore, ferulic acid
content in M. oleifera has been thoroughly documented, which was
linked to its therapeutic benefits. According to previous studies, the
neuroprotective properties of ferulic acid have the ability to increase
the survival rate of neurons through various mechanisms, such as the
inhibition of amyloid protein precursor (APP), fibril-destabilization,
and β-amyloid aggregation (Sgarbossa et al., 2015; Kikugawa et al.,
2016). A study found that ferulic acid can protect neurons against
glutamate-induced toxicity by the increased expression of PEA-15, a
phosphoprotein enriched in the astrocytes (Koh, 2012). Ferulic acid
also was discovered to prevent disruption by up-regulating the Nrf2/
HO-1 system in human neuroblastoma cell line SH-SY5Y (Catino
et al., 2016). In a PD rat model, ferulic acid treatment gives protection
to dopaminergic neurons against rotenone-induced damage by
restoring antioxidant enzymes, inhibiting lipid peroxidation, and
preventing the loss of glutathione (Ojha et al., 2015). Additionally,
ferulic acid regulates the β-secretase activity in the transgenic mice of
the AD (Mori, et al., 2013). Moreover, Mori et al. (2013) andMori et al.
(2017) demonstrated the anti-inflammatory properties of ferulic acid
by alleviating neuroinflammation in presenilin-APP mice and the
production of pro-inflammatory cytokines such as TNF-α and IL-1β.
Recently, more studies have been performed to discover the
importance of ferulic acid in the neuroprotection of M. oleifera.

5.2.4 Caffeic acid
Caffeic acid found in M. oleifera has also been noted for its

neuroprotective abilities. A study by Oldoni et al. (2019) has found
that caffeic acid as the most abundant phenolics compound in M.
oleifera leaves extracts through the phenolic compounds identification
and quantification. In another study, HPLC analysis ofM. oleifera seed
oil has also resulted in the identification of caffeic acid (Gharsallah
et al., 2021). Caffeic acid was known to possess protective properties
such as neuroprotective and anti-inflammatory activities (Colonnello
et al., 2020). According to recent studies, caffeic acid demonstrated
neuroprotective effects by regulating oxidative stress and

TABLE 1 (Continued) Phytochemicals identified in M. oleifera with neuropharmacological effects and their mechanisms of action.

Compound Chemical structure Bioassay methods Mechanisms of action References

Phenolic acids

Allyl isothiocyanates
(AITC) In vitro assay using C6 glioma, BV2 murine

microglia, and N2a mouse neuroblastoma
cells

Impeded with TNF-α formation in LPS-
activated microglia and activation of JNK,
NF-κB.

Subedi et al.
(2017)

Alleviated inducing anti-apoptotic proteins
and pro-apoptotic proteins to avert neuronal
death.
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neuroinflammation (Zhang et al., 2019; Colonnello et al., 2020;
Raviteja et al., 2021; Salau et al., 2021). Caffeic acid exhibited
protective mechanisms through Nrf2 and skn-1 pathways against
6-hydroxydopamine and quinolinic acid, a neurotoxicity model
that led to the increase of ROS and excitotoxicity (Colonnello
et al., 2020). Caffeic acid has been reported attenuate
neuroinflammation of LPS-induced in mice (Mallik et al., 2016).
Moreover, caffeic acid enhances the defense system in the brain by
significantly reducing the malondialdehyde levels (Caruso et al., 2020)
and increasing the glutathione levels, a major antioxidant (Davis and
Vemuganti, 2022). In the AD rats model, Chang et al. (2019) showed
the neuroprotective properties of caffeic acid via modulating synaptic
plasticity, cerebral insulin signaling, and amyloid-β formation. Caffeic
acid was also reported to suppress the (cyclooxygenase-2) COX-2
pathway, which was directly associated with the onset of tissue damage
in neurons (Bare et al., 2019). Previous studies revealed that caffeic
acid can inhibit neuroinflammation via diverse mechanisms, which
further proves that caffeic acid is an effective agent for
neuroprotection.

