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Many energy metabolism pathways exist in cancer, including glycolysis, amino

acid metabolism, fatty acid oxidation, and mitochondrial respiration. Tumor

cells mainly generate energy through glycolysis to maintain growth and

biosynthesis of tumor cells under aerobic conditions. Natural products

regulate many steps in glycolysis and targeting glycolysis using natural

products is a promising approach to cancer treatment. In this review, we

exemplify the relationship between glycolysis and tumors, demonstrate the

natural products that have been discovered to target glycolysis for cancer

treatment and clarify the mechanisms involved in their actions. Natural

products, such as resveratrol mostly found in red grape skin, licochalcone A

derived from root of Glycyrrhiza inflate, and brusatol found in Brucea javanica

and Brucea mollis, largely derived from plant or animal material, can affect

glycolysis pathways in cancer by targeting glycolytic enzymes and related

proteins, oncogenes, and numerous glycolytic signal proteins. Knowledge of

how natural products regulate aerobic glycolysis will help illuminate the

mechanisms by which these products can be used as therapeutics to inhibit

cancer cell growth and regulate cellular metabolism.
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1 Introduction

In the 1920s, Warburg and his colleagues discovered the Warburg effect, in which

cancer cells can undergo glycolysis in both aerobic and hypoxic environments (Koppenol

et al., 2011). On one hand, glycolysis provides sufficient energy and abundant biosynthetic

intermediates, such as lipids, amino acids, and nucleic acids, for biosynthesis and energy

requirements, which lays the material foundation for growth and development of cancer

cells (Wang S. et al., 2021). On the other hand, lactic acid, the end product of glycolysis,

damages tumor-infiltrating T cells and NK cells and activates immune suppressive cells,
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which forms a microenvironment conducive to tumor growth

and promotes tumor proliferation and metastasis (Gao et al.,

2022).

The traditional methods of tumor treatment, such as

chemotherapy, radiotherapy, surgery and immunotherapy bring

high financial burdens and impose mental and physical stress on

patients. Cancer researchers have been studying energymetabolism

pathways in cancer cells with an aim to block the source of essential

nutrients supporting growth and proliferation of cancer cells.

Natural products can be safe and effective for the treatment of

tumors and can serve specific biological functions through

optimization of their structure (Atanasov et al., 2021). Natural

products can inhibit the process of glycolysis and disrupt tumor

proliferation and migration by targeting the glycolytic/metabolic

phenotype (Figure 1). For example, resveratrol, a polyphenol found

in grapes, inhibits glycolysis by activating AMP-activated protein

kinase (AMPK), thereby inhibiting colon cancer invasion and

migration (Saunier et al., 2017). Natural products targeting

glycolysis can also enhance sensitivity of tumor cells to drugs.

Several years ago, reports clarified the specific advantages of natural

products targeting aerobic glycolysis for the treatment of cancer and

their biochemical targets (Wang et al., 2012; Gao and Chen, 2015).

In this review, we describe the important factors and related

mechanisms that affect glycolysis in tumor cells and classify

natural products according to how they regulate glycolytic

enzymes and related proteins, oncogenes and glycolytic signaling

pathways.We address the implication of key enzymes of the aerobic

glycolytic pathway including glucose transporters (GLUTs),

hexokinase (HK), phosphofructokinase (PFK) and pyruvate

kinase (PK), along with related signaling pathways including

protein kinase B/mammalian target of rapamycin pathway

(PI3K/AKT/mTOR), adenosine monophosphate-activated

protein kinase (AMPK) and oncogenes (HIF-1, c-MYC, and

p53), and other latest targets including sirtuin 6 (SIRT6),

FIGURE 1
Natural products regulated key factors and signaling pathways that are involved in aerobic glycolysis. Natural products may regulate aerobic
glycolysis through three pathways. Firstly, natural products affect glycolysis in tumor cells by directly regulating glycolytic enzymes; Secondly, natural
products may regulate genes related to aerobic glycolysis by regulating oncogenes, including HIF-1α, MYC and p53, resulting in changes in the
metabolic pathways of tumor cells; Thirdly, natural products can act through the PI3K-AKT-mTOR or AMPK pathways to inhibits tumor cell
glycolysis. GLUT1, glucose transporter 1; HK, hexokinase; PFK, Phosphofructokinase; ALDO, aldolase, Fructose-bisphosphate; PK, pyruvate kinase;
LDH, lactate dehydrogenase; HIF-1α, Hypoxia Inducible Factor 1 Subunit Alpha; AMPK, AMP-dependent protein kinase; PI3K, Phosphatidylinositol 3-
kinase; AKT, protein kinase B; mTOR, mammalian target of rapamycin.
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TABLE 1 Natural products regulate glycolytic enzymes in cancer.

