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The incidence of kidney stones averages 10%, and the recurrence rate of kidney

stones is approximately 10% at 1 year, 35% at 5 years, 50% at 10 years, and 75% at

20 years. However, there is currently a lack of good medicines for the

prevention and treatment of kidney stones. Osteopontin (OPN) is an

important protein in kidney stone formation, but its role is controversial,

with some studies suggesting that it inhibits stone formation, while other

studies suggest that it can promote stone formation. OPN is a highly

phosphorylated protein, and with the deepening of research, there is

growing evidence that it promotes stone formation, and the phosphorylated

protein is believed to have adhesion effect, promote stone aggregation and

nucleation. In addition, OPN is closely related to immune cell infiltration, such as

OPN as a pro-inflammatory factor, which can activatemast cells (degranulate to

release various inflammatory factors), macrophages (differentiated into

M1 macrophages), and T cells (differentiated into T1 cells) etc., and these

inflammatory cells play a role in kidney damage and stone formation. In

short, OPN mainly exists in the phosphorylated form in kidney stones, plays

an important role in the formation of stones, andmay be an important target for

drug therapy of kidney stones.
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1 Osteopontin

OPN was first discovered from the matrix of bovine bone. The protein consists of

approximately 314 amino acids, contains a calcium-binding domain and multiple

phosphate sites, its structural domain is rich in aspartate, glutamate, and serine

residues, and has a molecular weight between 44 and 75 kDa (Franzén et al., 1985;

Kläning et al., 2014). The molecular structure of OPN accounts for the largest proportion

of phosphorylation sites, with more than 36 sites (Yalak and Vogel, 2012; Kariya et al.,

2014). OPN is phosphorylated by Golgi-casein kinases, and the phosphorylation level and

site are affected by the o-glycosylation state (OPN with five o-glycosylation sites deleted
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from threonine/proline rich regions increases cell adhesion

activity and phosphorylation, inhibits integrin association)

(Kariya et al., 2014) and 1,25-(OH)2D3 (induced upregulation

of OPN mRNA expression, while promoting phosphorylated

OPN converts to the non-phosphorylated state) (Safran et al.,

1998). The degree of phosphorylation of OPN affects cell

adhesion and interaction with other proteins (Kariya et al., 2021).

2 Effect of osteopontin on kidney
stone formation

Whether OPN promotes or inhibits nephrolithiasis is

currently under debate (Huang et al., 2022; Liu et al., 2022).

An important process of kidney stone formation is the

transformation of retained crystals in the renal tubules into

“concrete” stones, of which calcium oxalate (CaOx) is the

main component of kidney stones and OPN is the main

component of the calcium-containing stone matrix in the

kidney (Okada et al., 2008). As early as 2003, Konya et al.

compared the effects of OPN, fibronectin, Tamm-Horsfall

glycoprotein, vitronectin, and laminin on CaOx crystallization

in vitro, and found that OPN immobilized on the surface of

collagen particles enhanced the adhesion and aggregation of

seeds, and the adhesion of newly formed crystals is enhanced

(Konya et al., 2003).

In 2008, Okada’s team induced renal CaOx stone formation

by intraperitoneal injection of 100 mg/kg glyoxylate into wild-

type mice (WT) and OPN knockout mice (KO) for 1 week. The

results showed that the number of crystals in WT was

significantly higher than that in KO, and large flower-shaped

crystals were seen in WT tubules, while KO showed small and

uniform crystals. Immunohistochemical staining of OPN showed

that WT renal crystals contained OPN protein but KO renal

crystals did not (Okada et al., 2008). In 2013, Tsuji’s team used

1.5% ethylene glycol to induce CaOx nephrolithiasis in rats and

found that the expression of OPN was increased in the kidney.