5.2.5 Kaempferol
Kaempferol is another abundant and common antioxidant

flavonoids present in many medicinal plants, such as the Ginkgo
biloba, lime trees (Tilia spp.), Chrysanthemum spp., as well as M.
oleifera (Silva et al., 2021). Kaempferol has presented a multifaceted
pharmacological use with intriguing neuroprotective potential. It has
been observed to hinder LPS-induced inflammatory markers, ROS,
and phagocytosis by inhibiting NF-kB and TLR4 activation as well as
p38 phosphorylation, MAPK, JNK, and AKT (Park et al., 2011; Park
et al., 2011; Li et al., 2019a; Silva et al., 2021; Chang et al., 2022).
Previous investigations have found that kaempferol contributed to
significant reduction of oxidative stress by ROS generation inhibition
and related free radical scavenging (Filomeni et al., 2012; Beg et al.,
2018). In a study conducted against LPS-triggered TLR4 activation in a
neuropathic pain rat model, it was found that kaempferol treatment
alleviated neuropathic pain and reduced cytokine production
suggested due to the inhibition of microglial activation (Chang
et al., 2022). Besides, the same study has displayed that the
kaempferol treatment is able to mitigate the TLR4/NF-κB pathways
activation in LPS-induced microglial BV2 cells in vitro. In addition,
the antioxidant and anti-apoptotic activities mediated by kaempferol
have been suggested to result from the enhanced autophagy properties
for mitochondrial turnover and consequently offer protection against
mitochondrial toxins (Filomeni et al., 2012). This is important as
mitochondrial toxins generated the typical signs of PD, suggesting the
noteworthy potential of kaempferol as a neuroprotective agent.
Another study has also found that the transgenic Drosophila
expressing human Aβ-42 (common characterization of AD)
exposed to kaempferol has mitigated memory impairment, delayed
loss of physical ability (climbing), and decreased in oxidative stress as
well as acetylcholinesterase activity (Beg et al., 2018). This has
supported the potential of kaempferol as a good
neuropharmacological target.

5.2.6 Myricetin
Myricetin was determined to be one of the most abundant

polyphenols in M. oleifera, contributing to its anti-inflammatory
and neuroprotective properties. In UHPLC analysis by Prabakaran
et al. (2018) discovered the concentration of myricetin was among

the highest compared to other flavanols (i.e. quercetin and
kaempferol), ranging from 600–1,530 μg/g. In previous studies,
myricetin was discovered to exert neuroprotective effects by
inhibiting the inflammatory response (Huang et al., 2018; Chen
et al., 2020). Myricetin alleviated inflammatory responses in LPS-
induced models by interediating with the AKT/IKK/NF-κB
pathway in mastitis to suppress the release of pro-inflammatory
cytokines, such as IL-1β, IL-16, and TNF-α (Kan et al., 2019; Chen
et al., 2020). In vivo and in vitro studies also revealed that myricetin
have neuroprotective properties in LPS-induced models (Huang
et al., 2018). In LPS administration in rats, activated microglia
release the inflammatory mediators that are the principal cause of
microglia-mediated neuroinflammation. It was found that
myricetin treatment down-regulated the expression of pro-
inflammatory factors, which were significantly up-regulated by
the administration of LPS. Along with that, the treatment of
myricetin improved altered motor behavior and prevented the
loss of dopaminergic neurons (Huang et al., 2018). Moreover,
in vitro study discovered that myricetin treatment prevented the
death of neuronal cell SH-SY5Y neuroblastoma cell line by
suppressing the neurotoxicity effects stimulated by LPS (Huang
et al., 2018). In addition, myricetin decreased the activation of
microglia in mice’s hippocampus and cortical regions after LPS
administration (Jang, Lee, Jung, & Park, 2020). Thus, the current
studies provide more evidence that myricetin possesses
neuroprotective properties by inhibiting neuroinflammation.