Ingredients Target
glycolytic
enzymes

Adjustment
method

Tumor Source Category References

emodin GLUT1 down-regulate renal cell
carcinoma

rhubarb anthraquinone Wang et al. (2021a)

cucurbitacin D GLUT1 down-regulate prostate cancer cucurbitaceae tetracyclic
triterpenoid

Sikander et al.
(2019)

Saponin monomer 13 of
the dwarf lilyturf tuber

GLUT1 down-regulate colorectal cancer dwarf lilyturf tuber saponin monomer Wei et al. (2019)

phenethyl isothiocyanate GLUT1 HK2 down-regulate prostate cancer cruciferous vegetables isothiocyanate Singh et al. (2018)

genistein GLUT1, HK2 down-regulate hepatocellular
carcinoma

soy products isofavonoid Li et al. (2017)

parthenolide GLUT1 HXK II down-regulate colorectal cancer extracts of Mexican
Indian medicinal plants

sesquiterpene lactone Kim et al. (2017)

physciosporin GLUT1, HK2,
PKM2

down-regulate breast cancer species of genus
Pseudocyphellaria

depsidone Taş et al. (2021)

α-Hederin GLUT1, HK2,
PKM2, LDHA

down-regulate lung cancer pulsatilla chinensis pentacyclic
triterpenoid saponin

Fang et al. (2021a)

oleuropein GLUT1, PKM2 down-regulate melanoma olea europaea L phenolic Ruzzolini et al.
(2020)

cantharis GLUT1, PKM2 down-regulate breast cancer insect cantharidin Pan et al. (2019b)

tetracyclic quinazine
compounds

GLUT1, PKM2 down-regulate colorectal cancer root of sophora
flavescens ait

oxymatrine Li et al. (2020b)

morusin HK2, PKM2, LDH down-regulate hepatocellular
carcinoma

the roots of morus alba flavonoid Cho et al. (2021)

quercetin GLUT1, PKM2,
LDHA

down-regulate breast cancer Leaves, fruits, vegetables flavonoid Jia et al. (2018)

β-elemene GLUT1, PKM2,
LDHA

inhibit breast cancer curcuma zedoary terpene Pan et al. (2019a)

licochalcone A GLUT1, PDK1 down-regulate hypoxic cancer gycyrrhiza uralensis phenol chalconoid Park et al. (2021b)

tanshinone IIA HK2 down-regulate oral squamous cell
carcinoma

salvia miltiorrhiza diterpenoid
naphthoquinone

Li et al. (2020a)

dioscin HK2 down-regulate colorectal cancer plants steroidal saponin Zhou et al. (2020)

triptolide HK2 down-regulate non-small cell lung
cancer

root extracts of
tripterygium wilfordii

pentacyclic
triterpenoid

Hamdi et al. (2018)

rhein HK2 inhibit Liver cancer cell rheum palmatum monomeric
anthraquinone

Wu et al. (2019)

sulforaphane HK2, PK down-regulate prostate cancer broccoli extract isothiocyanate Carrasco-Pozo et al.
(2019)

oleanolic acid HK2, PFK1 down-regulate gastric tumor cell leaves and roots of
oleaceae plants

pentacyclic
triterpenoid saponin

Li et al. (2019)

compound K HK2, PKM2 down-regulate hepatocellular
carcinoma

saponin a metabolite of the
ginsenosides

Shin et al. (2021)

dauricine HK2, PKM2 down-regulate hepatocellular
carcinoma

roots of Menispermm
dauricum D.C.

alkaloid (Jin et al., 2010; Li
et al., 2018d)

epigallocatechin gallate PFK down-regulate colorectal cancer green tea polyphenol Chen et al. (2022a)

kaempferol PKM2 down-regulate colon cancer natural foods polyphenol Wu et al. (2021)

tannic acid PKM2 down-regulate colon cancer grapes and green tea polyphenolic acid Yang et al. (2018)

proanthocyanidin B2 PKM2 down-regulate hepatocellular
carcinoma

grape seed, pine bark,
wine, and tea leaves

dimer flavonoid Feng et al. (2019)

isovitexin PKM2 down-regulate non-small cell lung
cancer

food byproducts and
medicinal plants

flavonoid Chen et al. (2021a)

pachymic acid PKM2 down-regulate breast cancer poria cocos triterpenoid Miao et al. (2019)

