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Neoplastic cells displayed altered metabolism with accelerated glycolysis.

Therefore, these cells need a mammoth supply of glucose for which they

display an upregulated expression of various glucose transporters (GLUT). Thus,

novel antineoplastic strategies focus on inhibiting GLUT to intersect the

glycolytic lifeline of cancer cells. This review focuses on the current status

of various GLUT inhibition scenarios. TheGLUT inhibitors belong to both natural

and synthetic small inhibitory molecules category. As neoplastic cells express

multiple GLUT isoforms, it is necessary to use pan-GLUT inhibitors.

Nevertheless, it is also necessary that such pan-GLUT inhibitors exert their

action at a low concentration so that normal healthy cells are left unharmed and

minimal injury is caused to the other vital organs and systems of the body.

Moreover, approaches are also emerging from combining GLUT inhibitors with

other chemotherapeutic agents to potentiate the antineoplastic action. A new

pan-GLUT inhibitor named glutor, a piperazine-one derivative, has shown a

potent antineoplastic action owing to its inhibitory action exerted at nanomolar

concentrations. The review discusses the merits and limitations of the existing

GLUT inhibitory approach with possible future outcomes.
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Introduction

Neoplastic cells display altered carbohydrate metabolism, which has emerged as one

of the targetable hallmarks of cancer (Hanahan and Weinberg, 2011; Senga and Grose,

2021; Hanahan, 2022). One of the prominent features of the reprogrammed metabolism

in cancer cells concerns the predominance of glycolysis irrespective of the availability of

O2, a phenomenon designated as the “Warburg effect.” Accelerated glycolysis helps
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neoplastic cells rapidly produce ATP and precursors of the

anabolism (Warburg et al., 1927; Warburg, 1956; Lopez-

Lazaro, 2008; Cassim et al., 2020). Mathematical models of

accelerated glycolysis suggest that it lets the neoplastic cells

produce a much higher amount of ATP than that derived

from the normal Krebs cycle (Gillies and Gatenby, 2007). To

maintain the unhindered supply of glucose for fueling glycolysis,

cancer cells overexpress several nutrient transporters on their cell

surface, among which one of the most prominent ones are the

glucose transporters (GLUTs) (Ancey et al., 2018; Szablewski,

2022). Thus, irrespective of their etiologies, most neoplastic cells

overexpress GLUT1 and GLUT3 isoforms, which have high

efficiency for glucose transport (Ancey et al., 2018; Suwabe

et al., 2021). Consequently, several upcoming anticancer

therapeutic strategies are focused on designing effective

approaches to achieve inhibition of one or more GLUT

isoforms to interfere with the glucose uptake of cancer cells.

Given the background mentioned above, the following review of

literature discusses the current status of knowledge concerning:

1) the importance of sugars in carbohydrate metabolism of

neoplastic cells; 2) the biochemistry of the functioning of

glucose transporters; and 3) Emerging approaches for

therapeutic targeting of GLUTs.

The necessity of glucose for neoplastic
cells

It has remained a hot and debated topic if sugars feed

cancer. Among the diverse types of sugars, glucose is the

simplest one, the most assimilable form of carbohydrates

(Parker, 2020). Cancer cells metabolize glucose at a

comparatively faster rate for which they need to have a

high uptake of glucose. This feature of neoplastic cells was

initially recognized by a well renowned German scientist Sir

Otto Heinrich Warburg, Nobel laureate of 1931 in Physiology

or Medicine, who noted that neoplastic cells consume a

relatively higher amount of glucose (20 times more) than

normal healthy counterparts (Warburg et al., 1927; Warburg,

1956). Further, Warburg also presented evidence

demonstrating that cancer cells metabolized most of their

consumed glucose via lactate fermentation instead of

utilizing glucose metabolism through the TCA cycle.

Figure 1 depicts the typical pathway of glucose metabolism

in cancer cells in which glucose is metabolized to lactate

compared to normal cells, which metabolize it through the

TCA cycle. The role of glycolysis in neoplastic cells is

accelerated on an average by 100 times (range:

20–300 times) (Vaupel and Multhoff, 2021). Though the

glycolysis is inferior compared to the Krebs cycle for the

generation of ATP, cancer cells still evolved to opt for

glycolysis even in the presence of O2 owing to two possible

reasons: 1) The rate of ATP production in cancer cells is

approximately 100 times faster than normal cells and 2)

glycolysis provides precursors for biosynthetic machinery

(Lunt and Vander Heiden, 2011; Zhou et al., 2018). The

metabolic switching of cancer cells is mainly attributed to

HIF and its downstream signaling pathways (Semenza, 2010;

Zhao T et al., 2014; Masoud and Li, 2015; Nagao et al., 2019;

Lee et al., 2021).

FIGURE 1
Role of GLUTs in the accelerated glycolysis of neoplastic cells. Neoplastic cells display an upregulated expression of GLUTs for increased
glucose uptake, which is rapidly metabolized to lactate leading to the production of a high amount of ATP and biosynthetic precursors.
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Glucose transporters (GLUTs)

Glucose uptake of cancer cells is facilitated by glucose

transporters which belong to the solute carriers (SLC) family.

The most prominent GLUTs are highly overexpressed in cancer

cells and encoded by the SLC2A gene family (Thorens and

Mueckler, 2010; Mueckler and Thorens, 2013; Navale and

Paranjape, 2016; Galochkina et al., 2019; Echeverría et al.,

2021). In addition, another group of membrane-associated

glucose transporters belongs to the Na+/glucose cotransporters

(SGLT) gene family designated as the SLC5A, which carries out

the active transport of glucose (Wright et al., 2011).

The credit for discovering glucose transporters goes to

LeFevre (1948), followed by advanced research to decipher

their structure and functions primarily in the erythrocyte

membranes (Widdas, 1952). Fourteen members now

constitute the GLUT family with different affinities for glucose

transport (Uldry and Thorens, 2004; Thorens and Mueckler,

2010; Mueckler and Thorens, 2013). Figure 2 depicts the typical

structural organization of GLUT as downloaded from PDB Data

Bank. A GLUT molecule is a glycoprotein with N-linked

oligosaccharides composed of 500 amino acids arranged in an

array of 12 transmembrane alpha-helices. Depending on the

sequence differences, the nomenclature of the various

members of the GLUT family was proposed (Joost and

Thorens, 2001; Joost et al., 2002; Holman, 2020). According

to the Heidelberg Unix sequence analysis, GLUTs are grouped

into three classes: Class I, II, and III. Class I comprises GLUT1,

GLUT2, GLUT3, GLUT4 and GLUT14. The class II members are

GLUT5, GLUT7, GLUT9, and GLUT11. Class III constitutes

GLUT 6, GLUT8, GLU10, GLUT12, and GLUT13/HMIT-1

(Ancey et al., 2018). The GLUT isoforms also display tissue-

specific need-based variations in their expression pattern (Boado

et al., 1994; Uldry and Thorens, 2004; Calvo et al., 2010). As

neoplastic cells display essential dependency on glucose, they are

reported to overexpress various isoforms of GLUTs (Table 1),

particularly GLUT1, GLUT3, GLUT4, and GLUT12 (Martell

et al., 1997; Szablewski, 2013; Barbosa and Martel, 2020; Pliszka

and Szablewski, 2021). However, the expression of GLUT1 and

GLUT3 is most ubiquitous in all cancers (Krzeslak et al., 2012;

Barron et al., 2016); hence the following description of the

literature review is focused on GLUT1 and GLUT3.