Then using OPN siRNA transfected in vivo to knock down OPN,

the results showed that the expression of OPN and renal crystals

were significantly reduced in the knockdown group compared

with the stone model group (Tsuji et al., 2014). However, in a

study published in 2003, Wesson et al. induced significant CaOx

crystals in the kidneys of KOmice but not WTmice after 4 weeks

of induction with 1% ethylene glycol. And OPN

immunohistochemistry showed significant expression in the

kidneys of WT mice, from which they believed that OPN, as

an inhibitor of CaOx crystal formation and renal tubular

retention, played a key renoprotective role in vivo (Wesson

et al., 2003). Interestingly, later experiments by Okada’s team

found that 1%, 5%, and 10% ethylene glycol could not

successfully induce the WT mice kidney CaOx stone model

(Okada et al., 2007). This seems to suggest that the species

used in the modeling of kidney stones, as well as the

stone-inducing drugs and dosages, could lead to opposite

conclusions. This may be the reason why there are still two

views in recent years: inhibition (Paloian et al., 2016; Imig, 2022;

Liu et al., 2022) and promotion (Li et al., 2019; Zhou et al., 2022a;

Huang et al., 2022). Although the effect of OPN on renal calculi is

controversial, we can see that OPN plays an important role in the

formation of CaOx crystals.

3 Localization of osteopontin in the
kidney

OPN is mainly present in the descending limb cells of Henle’s

loop and in the papillary surface epithelium of the calyx fornix

region, where it has a relatively rapid turnover and may be

physiologically regulated (Imig, 2022). During hyperoxaluria,

OPN expression is increased in the kidney, but remains

predominantly restricted to fine limb and papillary surface

epithelial cells. After deposition of CaOx crystals, OPN

expression was observed in the entire kidney, including the

proximal tubules (Paloian et al., 2016). OPN is localized to

cells of Henle’s loop and collecting ducts as well as to plaque

sites. Under the immunoelectron microscope, OPN mainly

appeared on the surface of the apatite crystal phase, at the

junction between the crystal and the organic layer (Paloian

et al., 2016), and between the CaOx stones like annual rings

(Li et al., 2019) (Figure 1).

4 Osteopontin induces the
production of inflammatory immune
cells in the kidney

4.1 Osteopontin induces monocyte/
macrophage chemotaxis

The phenotype and function of macrophages are regulated by

the surrounding microenvironment. It is well known that the

equilibrium polarization of M1/M2 macrophages determines the

fate of an organ in response to inflammation or injury. When

infection or inflammation is severe, macrophages differentiate

into M1 phenotype and release inflammatory factors (such as

TNF-α, IL-12, and IL-23), while tissue damage will induce

macrophages to differentiate into M2 type and secrete a large

amount of IL-10 and TGF-β to inhibit inflammation and repair

damage (Zhou et al., 2022a). OPN is a pro-inflammatory and

monocyte chemokine (Kleinman et al., 1995). When kidney cell

damage produces large amounts of OPN, it drives monocytes

into the kidneys, prompting macrophages of monocytes to

infiltrate and differentiate into the M1 pro-inflammatory

phenotype, leading to renal fibrosis (Khan et al., 2002).

Factors that contribute to kidney cell damage include

hypertension [e.g., kidney damage after catecholamines and
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salt-sensitive hypertension (Johnson et al., 1999),

hydronephrosis hypertension after ureteral obstruction (Yoo

et al., 2006)], hypoxia [e.g., renal ischemia/reperfusion

(Feitoza et al., 2008)], toxin (Pichler et al., 2008), infection, etc.

Kidney stones are epidemiologically and histopathologically

associated with kidney disease and may contribute to chronic

kidney disease and end-stage renal disease (Zisman et al., 2015);

renal mononuclear phagocytes, especially macrophages, regulate

crystal development (Zisman et al., 2015; Okada et al., 2010;

Ichikawa et al., 2014). The renal CaOx crystals of hyperoxalate

mice disappeared spontaneously and expressed various

macrophage-related cytokines and chemokines (Okada et al.,

2010). Urinary and renal tubular CaOx monohydrate crystals are

broken down and dissolved in the presence of macrophages

(Vervaet et al., 2009).

Populations of mononuclear phagocytes, including

macrophages, have diverse responses in kidney disease

(Williams et al., 2010). Several reports suggest that

M2 macrophages have anti-inflammatory and tissue-healing

effects in vivo models of nephropathy and ischemia/

reperfusion acute kidney injury (Tang et al., 2020; Zhang H

et al., 2021; Zheng F et al., 2021). However, pro-inflammatory

M1macrophages can worsen renal conditions, leading to chronic

kidney disease and fibrosis (Wang et al., 2021). In addition, large

numbers of M1 macrophages contribute to the development of

renal crystal deposition in mice with metabolic syndrome

(Taguchi et al., 2015). Induction of M2 macrophages by

colony-stimulating factor (CSF)-1 in M2-deficient mice

inhibited renal CaOx crystal formation (Taguchi et al., 2016).