Parthenolide derivative PKM2 down-regulate glioblastoma feverfew germacrane
sesquiterpene lactone

Ding et al. (2020)

(Continued on following page)
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heat shock protein 90α (HSP90α), glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), S-phase kinase-associated protein 2

(Skp2), integrin subunit beta 2 (ITGB2)/focal adhesion kinases

(FAKs), microRNAs (miR-491-5p/miR-145/miRNA-34a), tet

methylcytosine dioxygenase 3 (TET3) and CD147 in tumor

cells.

2 Natural products targeting
glycolysis in cancer

Natural products are compounds extracted and optimized

from nature and can be obtained from plants, microorganisms,

animals, insects, minerals, marine organisms, and so forth, which

have chemical, functional, and structural diversity (Ji et al., 2009).

Natural products derived from traditional Chinese medicine

have been used in cancer treatment for centuries and are

known for their multi-target pharmacological effects and

reduced side effects (Wang S. et al., 2021). Approximately

30% of top-selling drugs are natural products or their

derivatives (Newman and Cragg, 2007). More than 60% of

anticancer drugs currently in clinical use have natural product

sources (Newman and Cragg, 2012).

2.1 The classic pathways of natural
products targeting glycolysis

2.1.1 Targeting glycolytic enzymes
Glycolytic enzymes play a significant role in tumor

progression. The glucose transporter type 1 (GLUT1),

encoded by Solute Carrier Family 2 Member 1 (SLC2A1),

belongs to the sugar transporter subfamily of the major

facilitator superfamily (Holman, 2020) and mediates cellular

uptake of glucose into a variety of tissues at basal levels.

Cancer cells require an enhanced supply of glucose due to the

Warburg effect, leading to an increase in glucose transport in

cancer cells, mainly due to the upregulation of GLUT1. The over-

activation and high expression of glycolysis-related enzymes,

mainly including hexokinase (HK), phosphofructokinase

(PFK), pyruvate kinase (PK) and LDHA, is one of the reasons

for enhanced aerobic glycolysis in cancer cells. Among these

enzymes, HK and PFK1 are two rate-limiting enzymes of

glycolysis. HK regulates the total glucose flux that is shunted

into two pathways; glycolysis and the pentose phosphate

pathway. PFK1 determines the rate at which glucose enters

glycolysis. 6-Phosphofructo-2-Kinase/Fructose-2,6-

Biphosphatase 2 (PFKFB2) is an enzyme that catalyzes the

TABLE 1 (Continued) Natural products regulate glycolytic enzymes in cancer.

Ingredients Target
glycolytic
enzymes

Adjustment
method

Tumor Source Category References

Shikonin PKM2 inhibit bladder cancer lithospermum
erythrorhizon

naphthoquinone
analog

Wang et al. (2018)

Curcumin PKM2 down-regulate lung cancer rhizome of the plant
curcuma longa

phyto polyphenol Siddiqui et al.
(2018a)

Lapachol PKM2 down-regulate melanoma the bark of tabebuia
avellanedae

analog of shikonin Shankar Babu et al.
(2018)

Micheliolide PKM2 down-regulate leukemia michelia champaca plants guaianolide
sesquiterpene lactone

Li et al. (2018c)

diallyl disulfide PKM2 down-regulate breast cancer sulfur-containing
organic

Xie et al. (2018)

Gliotoxin PKM2 down-regulate glioma marine-derived fungal
secondary metabolite

sulfur-containing
organic

Tang et al. (2020)

Shikonin PKM2 down-regulate lung carcinoma lithospermumn
erythrorhizon

naphthoquinone Zhao et al. (2018)

capsaicin PKM2, LDHA down-regulate sepsis capsicum isothiocyanate Zhang et al. (2022a)