The GLUT1 and GLUT3 display about 64% resemblance of

amino acid composition. Deng and Yan (2016) have elegantly

described the crystal structure-dependent details of GLUT1 and

GLUT3. GLUT1 comprises 492 amino acids from aa

9–455 GLUT constitutes prominent canonical facilitator super

family (MFS) protein folds (Deng et al., 2014; Galochkina et al.,

2019; Drew et al., 2021). Twelve transmembrane α helices are

linked with extracellular and cytoplasmic linker amino acids. The

structural organization of GLUT1 and GLUT3 has been reported

to exist in three conformational states.

Despite amino acid differences, all GLUT isoforms possess a

similar group structure, The central aqueous channel of GLUT1,

through which glucose is passaged, comprises transmembrane

domains 3,5,7, camp8 and 11 with amphipathic helices

(Mueckler et al., 1985). Groups of Alvarez et al. (1987), Jung

(1996), and Heinze et al. (2004) aided in the understanding of the

structural organization of GLUT1 using specialized techniques

like circular dichroism and Fourier transform infrared

spectroscopy, mass spectroscopy, and scanning glycosylation

mutagenesis (Alvarez et al., 1987; Jung, 1996; Heinze et al.,

2004). Subsequently, the chemically predicted structures were

reconfirmed using computer modeling techniques (Deng et al.,

2014), followed by final corroboration of the predicted structures

of GLUT1 by X-ray diffraction of crystal structures, with

12 transmembrane domains clustered into two units of six

helical units (Deng et al., 2014; Holman, 2020).

FIGURE 2
A typical topographical representation of GLUT (GLUT1). The figure shows the organization of the N and C termini, linker regions, and the
12 transmembrane domains of GLUT, which form an aqueous channel for glucose transport across the membrane.
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GLUT1 contains a single glucose binding site near the C terminal

(Deng et al., 2015). Glutamine residues form the glucose binding

site at 161, 282, 283, and 288 and tryptophan at 412 positions

(Mueckler and Makepeace, 2009). The in silico structure and

docking prediction tools have greatly added to deciphering the

binding sites of glucose and inhibitors on GLUT and predicting

the ‘Modus Operandi’ of the transport process (George

Thompson et al., 2015). The two most acceptable models

predict the transport of glucose by GLUT1. In the first model,

it is predicted that glucose binding sites are located on two sides

of the aqueous channel; one is located towards the exterior and

the other towards the cytoplasmic side. Hence named as two site/

flexed site transport model (Custódio et al., 2021). The glucose

transport depends on a simple ligand exchange at these two

binding sites. However, GLUT1 is demonstrated to transport

glucose unidirectionally at a given time and hence is a uniporter.

The second popular glucose transport model by GLUT1 is named

the “alternating access model” (Lloyd et al., 2017). According to

this model, GLUT1 undergoes transformational oscillations by

alternatively opening on either side. Hence, GLUT1 is predicted

to be an antiporter in this model (Chadt and Al-Hasani, 2020).

The pioneering study of Deng et al. (2014) published in ‘Nature’

demonstrated the existence of four conformational states of

GLUT1 based on its crystal structure. These four

conformational states are designated as 1) outward open

conformation with one substrate; 2) a ligand-bound state and

occluded state; 3) an inward open state; and 4) a ligand-free and

occluded state (Deng and Yan, 2016). A recent review by

Galochkina et al. (2019) has summarized the current state of

knowledge on the mechanism of glucose transport by GLUT1 by

molecular dynamic simulation studies. According to the model

proposed by this study, glucose transport by GLUT1 comprises

three stages of a highly cooperative process. The movement of

glucose involves its transition via a rotational movement with

H-bonds (Galochkina et al., 2019), which is followed by the

transformation of the outside open conformational state to the

‘inside open’ conformational state, through which the queued

glucose molecule is released in the cytoplasm (Galochkina et al.,

2019). The cytoplasmic glucose gets phosphorylated immediately

by the action of hexokinase; hence, the concentration of free

TABLE 1 Cancer genome-based representative distribution of GLUTs in various cancer cells.

Name of
GLUT
isoform

Representative
neoplastic cells

Name
of normal cells/tissues

References

GLUT1 Head and neck, brain, thyroid, pancreatic, breast,
esophageal, gastric, renal, lung, cutaneous,
adenocarcinoma, hepatocellular cholangiocellular
carcinoma (HCCC), colorectal, bladder, endometrial,
prostate, ovarian and cervical cancer, penile and
hematological malignancies, sarcomas, laryngeal
carcinomas

Erythrocytes, endothelial and epithelial
cells, glandular cells, placenta, astrocytes,
and cardiac muscles

Ancey et al. (2018); Barron et al. (2016); Carvalho
et al. (2011); Ding et al. (2016); Gaber et al. (2021);
Pliszka and Szablewski, (2021); Pragallapati and
Manyam, (2019); Shim et al. (2013); Heydarzadeh
et al. (2022); Zhao T et al. (2014)

GLUT2 Hepatocellular carcinomas, cholangiocellular
carcinoma, breast, gastric cancers

Pancreatic islet cells Godoy et al. (2006); Lin et al. (2016); Mueckler,
(1994); Schmidl et al. (2021b, 2021a)

GLUT3 Non-small cell lung cancer, breast cancer, brain
tumors, bladder, laryngeal, prostate, gastric, head and
neck, ovarian, oral squamous cancer, astrocytoma,
choriocarcinoma, retinoblastoma, rhabdomyosarcoma,
pancreatic cancer, endometrial carcinoma

The brain, especially in neurons, testis,
uterus, prostate, pancreas

Boado et al. (1994); Burant and Bell, (1992);
Krzeslak et al. (2012); Meneses et al. (2008);
Yamamoto et al. (1990)

GLUT4 Breast, lung, gastric, and pancreatic cancer Insulin-sensitive tissue adipocytes and
skeletal muscle

Adekola et al. (2012); Chadt and Al-Hasani,
(2020); Richter and Hargreaves, (2013); Stuart
et al. (2009); Torrance et al. (1997)

GLUT5 Liver carcinoma, lung cancer, renal cell carcinoma,
breast and prostate cancer

Plasma membranes of small intestinal
epithelial cells, kidney, testis, muscle

Chan et al. (2004); Godoy et al. (2006); Li et al.
(2011); Phay et al. (2000); Yamamoto et al. (1990)

GLUT6 Several cancers, including endometrial cancer Brain, spleen, and leukocytes Godoy et al. (2006); Nualart et al. (2009); Pyla et al.
(2013); Uldry and Thorens, (2004)

GLUT7 Not determined in cancer cells Colon epithelium, prostate Mueckler, (1994)

GLUT8 Multiple myeloma Testis, adrenal gland, liver, spleen, lung Maria et al. (2015); Shikhman et al. (2001)