In hyperoxalate C57BL/6J mice, infusion of M1 macrophages

andM1-inducing factors (LPS and IFN-γ) promoted renal crystal

formation, while M2 macrophages and M2-inducing factors (IL-

4 and IL-13) Infusion inhibited renal crystal formation. These

M2 macrophage treatments decreased the expression of

crystallographic-related genes such as OPN and CD44,

whereas M1 macrophage treatment increased the expression

of pro-inflammatory and adhesion-related genes such as IL-6,

NOS, and TNF-α (Taguchi et al., 2016). This indicates that

M2 macrophages inhibit the development of renal crystals,

which may be related to the reduction of the stone-promoting

factor OPN.

4.2 Osteopontin and T helper cells

There are two main types of helper T cells: Th1 and Th2 cells,

which are inflammatory T cells and anti-inflammatory T cells,

respectively (Rautajoki et al., 2008). OPN gene expression in

FIGURE 1
The location and crystal structure of stone crystals in the renal tubule. (A) Crystal deposition on the descending limb of Henle’s ring. (B)
Horizontal section of the crystal. (C) Crystal front side. (D) Crystal enlarged structure. (E) OPN-crystal-bound complex (fluorescent green is OPN
protein, yellow is crystal).
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activated T cells is regulated by T-bet, a transcription factor that

controls CD4+ T helper (Th1) cell lineage commitment. T-bet-

dependent expression of OPN in T cells is critical for efficient

tilting of CD4+ T and CD8+ T cells towards the Th1 and type

1 CD8+ T cell pathways, respectively (Shinohara et al., 2005). In

allergic asthma, OPN enhances sensitization and downregulates

Th2-driven IL-4-dominant inflammation. Increased OPN

expression suppresses Th2 effects during specific

immunotherapy. In Th1-driven delayed-type hypersensitivity,

such as allergic contact dermatitis, OPN supports dendritic cell

(DC) migration and IL-12 expression and is secreted by T

effector cells and keratinocytes, enhancing Th1-mediated

hypersensitivity and supports the chronicity of disease

(Frenzel and Weiss, 2011).

Studies have reported that in atherosclerosis, Th1 cells drive

pro-inflammatory responses and Th2 drive anti-inflammatory

responses, similar to urinary calculi, with similar calcified lesions

on vascular endothelial cells (Hsi et al., 2016; Ley, 2020).

Interestingly, the pro-inflammatory Th1 phenotype is mainly

present between renal mesangial cells and renal tubular epithelial

cells (Iwata et al., 2014). In the renal papillae containing the

Randall’s plaques (thought to be the starting point of stone

formation), the helper T-cell signaling pathway protein is

upregulated. Thus, helper T-cell immune responses and

associated inflammatory processes appear to lead to the

formation of calcium phosphate stones on Randall’s plaques

(Taguchi et al., 2019).

4.3 Osteopontin and dendritic cells

The mRNA of OPN is up-regulated in the early stage of DC

progenitor cell differentiation, and a large amount of OPN is

synthesized and secreted, and it is enhanced with stimulation

(Kawamura et al., 2005; Blengio et al., 2013). Mature DC are

activated by inflammatory or pathogenic factors to generate

specific immune responses. Under the anti-inflammatory

regulation of factors, DC play a role in regulating Treg

differentiation, and the secreted OPN is regulated by these

anti-inflammatory factor (Del Prete et al., 2019). DC

migration and immune function are also regulated by OPN.

OPN mediates DC migration by binding to DC-expressed

CD44 and αvβ3 receptors (Weiss et al., 2001). OPN can

activate DC-releasing factors (such as IL-12, IFN-γ and TNF-

α) to induce the differentiation of Th cells to produce Th1 (Renkl

et al., 2005), and may also regulate the balance of Th1/Th2 and

limit the Th2 response (Kurokawa et al., 2009).

4.4 Osteopontin and mast cells

Mast cells (MC), the constituent cells of the kidney, are small

in number but significantly increased in various kidney diseases.