5.2.7 (-)- Epicatechin
(-)- Epicatechin (EC) is important flavonols found in many

natural sources like cocoa, green tea, as well as M. oleifera with
significant neuroprotective abilities. The EC has shown positive
effects on cognitive function, which related to improved
hippocampal function (Field et al., 2011; Chang et al., 2014).
Besides, EC helps to stimulate NO production in endothelial cells
which enhances the flow of the blood brain and consequently facilitate
in cognitive function (Garate-carrillo et al., 2020). The in vivo
pharmacokinetics studies of EC have demonstrated the ability for
blood brain barrier (BBB) penetration upon intravenous and oral
administration with potential effect on the neurons and supporting
systems (Wu et al., 2012; Chang et al., 2014; Garate-carrillo et al.,
2020). Even though the exact mechanism is still scarce, the
neuroprotective activities of EC is attributable to its antioxidant
properties, which gives effect on the synaptic plasticity by
interfering with cascade of cell signaling mechanism (Williams and
Spencer, 2012; Haskell-ramsay et al., 2018). EC positively influences
the mitigation of anxiety, improved learning and memory, various
linked-effects of enhanced angiogenesis, neuronal survival and
functions, the upregulation mRNA of learning-associated proteins
and downregulation of biomarkers for neurodegeneration in
hippocampus (Stringer et al., 2015; Garate-carrillo et al., 2020).
Besides, EC has displayed neuroprotective potential by the
decreased in Aβ-induced apoptosis that is partially related to the
p38 MAPK and JNK pathways activation (Ramiro-puig et al., 2009;
Haskell-ramsay et al., 2018) as well as the activities against pro-
oxidants and free radicals through the activation of Nrf2 signaling
pathway (Ruijters et al., 2013). Meanwhile, EC when tested against
TBI-induced brain injury in mice exhibited neuroprotective activity by
mediating the Nrf2 pathway with the inhibition of HO-1 and
decreased iron deposition (Cheng et al., 2016).
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5.2.8 Quercetin
Quercetin is among the abundant flavonoids of M. oleifera

(Vergara-jimenez, Almatrafi, & Fernandez, 2017). The leaves
contain the highest quercetin, among other flavonoid compounds
with four of the quercetin derivatives made up the majority of the
flavonoids (Coppin et al., 2013; Zhu et al., 2020; Gao et al., 2022).
Moreover, Makita et al. (2016) and Lin et al. (2018) have revealed that
the quercetin present is in significant amounts as glycosides associated
with a variety of sugar moieties. The bioactive polyphenol structure of
quercetin contribute to its anti-inflammatory and neuroprotective
properties (Lesjak et al., 2018; Lin et al., 2021). Based on an in vivo
study, quercetin is highly permeable across the BBB (Youdim et al.,
2014). Quercetin-pretreated SK-N-MC cell was observed to alleviate
Mn-induced neurotoxicity by improved cell viability and reduced
LDH with remarkable up-regulation of HO-1/Nrf2 and down-
regulation of NF-κB pathways (Bahar et al., 2017). In addition, the
in vivo study has found that quercetin treatment significantly
suppressed Mn-induced oxidative stress and neuroinflammation
suggested by mediating antioxidant activities via apoptosis, iNOS/
NF-κB, and HO-1/Nrf2 pathways (Bahar et al., 2017). This has
consequently restricted the expressions of inflammatory markers
and reduced subsequent apoptotic releases, hence, provide with
neuroprotective effects. In a Drosophila model of AD, quercetin
exhibits neuroprotective effects against Aβ toxicity in the brain by
regulating the protein expression of cyclin B (Kong et al., 2016).
Additionally, quercetin reduced hypoxia-induced memory
impairment in rats. It attenuated neurodegeneration by reducing
the oxidative stress and caspase-3 expression in brain hippocampus
(Prasad et al., 2013). A study by Dong et al. (2017) found that
quercetin acts against neuronal cell death in mice through the
activation of Nrf2 and D-galactose-induced cognitive impairment.
It also showed increase of Nrf2-targeted antioxidant enzymes HO-1
and SOD. In an LPS-induced oxidative stress study, it was shown that
quercetin suppressed the formation of intracellular ROS in response to
LPS, as well as inhibiting NOX2 expression, IκBα degradation, and
nuclear translocation of NF-κB, which reduced the levels of
inflammatory factors (Sul and Ra, 2021). Quercetin also markedly
improved memory impairments in okadaic acid-induced mice by
suppressing Tau phosphorylation mediated by cyclin-dependent
kinase 5 and reduced production of neurofibrillary tangles,
indicating its potential in neuroprotection. Hence, it has been
postulated that quercetin has demonstrated its ability for
neuroprotection and anti-inflammation in numerous studies.