GLUT9 Hepatocellular carcinoma, melanoma Liver, kidney, lung, leukocytes, small
intestine

Godoy et al. (2006); Phay et al. (2000)

GLUT10 Gastric cancer Adipose tissue Pyla et al. (2013)

GLUT11 Multiple myeloma Several cell types, including heart, muscle,
kidneys

McBrayer et al. (2012)

GLUT12 Breast and prostate cancer cells Heart, small intestine, skeletal muscles Bakht et al. (2020); Barron et al. (2012); Stuart
et al. (2009); White et al. (2018)
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glucose in the cytoplasm remains at a very low concentration,

which in turn becomes the driving force for the passive transport

of glucose by GLUT (Medina and Owen, 2002). Figure 3 depicts

various conformational changes which facilitate glucose

transport across the cell membrane. This mode of glucose

transport by GLUT is also designated as gated pore and

rocker switch mechanism (Nomura et al., 2015), membrane

phospholipids associated cell signaling has been reported to

play a crucial role in regulating the signaling events

responsible for the oscillation of GLUT conformational states

(Hresko et al., 2016).

Nevertheless, in addition to glucose transport, GLUT1 also

mediates the uptake of mannose, galactose, glucosamine, and

ascorbic acid by cells (Uldry et al., 2002; Pliszka and

Szablewski, 2021), which also work through the same

operating system of altered conformational states

(Pragallapati and Manyam, 2019). Moreover, the expression

of GLUT on cell membrane displays clustered and focal

distribution patterns, in which cell junctions and

cytoskeletal elements play an essential role, as revealed by

direct stochastic optical reconstitution microscopy (Yan et al.,

2018). Almahmoud et al. (2019) performed a series of in silico

studies to comprehend the mechanism of the aforementioned

conformational changes in GLUT1. Their systemic molecular

docking investigation revealed that the Phe291, Phe379,

Gln380, Trp388, and Trp412 amino acid residues mediate

the binding of glucose with GLUT1 and determine its

conformational oscillation (Almahmoud et al., 2019).

Further, the 12 transmembrane domains of GLUT1 are

clustered in a replicated trimeric organization, as revealed

by crystallographic studies (Holman, 2020). Crystallographic

studies on GLUT1 have also revealed additional insight into

the conformational states (Holman, 2020). Some amino acids

are crucial in maintaining various conformational states,

particularly the hydrophobic residues at 291, 292, 293, 294,

386, and 387 positions (Holman, 2020).

The expression of GLUTs in normal healthy cells and

transformed cells is a highly regulated process, depending on

the glucose needs of specific cell types (Navale and Paranjape,

2016). However, the precise mechanism of the gene expression

and membrane transporters of GLUT1 and GLUT3 have still not

been fully deciphered. Neoplastic cells largely depend on cAMP-

dependent secondary messenger signaling for regulating the

expression of GLUT1 and GLUT3 (Meneses et al., 2008). In

addition, PI3K/Akt pathway has also been demonstrated to

facilitate GLUT1 expression (Hoxhaj and Manning, 2020).

Regulation of GLUT expression

A survey of literature strongly indicates the involvement of

multiple signaling messengers in the regulation of GLUT

expression in cancer cells in which the prominent ones

include Ca2+ (Diaz-Ruiz et al., 2011; Echeverría et al., 2021),

CAMK (White et al., 2018), PI3K/Akt (Hoxhaj and Manning,

2020), mTOR (Shin and Koo, 2021), HIF1-α, p53 (Monde, 2018;

Schwartzenberg-Bar-Yoseph et al., 2004), Matrix

metalloproteinases (MMP) (Ito et al., 2002), RAS, PKC (Lee

et al., 2015), NF-κB (Zha et al., 2015), AMPK (Zambrano et al.,

2019), Phosphate and Tensin Homolog (PTEN) (Ancey et al.,

2018), and Thioredoxin-interacting protein (TxNIP) (Ancey

et al., 2018). Many of these critical signaling and regulatory

molecules are integrated into a specific loop to regulate the

expression of various GLUT isoforms. Zhao and Zhang (2016)

have elegantly described critical regulatory and canonical

pathways regulating GLUT expression: GLUT-PI3K, GLUT-

mTOR, GLUT-HIFs, GLUT-RAS, GLUT-MMP, and GLUT-

p53 (Zhao and Zhang, 2016). Upstream to these cell-

associated signaling mediators regulating GLUT expression,

several extrinsic factors are also key players in modulating

GLUT expression. Among these, proinflammatory cytokines

have been reported to play a crucial role in regulating the

FIGURE 3
Conformational changes of GLUT facilitate glucose transport across the cell membrane. The four conformational changes oscillate between 1)
Outside open conformation facilitating loading of glucose; 2) outward open conformationwith bound glucose (occluded state); 3) inward open state
following release of glucose and 4) shifting back to the outward open glucose-free state to capture of glucose. So basically, there are two main
conformations the outside open (OOP) and inside open (IOP) states.
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expression of GLUT1 and GLUT3. GLUT regulatory cytokines

include TNFα (Shikhman et al., 2001; Straus, 2013), IL-1β
(Phillips et al., 2005), TGF-β (Andrianifahanana et al., 2016),

IFN-y (Freemerman et al., 2014), IGF1 (Actis Dato et al., 2021),

and IL-13 (Wieman et al., 2007). These cytokines indirectly

regulate GLUT expression via their ability to modulate one or

more signaling pathways. For example, IL-1β regulates GLUT

expression by modulating PKC, PI3K, p38, and cJUN activation.

Likewise, proinflammatory cytokines like IL-13 and IFN-y

modulate GLUT1 expression via NF-κB activation

(Freemerman et al., 2014; Tan et al., 2018). In addition to

cytokines, several regulatory RNAs are also reported to

regulate GLUT expression. Non-coding RNAs, including

several miRNAs, have been demonstrated to regulate GLUT

expression (Kong et al., 2016; Hu et al., 2019). Long non-

coding RNA, HOTAIR, has been shown to regulate GLUT by

its ability to modulate NFkB (Obaid et al., 2021). Extrinsic factors

like iron availability also affect GLUT expression (Potashnik

et al., 1995).

Importantly several hormones also play a crucial role in

regulating GLUT expression. Gender-specific hormones like

estrogen (Medina et al., 2004; Nualart et al., 2009),

testosterone (Wilson et al., 2013; Mitsuhashi et al., 2016), and

progesterone (Medina et al., 2003; Medina et al., 2004; Frolova

et al., 2009; Nualart et al., 2009) whereas non gender-specific

hormones like thyroid hormone (Torrance et al., 1997; Brunetto

et al., 2012; Ding et al., 2016), insulin (Brosius et al., 1992; Stuart

et al., 2009; Maria et al., 2015), and pituitary hormones (growth

hormone, gonadotropin releasing hormone (GnRH), luteinizing

hormone (LH), follicle stimulating hormone (FSH), and

somatotropins) (Kilgour et al., 1995; Harris et al., 2012; De

Los Santos, 2013; Kim and Park, 2017; Nicholas et al., 2020)

have been implicated in the regulation of GLUT expression.