Studies in MC-deficient rats have shown that they have

ameliorating effects on renal fibrosis (Miyazawa et al., 2004).

In anti-glomerular basement membrane antibody-induced

glomerulonephritis, MC protect against the damaging effects

of glomerular injury by initiating repair and remodeling

functions. Protection may also include limiting the

immunomodulatory capacity of autoreactive T cell responses

(Kanamaru et al., 2006). MC also control tubulointerstitial

fibrosis by activating tissue remodeling and neutralizing

fibrotic factors (Mouchet et al., 2021). However, mediators

released by MC activation and degranulation during

inflammation promote the destruction of renal architecture,

leading to renal interstitial fibrosis (Summers et al., 2012;

Kaltenecker et al., 2020; Zhou et al., 2022b). Therefore, the

physiological environment in which other cells and

inflammatory mediators interact determines the ultimate role

of MC in the development of kidney disease (Bulfone-Paus and

Paus, 2008).

OPN can bind toMC surface CD44, αv integrin receptor, and
enhance IgE-mediated MC degranulation and migration

(Bulfone-Paus and Paus, 2008). While other studies found

that immobilized OPN enhanced the interaction with MC,

soluble OPN did not have any obvious effect. OPN and

integrin domains mediate activation of MC by immobilized

OPN, but not CD44 on MC. OPN immobilized on the

extracellular matrix can modulate human adaptive immunity

by retaining MCs at sites of inflammation and inhibiting the

release of anti-IgE-induced cytokines in MCs (Ng et al., 2018).

There is now substantial evidence for the important role of MC in

fibrotic diseases (Samitas et al., 2011). However, studies from

different clinical settings and different animal models have drawn

partially conflicting conclusions about how MC affects fibrosis,

with many studies suggesting that MC has a deleterious effect,

while others suggest that MC may play a protective role

(Bradding and Pejler, 2018). However, it is certain that MC

activation and degranulation promote renal interstitial fibrosis

(Summers et al., 2012; Zhou et al., 2022b).

5 Osteopontin and drug therapy for
kidney stones

5.1 CaOx stone formation process

The average incidence of kidney stones is 10%, and it is

20–25% in the Middle East. The incidence is different due to

factors such as geography, climate, and dietary structure. The

recurrence rate of kidney stones is about 10% in 1 year, 35% in

5 years, 50% in 10 years, and 75% in 20 years (Huang et al., 2022).

There are five main mineralogy components of kidney stones,

including CaOx, carbonapatite, urate, magnesium ammonium

phosphate, and calcite (Kleeman et al., 1980; Ye et al., 2020).

More than 80 percent of human kidney stones are CaOx and
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calcium phosphate stones, either alone or in admixture, which

are calcium-opaque stones (Kleeman et al., 1980; Fink et al., 2012;

Aggarwal et al., 2013). The pathological mechanism of

nephrolithiasis is complex, and there are many etiologies. The

general view is that the stones are formed on the basis of Randall’s

plaque (calcified plaques formed on the surface of the renal

papilla), and the stones start from the basement membrane of the

thin limbs of the Henle’s ring on the surface of the renal papilla

(Stoller et al., 1996; Sherer et al., 2018; Wiener et al., 2018; Khan

et al., 2016; Khan et al., 2021). CaOx stones are usually attached

to Randall’s plaques on the surface of the renal papilla, which are

mainly composed of calcium phosphate crystals mixed with a

protein-rich organic matrix (including the main ingredient

OPN) (Khan et al., 2021). Randall’s plaques formation is

associated with the presence of pro-inflammatory

macrophages M1 and downregulation of anti-inflammatory

macrophages M2 in the surrounding renal tissue (Taguchi

et al., 2016). In animal models, crystal deposition in the

kidney is associated with ROS production, inflammasome

activation, and increased expression of inflammatory cascade-

related molecules such as OPN (Umekawa et al., 2004; Li et al.,

2014; Letavernier et al., 2018). Hyperoxaluria and CaOx stones

induce ROS production and oxidative stress to promote kidney

damage, and the subsequent inflammatory and immune

responses lead to the formation of Randall’s plaques and

calcium stones (Khan et al., 2021).