5.2.9 Isoquercitrin
Glycosylated flavonoids, isoquercitrin is a notable antioxidant and

neuroprotective agent found abundantly in M. oleifera leaves (Shi
et al., 2021; Luiza et al., 2022). Isoquercitrin has been shown to
attenuate affected behaviors (MPTP)-induced acute mouse model
of PD and inhibited the oxidative stress, neuronal cell death, and
apoptosis instigated by the injury (Liu et al., 2021). It is suggested to
alleviate the expression of pro-apoptotic signaling molecule Bax
expression and subsequently inhibited the associated MPTP-
triggered oxidative stress. Besides, isoquercitrin displayed
protection against ROS-induced damage on mesenchymal stem
cells by exhibiting ROS scavenging activities (Li et al., 2016). The
neuroprotective potential of isoquercitrin has been appraised in many
studies, as such, one study has found that the oral administration of
isoquercitrin protected the hippocampal neurons from streptozotocin

(STZ)- induced neurotoxicity in rats (Chen et al., 2020). The treatment
showed inhibition against the STZ-induced oxidative stress and
apoptosis as well as an improved cognitive and behavioral
impairment in rats. The potential of isoquercitrin has also been
investigated on the cerebral injury resulting from inflammatory
response upon ischemia and reperfusion by using neuron in vitro
model (oxygen-glucose deprivation and reperfusion (OGD/R)) and rat
model (middle cerebral artery occlusion and reperfusion (MCAO/R))
(Shi et al., 2021). Isoquercitrin provided neuroprotective activities by
the suppression of the inflammatory responses and inhibited
TLR4 and C5aR1 expression that contributed to the cAMP/PKA/
I-κB/NF-κB signaling upon brain injury. In addition, isoquercitrin has
been observed to exhibit anti-neuroinflammatory activities against the
LPS-activated microglia and hippocampus in mice by the down-
regulation of MAPK signaling pathways (Kim et al., 2022). It has
also displayed inhibition of the ROS generation in microglia and
radical scavenging activities.

5.2.10 Astragalin
Astragalin is a remarkable natural flavonoid and kaempferol

derivative (kaempferol-3-glucoside) found in many medicinal
plants including M. oleifera (Engsuwan et al., 2017). It is one of
the most important compounds due to its abundant sources, and a
broad spectrum of pharmacological uses. Astragalin has been
massively studied for its anti-neuroinflammatory, antioxidative and
neuroprotective contributions via the mediation and regulation of
many molecular targets such as the transcription factors (NF-κB,
TNF-α), enzymes (COX-2, PGE-2 AChE, SOD, GPX), and kinases
(iNOS, COX-2, PGE2, JNK, MAPK), apoptotic proteins and
inflammatory cytokines (Riaz et al., 2018). Astragalin exhibits an
anti-neuroinflammatory reaction by mediating with the down-
regulation of MAPK signaling pathways, as well as reduced NO,
iNOS, and pro-inflammatory cytokines in LPS-induced mice (Kim
E. H. et al., 2022). Besides, it was found to inhibit MAPK
phosphorylation by an extracellular signal-regulated kinase (ERKs),
JNKs, and P38 signaling proteins in the LPS-activated microglia and
hippocampus. Astragalin was also found to mitigate inflammation
caused by aluminum chloride (AlCl3)/D-galactose (Gal)-induced
microglia and astrocytes activation, and attenuated changes of
regulating enzymes/markers of oxidative stress (Hu et al., 2022).
The neuroprotective activities of astragalin are associated with the
free radical scavenging ability and oxidative stress-induced influences
on the brain neuronal cells (Wasik and Antkiewicz-Michaluk, 2017;
Riaz et al., 2018). Astragalin and isoquercitrin isolated fromM. oleifera
leaves showed potent anti-oxidative effects as enhanced cell viabilities
were observed in H2O2-induced oxidative stress in PC-12 cells (Gao
et al., 2022). Although the associated active substances involved in the
mechanism were not described, the study has found that the rate of
survival for the damaged cells improved as the treatment
concentration of isolated compounds increased, suggesting the
effect of anti-oxidative activities. In another study of astragalin
potential in rats with cerebral ischemia-reperfusion injury, the
treatment has found that astragalin is able to improve the brain
injury through the mediation of anti-inflammatory, anti-oxidative
ability and apoptosis signaling pathway (Chen et al., 2020).