However, like cytokines, the modulatory effect of hormones in

GLUT expression is mediated via the involvement of one or more

aforementioned signaling mediators and pathways (Kilgour et al.,

1995; Shikhman et al., 2001; Phillips et al., 2005; Freemerman

et al., 2014; Santos et al., 2014; Maria et al., 2015; Ding et al., 2016;

Takaguri et al., 2016; Kim and Park, 2017). Nevertheless, the

blend of cytokines, hormones, and specific signaling mediators is

also likely to manifest cancer cell-specific differences in the

expression of various GLUTs. Nevertheless, physical activities

like exercise also modulate GLUT expression via CAMK and

AMPK-associated signaling pathways (Röckl et al., 2007; Richter

and Hargreaves, 2013).

Further, the role of hypoxemic conditions and HIF1α in

regulating GLUT expression needs a little more attention as

HIF1α is the master regulator of tumor metabolism (Nagao et al.,

2019). Experimental reports strongly indicate a correlation of

HIF1α to the expression of various GLUT isoforms (Semenza,

2010; Mattmiller et al., 2011; Semenza, 2013; Sadlecki et al., 2014;

Seleit et al., 2017; Kierans and Taylor, 2021). The modulation of

GLUT expression by HIF1α is also mediated by the co-

involvement of other signaling messengers like RAS

(Moldogazieva et al., 2020; Ghanavat et al., 2021; Shin and

Koo, 2021). Hypoxic conditions of the tumor

microenvironment also regulate GLUT gene expression via

modulation of HIF1α and its downstream signaling events

(Roy et al., 2020; Li et al., 2021). Nevertheless, even glucose

levels in the external milieu serve as essential triggers of

GLUT1 and GLUT3 expression via HIF1α mediated

regulation of GLUT gene expression (Hayashi et al., 2004;

Yang et al., 2014; Zhao and Zhang, 2016; Seleit et al., 2017).

Hypoxia and glucose levels have been reported to modulate

mRNA levels of GLUT1, GLUT3, GLUT8, GLUT9, GLUT10,

and GLUT12 (Frolova et al., 2009; Frolova andMoley, 2011; Kido

et al., 2020), indicating the importance and central role of these

extrinsic factors on pan-GLUT expression in which HIF1-α has a
central role. Nevertheless, some evidence also indicates HIF1-α
independent regulation of GLUT expression (Macheda et al.,

2005). Such variations could be dependent on the etiology of

various cancer cells. Figure 4 shows the primary regulators of

GLUT expression and their downstream signaling mediators.

Inhibition of GLUT as a promising
anti-cancer approach

Considering the crucial role of glucose supply for sustaining

accelerated tumor metabolism and most malignant cells’

overexpression of GLUT1 and GLUT3, strategies are being

devised to effectively inhibit GLUTs in a neoplastic cell-

specific manner. Nevertheless, as discussed earlier in this

literature review, many cancer cells also overexpress other

isoforms of GLUTs, SGLT1, and SGLT2 for sugar uptake

(Szablewski, 2013; Wright, 2020; Pliszka and Szablewski, 2021;

Szablewski, 2022). Thus, several approaches are envisaged for

targeted inhibition of such transporters, particularly the GLUTs.

Significantly, the effectiveness of any GLUT inhibition strategy

will depend on the strength of the binding of a given inhibitor.

Availability of the molecular structures of GLUT inhibitors and

in silico tools has significantly helped to characterize GLUT

inhibition.

Moreover, the availability of the crystal structure of

GLUT1 and GLUT3 has further strengthened the approaches

for exploring their effective inhibitors. In this context, searching

and developing such inhibitors will be desirable, which can cause

a pan-GLUT inhibition. This approach will help overcome the

adaptability of neoplastic cells to recruit additional GLUTs for

glucose uptake. Moreover, it is also essential to explore inhibitors

that can inhibit GLUTs at minimal concentrations; this will aid in

avoiding toxicity to normal cells with a low level of GLUT

expression. In addition to the ongoing search for ideal small

molecule inhibitors for GLUTs, other approaches mainly focused

on inhibiting GLUT expression at the gene level are also under

active investigation. These approaches include anti-GLUT
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antibodies, antisense DNA, shRNA, miRNAs, long non-coding

(LNC), and Hox antisense intergenic RNA (HOTAIR) (Rastogi

et al., 2007; Liu et al., 2018; Hu et al., 2019; Liu et al., 2021). Given

the rapid progress in this field, the current status of GLUT

inhibition strategies is discussed in the following section of

the literature review.

GLUT inhibitors of natural origin

Small molecule GLUT inhibitors mainly belong to natural,

seminatural and synthetic chemical origins (Shriwas et al.,

2020). have elegantly summarized the GLUT inhibitors of

herbal origin. Vick et al. (1973) introduced the first herbal

GLUT inhibitor named “Phlorizin,” which was followed by a

series of discoveries of several other GLUT inhibitors of plant

origin which belong to various chemical categories, including

alkaloids, flavonoids, and other oxygen heterocyclic and

phenolic compounds (Shriwas et al., 2020). Among these

diverse categories of GLUT inhibitors of plant origin, those

identified with antineoplastic action include more than

25 compounds, to name a few of them: apigenin

(Gonzalez-Menendez et al., 2014), curcumin (Gunnink

et al., 2016; Soni et al., 2021), genistein (Vera et al., 1996;

Pérez et al., 2011), naringenin (Memariani et al., 2021),

oridonin (Yao et al., 2017), phloretin (Wu et al., 2018;

Wang et al., 2022), phlorizin (Vick et al., 1973; Kwon and

Levine, 2007; Shriwas et al., 2020), quercetin (Schmidl et al.,

2021a), resveratrol (Jung et al., 2013; Gwak et al., 2015;

Zambrano et al., 2019; Samec et al., 2020), silybin (Zhan

et al., 2011), and vinblastine (Shriwas et al., 2020).

Although many of these GLUT inhibitors display a

promising antineoplastic potential, the precise mechanism

of the inhibitory action of most remains elusive, which

needs to be deciphered for their optimal utilization in

antineoplastic therapeutics.

Cytochalasin B

A cell-permeable mycotoxin named cytochalasin B, which

is also a microfilament poison and used to regulate cytoskeletal

elements is yet another GLUT inhibitor of natural origin that is

extensively investigated for its mechanism of GLUT inhibition

and utility for antineoplastic applications (Jung and Rampal,

1977; Devés and Krupka, 1978; Klip and Pâquet, 1990; Granchi

et al., 2016; Kapoor et al., 2016). Kapoor et al. (2016) published

an elegant article regarding the mechanism of the GLUT-1

inhibitory action of cytochalasin B along with two

phenylalanine amides. This study also showed that the

GLUT-1 inhibitory action of cytochalasin B could be

manifested in mM concentration ranges. The study utilized

crystallography and in silico docking tools to decipher the

mechanism of GLUT1 inhibition and identified the amino

acids and binding sites through which cytochalasin B

exerted its inhibitory action. However, being a blocker of

microfilament polymerization, its utility for antineoplastic

application in vivo needs to be verified vis à vis validation

of safety for other organs and tissues. Moreover, the

cytoskeleton plays a crucial role in the functioning of many

tumor-infiltrating cells like macrophages and dendritic cells,

where microfilament poisoning by cytochalasin B needs to be

controlled while utilizing it for anticancer therapeutic

approaches.