5.2 Research status of drug therapy for
CaOx stones

Citrate is a drug widely used in clinical practice to prevent

kidney stones. Its therapeutic mechanism is to reduce the

formation of stones by increasing the citrate and pH in the

urine (Barcelo et al., 1993). A meta-analysis of seven randomized

controlled trials of oral citrate in the treatment of kidney stones

FIGURE 2
OPN induces macrophages to differentiate into M1 macrophages, induces T cells to differentiate into T1 cells, and activates mast cell
degranulation to release various inflammatory mediators, which damage kidneys and promote stone formation.
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included 477 patients, most of whom had oxalate stones. At 6, 12,

and 24 months after treatment initiation, reduction in stone size

(reduction or complete disappearance of residual debris) or

reduction in stone recurrence using abdominal plain

radiographs or intravenous urography or computed

tomography (CT) scans (new stone formation). Four of its

studies including 160 participants showed that oral citrate

significantly reduced stone size. And seven studies including

324 patients showed significantly less new stone formation in the

citrate-treated group. Four studies reported adverse events,

mainly gastrointestinal symptoms (Such as loss of appetite,

nausea, vomiting, and diarrhea). Compared with the control

group, more patients in the citrate-treated group dropped out

due to factors such as adverse events or intolerance (Phillips et al.,

2015). A study published in Nature in 2016 compared the effect

of hydroxycitrate and citrate in inhibiting CaOx crystals from the

molecular structure level. The results showed that both hydroxy

citrate and citrate have the ability to dissolve and inhibit the

formation of CaOx crystals. The effect of hydroxycitrate is better

(Chung et al., 2016). In vitro studies have shown that

hydroxycitrate has a calcium-binding capacity comparable to

that of citrate, and it is an effective inhibitor of calcium oxalate

monohydrate crystallization (Kim et al., 2019), and in vivo

studies have shown that hydroxycitrate has a stone-dissolving

effect better than citrate (Yang et al., 2022). Hydroxycitrate, a

structural analog of citrate, is currently used primarily as an over-

the-counter supplement for weight loss (Márquez et al., 2012).

Clinical studies have shown that oral hydroxycitrate also has

more gastrointestinal symptoms, and most patients cannot

tolerate long-term use (Heymsfield et al., 1998).

5.3 Nephrolithiasis treatment drugs can
significantly inhibit the expression of
osteopontin

Citrate is currently the main oral drug for preventing stones,

and it is also a litholytic drug recommended by the guideline

(Skolarikos et al., 2021). The rat experiment found that after

citrate treatment, the reduction of stones was accompanied by a

significant reduction in OPN and inflammation (Yasui et al.,

2001; Chen et al., 2013; Alex et al., 2014). Hydroxycitrate, which

is more effective than citrate, also significantly inhibited OPN

expression, as well as reduced oxidative stress and inflammation

to inhibit renal CaOx deposition (Liu et al., 2020). A positive

association between OPN and stone reduction has also been

shown in other studies of drugs [such as astaxanthin (Alex et al.,

2014), resveratrol (Qin et al., 2018), and gallotannin (Lee et al.,

2012)] for the treatment of nephrolithiasis. This means that

drugs that can significantly inhibit the expression of OPN have

a therapeutic effect on kidney stones.

6 Conclusion

The role of OPN in kidney stone formation is

controversial, with some studies suggesting that it inhibits

stone formation, while other studies suggest that it can

promote stone formation. As research progresses, there is

growing evidence that it promotes stone formation. OPN is a

highly phosphorylated protein, and some studies have shown

that the phosphorylated protein has an adhesive effect,

promoting stone aggregation and nucleation. However,

other studies suggest that it prevents stone aggregation and

nucleation. In addition, OPN is closely related to immune cell

infiltration, such as OPN as a pro-inflammatory factor, which

can activate mast cells (degranulate to release various

inflammatory mediators), macrophages (differentiated into

M1 macrophages), T cells (differentiated into T1 cells), and

these inflammatory cells play a role in damaging the kidneys

and promoting stone formation (Figure 2). In conclusion,

OPN mainly exists in the phosphorylated form in kidney

stones, plays an important role in the formation of stones,

and may be an important target for drug therapy of kidney

stones.
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