5.2.11 ITCs (Moringin and allyl ITCs)
ITCs are the metabolized products of GLSs, and M. oleifera

were known to have ITCs with same pharmacophore (R–N=C=S)
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from broccoli (e.g. sulforaphane, SF) as well as other cruciferous
plants (Waterman et al., 2014). Moringin and 4-[(4′-O-acetyl-α-L-
rhamnosyloxy) benzyl] are among identified ITCs in M. oleifera
(Tumer et al., 2015). Moringin is a structurally unique derivative of
ITCs that has been studied as a potent anti-neuroinflammatory
agent in relieving MS-associated neuropathic pain. Moringin
isolated from M. oleifera seeds was formulated into a 2%
treatment cream for topical application on autoimmune
encephalomyelitis murine (an animal model for MS) and
alleviated neuropathic pain was observed, postulated by the
mediation of inflammatory pathway (Giacoppo et al., 2017). It
was found that the treatment cream inhibited the inflammatory
pathways by instigating the reduced expression of pro-
inflammatory cytokines (IL-17 and IFN- γ) together with
increased anti-inflammatory cytokines (IL-10). Moreover, the
moringin cream was observed to suppress the voltage-gated ion
channel expressions, where alterations on these channels (Nav 1.7,
Nav 1.8 KV4.2, and a2d-1) may contribute to the progression of
neuropathic pain. Besides that, allyl isothiocyanates (AITC) is
other interesting ITCs that have been studied for its
neuroprotective potential (Latronico et al., 2021; Tran et al.,
2021). It has been previously established that AITC has anti-
inflammatory effects on LPS-stimulated cells (Wagner et al.,
2012; Kamal et al., 2022). Subedi et al. (2017) has investigated
the neuroprotective and anti-inflammatory abilities of AITC in
LPS-stimulated BV2 murine microglia cells. The study has
demonstrated that AITC alleviated NO production, regulated
MAPK signaling, and significantly reduced the release of TNF-α
and IL-6, presenting its strong anti-inflammatory and
neuroprotective potential. Neuroblastoma cells exhibited
decreased Bax and cleaved caspase-3 expressions and enhanced
production of Bcl-2, as a result of AITC’s neuroprotective impact
against LPS (Subedi et al., 2017). These discoveries clarify the
properties of AITC in neuroprotection and anti-inflammation.
These studies of isolated compounds from M. oleifera have
provided an interesting insight into the potential of plant-based
phytochemicals in various applications, especially for better
management of NDs.

6 Pharmacokinetics of M. oleifera

Pharmacokinetics studies about different M. oleifera parts have not
been widely explored. However, a recent study by Li et al. (2019b)
discovered the pharmacokinetics properties of gastrodigenin
rhamnopyranoside (GR), a compound in the seeds of M. oleifera.
According to the study on rodents, the time GR took to reach the
highest concentration (Cmax) for oral administration was 10 min and
5min for intravenous administration. After the administration, distribution
of 10 mg/kg of GR in rodents plasma and different tissues was in the range
of 5–30min (Li et al., 2019a). Within a short period, GR was rapidly
distributed to tissue with high blood flow, such as the spleen, heart and
kidney. A very slight amount was distributed to brain, liver, and lung
implying that the distributionmay be influenced by the perfusion rate of the
organs (Li et al., 2019b; Alia et al., 2022). Additionally, the presence of GR in
the brain tissue demonstrates its potential to cross the BBB. Furthermore,
within 30 min, the GR concentration in the tissues was seen to drop
significantly and completely eliminated in 3 h. The half-life (t1/2) of GRwas
between 20–30 min, suggesting that the GR was quickly cleared from the

circulatory systems (Li et al., 2019b). M. oleifera was discovered to have a
low bioavailability of iron because of the presence of high phytic acid (Azlan
et al., 2022; Kashyap et al., 2022). In contrast, M. oleifera leaves have high
bioavailability of folate compounds. In a study of rat models, the folates
from M. oleifera were proven to be 81.9% more bioavailable than the
synthetic folates (Saini et al., 2016; Kashyap et al., 2022). Despite that, the
bioavailability of M. oleifera in various models may vary due to different
chemical structures, solubility and their interactions with other compounds.