FIGURE 4
Regulation of GLUT expression in cancer cells. Indicated extrinsic and intrinsic factors can regulate the expression of GLUTs via themediators of
a plethora of signaling messengers, the blend of which could vary in a cancer-specific manner.
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Glucopiericidin A

Glucopiericidin A is yet another highly potent GLUT

inhibitor of natural origin with an IC50 value of 22 nM

compared to 500 nM for cytochalasin B (Kitagawa et al.,

2010). The group of glucopiericidin A members are produced

by streptomyces of the actinomycetes family. Glucopiericidin A

has been remarkable for its low LD50 values and is predicted to

have less toxicity (Zhou and Fenical, 2016). Though initially

discovered as a filopodia protrusion inhibitor (Kitagawa et al.,

2010), it was later discovered that glucopiericidin A could

simultaneously inhibit both mitochondrial respiration (Hall

et al., 1966) and glycolysis (Kitagawa et al., 2010) by its ability

to inhibit GLUT leading to declined ATP production. Moreover,

glucopiericidin A is also shown to interfere with tyrosine kinase-

based signaling (Zhou and Fenical, 2016). It has been

demonstrated that glucopiericidin A synergies with low

glucose levels for inducing cell death in the pancreatic, lung,

and other cancer cells (Palorini et al., 2013). However, the precise

mechanism of GLUT inhibition by glucopiericidin A remains

elusive. Moreover, its antineoplastic action needs to be assessed

in a broader spectrum of targets, and its specificity on cancer cells

remains undetermined. It remains elusive whether it can directly

inhibit GLUT from interfering with glycolysis or via glucose

phosphorylation. The GLUT inhibiting potential of

glucopiericidin A solely depends on maiden experiments

displaying its ability to inhibit the uptake of 2-deoxyglucose

(2DG) (Imoto, 2019). Thus, the antineoplastic potential of

glucopiericidin A needs further validation.

Polyphenols

Polyphenols are a group of natural compounds found in

many plants with reported antineoplastic potential (Keating

and Martel, 2018). Polyphenols like apigenin, silibin,

kaempferol, gossypol, naringenin, phloretin, genistein,

resveratrol, herpertin, quercetin, myricetin, and catechin

are reported to inhibit glucose uptake in several neoplastic

cell lines, by their ability to inhibit GLUTs at both gene and

protein expression level (Keating and Martel, 2018; Ji et al.,

2019; Kang et al., 2019). On the other hand polyphenols like

quercetin are reported to competitively inhibit GLUT1

(Hamilton et al., 2018; Salehi et al., 2020), whereas for

some other polyphenols the mechanisms of GLUT

inhibition remain unclear. Johnston et al. (2005) and

Farrell et al. (2013) reported that dietary polyphenols

decrease glucose uptake in the Caco-2 cell line, possibly

depending on their ability to inhibit GLUT and SGLT1.

Moreover, polyphenols like curcumin, genistein, and

quercetin can improve the antineoplastic action of

glycolytic inhibitors in cell lines of myeloid leukemia origin

(de Blas et al., 2016). Moreover, phloretin, a polyphenol

derived from apple, was shown to inhibit the proliferation

of colorectal cancer cell lines by inhibiting GLUT2 and

activating the p53-dependent signaling pathway (Lin et al.,

2016). In vitro experiments on Caco-2 cells revealed that

exposure to anthocyanin-rich plant extract inhibited the

expression of SGLT1 and GLUT2 (Alzaid et al., 2013).

However, for many polyphenols, the precise mechanism of

their inhibitory action on GLUTs remains to be clarified.

Among the most worked out polyphenols, apigenin and

resveratrol are known to inhibit GLUT1 (Melstrom et al.,

2008; Gwak et al., 2015), whereas phloretin, and quercetin are

reported to inhibit GLUT1, and GLUT2 (Schmidl et al.,

2021a) on the other hand silybin inhibits GLUT4 (Zhan

et al., 2011). These studies on polyphenols also corroborate

that eating fruits and a vegetable-rich diet abundant in

polyphenols decreases cancer risk. It can be attributed

mainly to the GLUT inhibitory potential of several dietary

polyphenols. In addition, polyphenols manifest their

anticancer action through other mechanisms, including

modulation of cell signaling, cell survival, angiogenesis,

immunopotentiation, hormonal regulation, and enzyme

modulation (Niedzwiecki et al., 2016). The target cancers

investigated for the anticancer action of polyphenols

include prostate, colon, breast, lung, bladder, pancreas,

spleen, and leukemia (Niedzwiecki et al., 2016; Montané

et al., 2020).

Small inhibitory molecules

The main group of small inhibitory molecules of various

GLUTs are principally aromatic compounds with unique

imidazole, pyridine and pyrazole rings and most of them have

a common overall structural organization with minor differences

as depicted in Figures 5A–F.

WZB 117

WZB 117 (Figure 5A) is a polyphenol-derived small molecule

inhibitor of GLUT1 (Liu et al., 2012; Ojelabi et al., 2016; Chen

et al., 2017). It exerts antineoplastic action with an IC50 value in

the 10 µM concentration range on Hela, RKO, A549, and

MCF7 cells of the cervix, endometrial carcinoma, lungs, and

breast origin, respectively (Liu et al., 2012), accompanied by

enhanced radio-sensitization (Zhao et al., 2016). Some

mechanisms of the antineoplastic action of WZB117 have also

been worked out, showing the implication of a declined

GLUT1 expression along with a decrease in ATP levels and

glycolytic enzymes (Liu et al., 2012). Moreover, WZB117 triggers

an increase in the ATP sensing AMPK and a decline in cyclin E2

(Liu et al., 2012). The antineoplastic activity of WZB117 has also

been evaluated in vivo (Liu et al., 2012). Interestingly WZB117 is
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also reported to inhibit cancer stem cells (Shibuya et al., 2014).

However, one of the disadvantages of WZB117 is its instability

owing to its ester bonds under aqueous physiological conditions,

potentially the most significant limiting factor in its use in cancer

therapeutic strategies. Moreover, it is described as inhibiting only

GLUT1, which can be another limitation of its use for

antineoplastic applications.

DRB18

In a recent study, another promising GLUT inhibitor

named DRB18 (Figure 5B), which belongs to a synthetic

small inhibitory molecule, has been reported with the ability

for GLUT inhibition as evaluated on A549 tumor-bearing nude

mice and HER293 cell lines (Shriwas et al., 2021). One of the

reported advantages of DRB18 is its relative stability compared

to WZB117 (Roberts et al., 2020). So far, DRB18 has been

shown to exert cytostatic action on around 60 cancer cell lines

of diverse origins. The primary mechanism of the antineoplastic

action of DRB18 was shown to be via increased endoplasmic

reticulum oxidative stress (Shriwas et al., 2021). The pan-GLUT

inhibitory ability of DRB18 was verified through in silico-based

studies. The cytotoxic ability of DRB18 accompanied by

inhibitory action on glucose uptake showed IC50 in the

concentration range of 900 nM-9.0 µM (Shriwas et al., 2021).

Moreover, DRB18 treatment caused a remarkable inhibition of

glucose-dependent metabolic pathways like glycolysis, TCA

cycle, purine, and pyrimidine synthesis (Shriwas et al., 2021).

However, the GLUT inhibitory and antineoplastic action of

DRB18 has not been reported for any hematological

malignancies. The wide range of low to high IC50 values

indicates the need for testing its efficacy and safety for

antineoplastic applications against a wider variety of

preclinical cancer models. It is also unclear if DRB18 can

modulate the cytotoxic action of other antineoplastic agents.

Safety issues on normal tissues and organs of the tumor-bearing

host also remain largely unverified. Moreover, DRB18 is water

insoluble, which could be another limitation of its use in

anticancer strategies.

BAY-876

A quinoline derivative named BAY-876 (Figure 5C) was

initially identified for its highly selective GLUT1 inhibitory

potential by (Siebeneicher et al., 2016b), which also exerts its

actions in nM ranges but has limited ability to inhibit other GLUT

isoforms like GLUT2, GLUT3, andGLUT4. Additional advantages

of BAY-876 include its aqueous stability in vitro and adequate

bioavailability upon administration through the oral route

(Siebeneicher et al., 2016b). BAY-876 manifests antineoplastic

action mainly via its ability to inhibit GLUT1 leading to

multiple actions on neoplastic cells, including suppression of

FIGURE 5
Major small inhibitory molecules of GLUTs. Figures (A-F) show structural details of small GLUT inhibitory molecules. Most of these molecules
have overall common structural organization except few alterations in ring structure, constituent elements and their arrangement.
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proliferation, drug-resistance, EMT, and metabolism (Yang et al.,

2021). BAY-876 was reported to manifest increased NADP+/

NADPH simulating glucose starvation conditions (Chen et al.,

2022). However, the antineoplastic activity of BAY-876 needs to be

validated on a broader range of neoplastic cells. However, docking

studies have been performed on BAY-876 for binding to GLUT1

(Ojelabi, 2017), and its exclusive binding to only GLUT1 limits its

therapeutic applications. Moreover, the safety of its in vivo

applications needs further verification.

Fasentin

Fasentin N-(4-chloro-3-(trifluoromethyl)phenyl)-3-

oxobutanamide (Figure 5D) is a small molecule inhibitor of

GLUT that was initially reported as a sensitizer to induction of

cell death via FAS and TNF (Kraus et al., 2018; Ocaña et al.,

2020) later it was reported that Fasentin leads to glucose deprivation

by its ability to bind to GLUT1 and GLUT4 as revealed by docking

studies (Wood et al., 2008). However, despite the promising

GLUT1 inhibitory potential alongside sensitization of cells to

death stimuli, not much has been worked out concerning its

antineoplastic potential. A recent study reported that fasentin

could inhibit the proliferation of endothelial cells and hence may

have an implication in antiangiogenic therapeutic strategies.

However, its effect on other normal healthy cells must be

explored to predict safety issues (Ocaña et al., 2020). Moreover,

the effect of fasentin is apparent in about 100 µM range (Ocaña et al.,

2020) which is on the higher side than that desired for an effective

and safe therapeutic agent.

STF-31

Another promising GLUT1 inhibitory agent with

antineoplastic potential is STF-31 (Figure 5E) (Chan et al.,

2011; Adams et al., 2014; Xintaropoulou et al., 2015; Kraus

et al., 2018). It was shown initially to manifest renal cell

carcinoma (RCC) specific cytotoxic action (Chan et al.,

2011). Additionally, STF-31 has been shown to modulate

HIF and target NAMPT to manifest its antineoplastic

action (Adams et al., 2014; Xintaropoulou et al., 2015).

Moreover, Kraus et al. (2018) reported that the anticancer

action of STF-31 is apparent only at higher concentrations,

and hence there is a need for further optimization and testing

on a broad range of neoplastic target cells both in vitro and in

vivo to explore its dual inhibitory action on GLUT1 and

NAMPT. However, the utility of the same will depend on

the expression levels of GLUT1 and NAMPT, which may vary

in a tumor-to-tumor manner. Moreover, it is also reported

that if cancer cells express GLUT2, they can overcome the

inhibitory action of STF-31 and that it does not harm normal

cells (Chan et al., 2011).

Glutor, a Pan-GLUT inhibitor

Recently a pan-GLUT inhibitor named glutor has been

demonstrated to exhibit a potent antineoplastic action in the

nanomolar concentration range against cancer cells of diverse

origins (Reckzeh and Waldmann, 2020a; Reckzeh and

Waldmann, 2020b; Temre et al., 2022). Glutor is (S)-6-

Methyl-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-N-(pyridin-3-

ylmethyl)-4,5,6,7-tetrahydropyrazolo [1,5-a] pyrazine-6-

carboxamide, with the empirical formula C3H32N6O3, and

molecular weight of 536.62 (Figure 5F) (Reckzeh et al., 2019).

Glutor was identified to inhibit GLUT1, GLUT2 and

GLUT3 in HCT116 cells (Reckzeh et al., 2019). The inhibition

of the uptake of 2DG was determined to have an IC50 value of

11 nM in most sensitive cell lines, including urinary cancer-

derived cell lines, which are most glucose-addicted (Lea et al.,

2015). Interestingly glutor was found to impart no cytotoxicity

on normal healthy peripheral blood mononuclear cells and

Institute for medical research-90 (IMR-90) embryonic lung

cells (Reckzeh et al., 2019). Further, the elegant study of

Reckzeh et al. (2019) also screened the antineoplastic action of

glutor on a battery of about 94 cancer cell lines of diverse origins,

and it was observed that the antineoplastic action was exerted

with IC50 values of less than 100 nM. Moreover, the inhibitory

action of glutor was also evaluated in multicellular spheroids of

HCT-116 cells (Reckzeh et al., 2019). Interestingly glutor

treatment minimized glucose deprivation in a dose-dependent

manner. Hence, glutor displays the potential for effectively

inhibiting glucose uptake in solid tumors. However, it was

also reported that some cell lines like BxPC-3 exhibit

resistance to glutor. The sensitivity or resistance to glutor

depends on the cancer cells’ metabolic background (Reckzeh

et al., 2019). The glutor resistance cell lines can stitch between

glycolytic and OXPHOS phenotypes (Reckzeh et al., 2019).

Depending on the metabolic make-up of the target cells and

selected dose, glutor could usher a complete glucose deprivation

condition, even leading to upregulation of GLUT1 and

GLUT3 expression due to hypoglycemia. Moreover, it is also

likely that by its ability to cause inhibition of GLUT1, GLUT2,

and GLUT3, glutor possesses an extraordinary capacity to

overcome the rescue and compensatory mechanisms of highly

adaptive neoplastic cells. It is also noteworthy that the study of

Reckzeh et al. (2019) also indicated that neoplastic cells’

cytostasis and cytotoxicity could be synergistically upregulated

by using glutor along with glutaminase inhibitor CB-839.