7 Safety and toxicology assessment ofM.
oleifera

Following the massive properties of M. oleifera, its safety and toxicity
were appraised critically in many studies involving both in vivo and in vitro
evaluations. Even though M. oleifera plant has been studied for its
pharmacological targets due to its nutritional contents, the effect of the
extraction procedures and preparation materials on the reported activities
remains precarious. These added components may have likely contributed
to any conflicting inhibitory, additive, or synergistic potential that were
reflected in the pharmacological activities (Adamu et al., 2021). Therefore,
the safety and toxicity assessment as well as the availability of a control
group as a reference is important inmany study designs.Whilemany of the
in vivo and in vitro studies of M. oleifera have been conducted by using
different extracts, preparation methods and solvents, most human studies
have used powdered leaves (Stohs and Hartman, 2015). However, studies
have found that the extracts of M. oleifera have a relatively high level of
safety, across the different preparation materials. To date, nearly all
published studies have showed promising findings of M. oleifera with
no critical safety issues or inauspicious findings reported.

In an in vitro study, the toxicity of M. oleifera was assessed against
normal cell lines like peripheral blood mononuclear cells (PBMCs) and
cancerous cell lines. The cytotoxicity assay across different concentrations
of theM. oleifera leaves aqueous extract has shown that, at 20 mg/ml and
above, the lactate dehydrogenase (LDH) enzymes increased
proportionally, indicating its cytotoxicity as LDH was released during
cell damage or lysis (Asare et al., 2012). But, the extract was still considered
safe as the 20 mg/ml was unlikely achievable for oral administration
(Stohs and Hartman, 2015). The ethanolic seed extract of M. oleifera
evaluated against cancerous and non-cancerous cell lines showed that no
cytotoxicity was observed up to 100 μg/ml concentrations. It was found
that no inhibitory activities were observed in the non-cancerous cell, but
significantly decreased cell viability for the cancerous cells indicates the
extracts in vitro safety as well as anti-carcinogenic potential (Aldakheel
et al., 2020).

Safety and toxicity have been commonly estimated in the in vivo
studies involving experimental animals like rodents and rabbits. The
studies have found that the extracts (eg; aqueous and methanol) of M.
oleifera at 1,000 mg/kg dose of gavage treatment revealed no toxicity and
mortality in the experimental rats (Asare et al., 2012; Olayemi et al., 2016)
whereas, upon 2000 mg/kg, slight reduction in body weight in dose-
dependent manners with no fatality was observed (Adedapo et al., 2009).
In addition, there were also no significant changes observed in clinical
signs, along with cross-sectional and gross pathology evaluation,
suggesting the safety of the extracts at a 2000 mg/kg dose in animal
studies (Okumu et al., 2016; Moodley, 2017). However, there was acute
toxivity observed at ≥3,000 mg/kg dose, which is a relatively high dose for
supplementation intake (Asare et al., 2012). The typical dose for aqueous
extract of M. oleifera in experimental rats is about 300 mg/kg which
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corresponds to an approximate 3.9 g in 80 kg human (Stohs and
Hartman, 2015).