Thus, the results obtained based on screening of glutor for its

antineoplastic action on 94 cancer cell lines derived from highly

malignant cancers revealed the extraordinary ability of glutor to

inhibit glucose uptake, glycolytic flux, and cell survival (Pliszka

and Szablewski, 2021).

However, despite the evaluation and certification of the

antineoplastic action of glutor on cancer cell lines of diverse

origins, the same has not been evaluated in any in vivo tumor
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model, which will be necessary to assess the translational value of

glutor’s antineoplastic potential for therapeutic applications.

Moreover, the issues of bioavailability and ideal

administration routes also need to be assessed in an

appropriate in vivo model.

Glutor treatment of tumor cells inhibited cell survival and

increased cell death. It also caused a decrease in glucose uptake

associated with altered expression of GLUT1 and GLUT3. HIF-

1α, HK-2, LDH-A, and MCT1 also decreased with diminished

lactate production and deregulated pH homeostasis. Moreover,

the expression of cell survival regulatory molecules p53, Hsp70,

IL-2 receptor CD25, and C-myc was modulated upon treatment

with glutor. Additionally, glutor treatment triggered

mitochondrial membrane depolarization, accompanied by

high ROS generation and the modulated ratio of Bcl-2/BAX.

Chemosensitivity of tumor cells increased following exposure to

glutor and decreased MDR1 expression (Temre et al., 2022).

Hence, these observations indicate that glutor has the potential to

be used in antineoplastic therapeutic applications.

Other inhibitors

Other crucial small molecule inhibitors of GLUT include

GLUTi1 and GLUTi2 (Kapoor et al., 2016), compound 3

(Siebeneicher et al., 2016a), compound 15b (Liu et al., 2020),

PUG1 (Ung et al., 2016), KL-11743 (Olszewski et al., 2022), and

NV5440 (S. A. Kang et al., 2019) which belong to diverse families

of chemicals and exert limited GLUT isoform inhibitory

potential and have high IC50 values, so the possibilities of in

vivo toxicity remains a concerning issue. Further, the neoplastic

cell inhibitory potential in most of these remains limited to only a

few targets investigated. Tuccinardi et al. reported the

GLUT1 inhibitory potential of oxime-based inhibitors with

compatibility to inhibiting the growth of the H1299 lung

cancer cell line (Tuccinardi et al., 2013). However, not much

has been reported further on the anticancer potential of this

category of inhibitors except for their utility in developing novel

GLUT inhibitory agents.

Combinatorial approaches

Studies have indicated the promising potential of a

combinatorial approach for GLUT inhibition instead of a

single inhibitor approach (Tilekar et al., 2020). Such

approaches mainly involve a combination of agents with 1)

the ability to directly bind to GLUT isoforms and cause their

inhibition; 2) approaches to inhibit expression of GLUT, and 3)

use of agents which compete with glucose for binding to GLUTs

and hence cause inhibited glucose transport. Further to achieve

success in such approaches, GLUT inhibitors with pan-GLUT

inhibitory potential can be of great use to usher the inhibition of

multiple GLUT isoforms. Moreover, a combination of multiple

GLUT inhibitors of natural and synthetic origin can also be

considered and has shown hope during in vitro experiments on

cancer cell lines of various origins ((Kast et al., 2016; Sawayama

et al., 2019; Tilekar et al., 2020). However, adding several

inhibitors together may cause toxicity and can likely lead to

certain harmful effects on normal healthy cells, which also use

GLUT isoforms for glucose uptake. Further, most of such

combinations still lack the much-required in vivo testing for

evaluating efficacy and safety parameters. Moreover, WZB117

(Chen et al., 2017), 2DG (Lee et al., 2016), and BAY876 (Mori

et al., 2019) have also been sporadically used in combination

with chemotherapeutic agents under in vivo experimentation.

Moreover, several studies have been conducted to evaluate the

outcome of combining various GLUT inhibitors for achieving

optimum inhibition of glucose uptake (Tilekar et al., 2020). The

most promising of such combinations with successful

antineoplastic outcomes include combination of GLUT

inhibitors like cytochalasin B, WZB117 and its derivatives,

BAY-876, silibinin, glutor, STF-31 and phloretin with other

conventional anticancer drugs like doxorubicin, curcumin,

etoposide, cisplatin, 5-fluorouracil, vincristine, cytarabine,

oxaliplatin, paclitaxel and antimycin A (Liu et al., 2012;

Tsakalozou et al., 2012; Li et al., 2019; Trendowski, 2015;

Trendowski, 2015; Kapoor et al., 2016; Chen et al., 2017;

Reckzeh et al., 2019; Zambrano et al., 2019; Barbosa and

Martel, 2020; Joly et al., 2020; Tilekar et al., 2020; Wu et al.,

2020; Shriwas et al., 2021; Olszewski et al., 2022; Temre et al.,

2022; Weng et al., 2022) to name a few such representative

anticancer drugs in cancers of diverse origins. Nevertheless,

inhibitors of other molecules and/or pathways have also been

combined with GLUT inhibitors to achieve fruitful

antineoplastic effects (Tsakalozou et al., 2012; Tilekar et al.,

2020; Weng et al., 2022). For example, the combination of

glutor with glutaminase inhibitor CB-839 resulted in successful

antineoplastic manifestations (Reckzeh et al., 2019).

Additionally, combination with GLUT inhibitors with

radiotherapeutic strategies had also displayed improved

antineoplastic potential (Zhao et al., 2016). Moreover, GLUT

inhibitors, combined with other antiglycolytic agents, also

result in superior inhibition of tumor cell metabolism,

compared to such action of these agents when applied alone

(Raez et al., 2013; Barbosa and Martel, 2020; Tilekar et al.,

2020). These studies are also limited in their long-lasting impact

in designing novel therapeutics due to the lack of extensive in

vivo-based investigations to assess safety and toxicity issues on

normal healthy cells and tissues. However, despite the

limitations above, combinatorial approaches hold promise

for formidable antineoplastic therapeutic applications to

overcome drug- and radio-resistance and synergize with the

anticancer action of individual agents. Importantly, a

combination of GLUT inhibitors with chemotherapeutic

agents will also aid in reducing the cytotoxic dose of
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chemotherapeutic agents and hence minimize their side effects,

which need experimental validation. Moreover, combining

GLUT inhibitors with other antineoplastic therapeutic agents

to manifest a robust and multifaceted inhibition of tumor

metabolism could also be a promising antineoplastic

strategy. However, such possible combinations are yet to be

fully explored. The combinatorial approach of multiagent

strategies must be carefully explored to optimize anticancer

action while minimizing the side effect. These promising results

are also being explored for translational therapeutic potential in

clinical trials.

Additional approaches

GLUT antibodies

For a long, attempts have been made to make the best

utilization of anti-GLUT antibodies to block glucose transport

by GLUT. Anti-GLUT1 antibodies have been demonstrated to

inhibit glucose uptake in resealed erythrocyte membrane

ghosts (Afzal et al., 2004). Nevertheless, a study using

Cal27 cells showed that anti-GLUT1 antibodies could

inhibit proliferation, induce apoptosis, and

chemosensitization for cisplatin (Wang et al., 2013). A

study by Rastogi et al. (2007) reported that anti-GLUT1

antibodies could arrest cell growth accompanied by

induction of apoptosis in cell lines derived from breast and

non-small cell lung cancer (NSCLC). Additionally, anti-

GLUT1 antibodies also chemosensitized MCF7 cells to

cisplatin, paclitaxel, and gefitinib (Rastogi et al., 2007).

Further, anti-GLUT1 antibodies have also been explored for

the targeted delivery of chemotherapeutic agents (Barbosa and

Martel, 2020). However, a literature search reveals that the

spectrum of cancers against which anti GLUT1 antibodies have

been tested is limited to realizing their therapeutic potential.

miRNAs in anti-GLUT strategies

There have been attempts to use the potential of miRNAs to

target various aspects of tumor metabolism, including GLUTs

(Chen et al., 2012; Pedroza-Torres et al., 2019; Shiah et al., 2021).

miRNAs like miR-133 and miR-195–5P have modulated gene

transcription of various GLUT isoforms (Macheda et al., 2005;

Krüger et al., 2008). In this quest, miRNA to GLUT1, GLUT3,

and GLUT4 has shown promising antineoplastic potential in

prevalent cancers like lung, prostate, breast, colorectal

carcinoma, bladder cancer, and pancreatic adenocarcinoma

(Lu et al., 2010; Chen et al., 2012; Fei et al., 2012; Chen et al.,

2015; Zhao et al., 2017; Pedroza-Torres et al., 2019; Azizi et al.,

2021; Shiah et al., 2021). Moreover, a direct inverse correlation

has been reported between miRNA-144 and GLUT1 in breast

and non-small cell lung cancer (NSCLC) (Azizi et al., 2021).

Similarly, the role of miR-22, miR1291, and miR-195–5P have

been associated with GLUT1, and GLUT3 in breast, RCC, and

T24 cells, respectively (Fei et al., 2012; Yamasaki et al., 2013;

Chen et al., 2015; Alamoudi et al., 2018). Given such intimacy

between various miRNAs and GLUT isoforms, there is a strong

logic to utilize them in therapeutic applications. Similarly, a study

on the role of MiR-218 and MiR340 in the expression of

GLUT1 is demonstrated in oral squamous cell carcinoma

(OSCC) (Xu et al., 2018; Wang et al., 2020; Shiah et al.,

2021). Combinatorial use of miRNAs with other conventional

GLUT1 inhibitors is also needed to be explored to circumvent

GLUT at both gene expression and protein function levels.

Short hairpin RNA

Short hairpin RNA (shRNA) to GLUT1 has shown a

promising inhibitory effect on M.D. Anderson - Metastatic

Breast 231 (MDA-MB-231) and Homo sapiens-578 tumor

cells (HS578T) triple-negative breast cancer (TNBC) cell lines

(Oh et al., 2017; Shriwas et al., 2018; Wu et al., 2020). Similarly,

the use of shRNA to GLUT1 was observed to show promising

outcomes in colon cancer cells (Bai et al., 2019). Wang et al.

(2020) demonstrated that shRNA inhibits the survival of

laryngeal carcinoma HEP2 cells via beclin-1-associated

autophagy. shRNA to GLUT1 is also reported to effectively

block glucose uptake in various cancer cell lines (Pliszka and

Szablewski, 2021). Thus, the shRNA approach is also promising

for effective combat against GLUT expression and function in

neoplastic cells by silencing gene expression of various isoforms

of glucose transporters.

Antisense cDNA

Approaches to transfecting neoplastic cells with

GLUT1 antisense cDNA have been demonstrated to usher in

a decline in the gene expression of GLUT1 and an increase in

radiosensitivity of neoplastic cells (Chan et al., 1999; Ito et al.,

2000; Yan et al., 2013; Pliszka and Szablewski, 2021). The

common cancers used to test this approach include leukemia,

gastric, rhabdosarcoma, breast, and glioblastoma (Ito et al., 2002;

Chan et al., 2004; Yang et al., 2019; Pliszka and Szablewski, 2021).

However, not much breakthrough is yet reported using this

approach, and its clinical applications need to be evaluated.

The approaches mentioned above of ‘nipping in the bud’ of

GLUT expression level have still not come into vogue for

preclinical and clinical trials as more basic data needs to be

collected before embarking further. However, the most popular

and explored approaches are still to identify the best pan-GLUT

inhibitor, as other approaches to gene intervention can have

potentially harmful outcomes. In this quest, a newly recognized
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pan-GLUT inhibitor named glutor is emerging with the hope of

effective GLUT1 and GLUT3 inhibition.

Epilogue

The review above shows that inhibition of GLUT can be a

promising antineoplastic therapeutic approach, which needs

to be vigorously approached at preclinical and clinical levels.

Figure 6 shows a summary of the various GLUT inhibition

strategies holding a strong supporting experimental evidence.

Since many of these strategies have been explored only on cell

lines, their further validation in appropriate in vivo animal

models is essential before exploring the clinical potential. As

stated above, selecting those GLUT inhibitors with a pan-

GLUT inhibitory potential at low concentrations will be

necessary to avoid toxicity on normal healthy cells and

organs. Assessing safety on crucial physiological

parameters, including blood profile, renal and hepatic

function, will also be essential. The half-life of the GLUT

inhibitors and their renal clearance needs to be determined for

dose optimization. As GLUT plays a critical role in

neurological functions, the ability of GLUT inhibitors to

cross the blood-brain barrier must be critically evaluated.

It will be essential to consider the safety of the

combinatorial approach of GLUT inhibitors. As a massive

fraction of the human population is coming under various

metabolic disorders, including diabetes, GLUT inhibitors’

impact must be carefully evaluated in such patients.

However, overcoming these lacunas and unaddressed issues

indicates a bright future for using GLUT inhibition

approaches in anticancer regimens.

Based on the criteria for selection of GLUT inhibitors, it

emerges that glutor is one of the best to choose for further

investigations owing to the following points in its favor:

1) It is worked out to be a Pan-GLUT inhibitor and hence is

supposed to exert a more potent inhibitory action on glucose

uptake

2) It has been screened against 94 cancer cell lines and is found

to be effective in more than half of cell lines for its cytostatic

action, and no other small molecule inhibitor has been tested

on such a broad range of target cancer cells of diverse etiology.

3) Its antineoplastic action is exerted in the nanomolar

concentration range and has been shown to have the least

toxic effect on normal cells.

4) Its easy accessibility at the commercial level for further

investigation.

Therefore, based on our evaluation glutor has an edge over

other pan-GLUT inhibitors for further investigations at

preclinical and clinical level.
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FIGURE 6
A collation of the current GLUT inhibitory approaches. The main GLUT inhibitors belong to both natural and small inhibitory molecule
categories. In addition, antisense cDNA, anti-GLUT antibodies, miRNAs, shRNA, and siRNAs constitute additional GLUT inhibitory approaches. GLUT
inhibition can be further potentiated by combining the GLUT inhibitors of natural origin and small inhibitory molecule categories.
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