In acute, sub-acute and chronic toxicity tests, M. oleifera extracts did
not reveal prominent signs of toxicity. The LD50 ofM. oleifera leaves extract
was discovered to be 1,585 mg/kg (Awodele et al., 2012).M. oleifera extract
at 500–2,000mg/kg was reported to be non-fatal in animals. In a study, the
administration ofM. oleifera extracts at 2,000 mg/kg was reported to have
no mortality after 4 h of administration (Adedapo et al., 2009). It is also
reported that the administration of M. oleifera seed extract in rats at
1,600mg/kg for 21 days did not lead to significant alterations in red
haemoglobin concentration, mean corpuscular haemoglobin
concentration, packed cell volume, and blood cell count (Ajibade et al.,
2012). In addition, experimental mice given bark extract orally at doses of
500, 1,000, and 2,000mg/kg for 28 days showed no mortality or clinical
symptoms (Reddy et al., 2013). At dosages over this level, the animals may
show some toxic effects. Moreover, this assertion may not be applicable to
long-term use (Awodele et al., 2012). A toxicity study inWistar albinomice
showed dullness and reduced locomotion in gavage treatment ofM. oleifera
aqueous extract at 3,200 and 6,400mg/kg after 2 h (Awodele et al., 2012;
Rani et al., 2018). However, there were no significant differences were
observed in sperm quality, haematological, histological or biochemical
characteristics of the rats (Awodele et al., 2012). Nevertheless, some
studies have suggested that the toxicity is influenced by the solvents
used in the M. oleifera extraction process. The LD50 of ethanol extract
was 39,600 mg/kg, and the aqueous extract at 16,100 mg/kg, which was
within the safe range (Kasolo et al., 2012). An evaluation of sub-acute
toxicity on Swiss albino rats revealed that ethanol solvent was safer as
compared to aqueous (Alia et al., 2022). Sub-acute administration of M.
oleifera aqueous extracts at 16,100 mg/kg demonstratedmild signs of organ
toxicity, such as an increase in the concentrations of white blood cells,
potassium ions (K+), chloride ions (Cl−), and calcium ions (Ca2+) and a rise
in alkaline phosphatase, aspartate aminotransferase, total bilirubin, and
alanine aminotransferase.

Most of the performed studies involving humans use the plant dried
leaves powder in the study design, and minimal toxicity was generally
assessed. In a previous study, it was found that no adverse effect has been
observed in a regimen of nutraceutical M. oleifera intake for 40 days
continuously (8 g/day doses in tablet form) (Kumari, 2019). Likewise, a
single dose of the plant powder intake (50 g) also showed a similar safety
outcome with no associated toxicity profile (William et al., 1993). To our
best knowledge, no human study has been carried out using the extracts of
M. oleifera as well as its targeted pharmaceutical compounds, resulting in
ambiguous safety and toxicity profiling of the plant extracts in humans.
However, despite its massive uses in various applications like cosmetic
preparation, anti-bacterial agents for wastewater treatment, food
supplementation intake, and nutraceuticals, no adverse effects or safety
issues have ever been reported. This has thus, suggestedM. oleifera as a safe
plant in medicinal research.

8 Conclusions and future perspectives

NDs are among the concerning medical conditions that affect millions
of people globally. While the statistics keep increasing over years, the
natures of the diseases are still not fully understood with poor case
management as no definite treatment is currently available besides
treatments to facilitate associated symptoms and conditions. Diseases
such as PD, AD, and HD are among the common NDs and are
projected to have a very high profile of social burden and underlying

medical causalities if taken lightly. Therefore, it is very crucial to find
potential alternatives to control the development of diseases. As such,
supplementation intake or nutraceuticals is one of the strategic approaches,
utilizing the nutritional value ofmedicinal plants likeM. oleifera.M. oleifera
is a popular nutritional plant because of its rich source of good nutrients,
natural antioxidants, and other phytochemicals that are responsible for its
tremendous use and benefits. This plant is highly anticipated in nutritional
plant research as it is not only a good source of phytochemicals but also has
a minimal need for plant growth, allowing the natural distribution and
growth of these plants in many countries. The idea of employing natural
products in medical research over synthetic components has recently
gained interest. This will not only be beneficial medically, but it is also
environmentally conscious and cost-effective. Thus, this reviewof the recent
studies has provided insight into the potential anti-oxidative, anti-
inflammatory, and neuroprotective properties of M. oleifera against
neurodegenerative conditions. However, as most of the studies used
different extracts in mitigating diverse neurological conditions, the
potential of constituents of M. oleifera as neuroprotective agents needs
further investigation. In addition, the application of systems biology as an
interesting approach and, the incorporation of this technology in
neuropharmacology and medicinal plant research warrant future
investigations. Hence, this review has presented the current research gap
in the study ofM. oleifera potential against NDs.More research is necessary
to be carried out in a future perspective on the important phytochemicals
contributing to the management of NDs as well as understanding its
mechanism of action.
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