Catechin LDHA down-regulate gastric cancer green tea polyphenol Han et al. (2021)

epigallocatechin gallate LDHA down-regulate breast and
pancreatic cancer

green tea polyphenol Lu et al. (2015)

astragaloside IV LDHA down-regulate gastric carcinoma astragalus membranaceus triterpenoid saponin Zhang et al. (2018)

betulinic acid LDHA, p-PDK1,
PDK1

down-regulate breast cancer birch bark pentacyclic terpene Jiao et al. (2019a)

Scopolin PGK2, GPI, GPD2 inhibit hepatocellular
carcinoma

smilax china L alkaloid Wang et al. (2022)

cardamonin PDHK1 down-regulate breast cancer alpinia katsumadai chalcone Jin et al. (2019a)

Erianin pyruvate
carboxylase

inhibit cancers plants of the genus
dendrobium

dibenzyl compound Hong et al. (2022)

Frontiers in Pharmacology frontiersin.org04

Zhao et al. 10.3389/fphar.2022.1036502

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1036502


synthesis of fructose-2,6-bisphosphate during glycolysis. Lactate

dehydrogenase (LDH) enzyme catalyzes the reversible

conversion of pyruvate to lactate using NADH. LDHA, the

most predominant isoforms of LDH, is commonly

overexpressed in cancer cells and with higher affinity for

pyruvate, leading to an excessive accumulation of lactate,

promoting its secretion by the monocarboxylate transporters

and increasing the acidification of the tumor microenvironment.

In the case of LDHB, with higher affinity for lactate, its

upregulation is considered one of the hallmarks of cancer

(Beltinger, 2019).

Numerous natural compounds affect expression of glucose

transporters indirectly (Figure 2; Table 1). For example, the

isoflavonoids, genistein and quercetin, inhibit aerobic

glycolysis by regulating GLUT1. Quercetin, found in many

plants and foods, such as red wine, apples, onions, green tea,

et al., successfully blocked cell glycolysis by inhibiting the level of

glucose uptake and the production of lactic acid, and also

decreased the level of glycolysis-related proteins GLUT1,

PKM2 and LDH, which further suppressed the progression of

breast cancer by inhibiting cell mobility through AKT-mTOR

pathway-mediated autophagy induction (Jia et al., 2018). α-
Hederin inhibits cell growth via activating SIRT6 expression

and inhibiting glycolysis and glycolysis related protein expression

of GLUT1, HK2, PKM2 and LDHA in A549 lung carcinoma cell

lines (Fang et al., 2021a). Cucurbitacin is a tetracyclic

triterpenoid that belongs to the cucurbitaceae family and can

be isolated from members of the family Cucurbitaceae, such as

cucumber (Cucumis sativus) and melon (Cucumis melo L.).

Cucurbitacin D treatment suppressed GLUT1 expression by

restoring miR-132 in prostate cancer cells and showed potent

anticancer activity (Sikander et al., 2019). An olive leaf extract

enriched in Oleuropein decreased melanoma cell proliferation

and motility and reduced the rate of glycolysis of human

melanoma cells without affecting oxidative phosphorylation,

which was associated with a significant decrease of

GLUT1 and HK2. As revealed in Table 1, many natural

products inhibit glycolysis by controlling dysregulated

glycolytic enzymes, thereby reducing tumorigenesis and

progression. For example, resveratrol and oleanolic acid

regulate aerobic glycolysis by targeting HK2 and PFK1.

Cinnamon bark is one of the most popular spices obtained

from the inner bark of several tree species from the genus

Cinnamomum. Cinnamon bark extract suppresses metastatic

dissemination of MDA-MB-231 human breast cancer cells

through decreasing expression of HK2 (Nakayama et al.,

2022). Oleanolic acid (OA) is a triterpenoid component

widely found in the plants of Oleaceae family. OA blocks

glycolysis in gastric cancer cells by reducing the HK2 and

PFK1 expression and intracellular activity that was mediated

by HIF-1α (Li et al., 2019). Isovitexin, a flavone that was found in
an A. annua tea infusion, inhibits cell proliferation and glucose

metabolism by downregulation of expression of PKM2 to

enhance the antitumor activity of cisplatin against lung cancer

cells and improves cisplatin-induced immunotoxicity in mice

(Chen R. L. et al., 2021). Green tea behaves as an anti-oxidant and

shows anti-tumor effects. Interestingly, matcha green tea inhibits

the propagation of cancer stem cells by regulating the expressions

of enzyme glycolysis PFKL and PFKP involved in the initial

preparatory phase of glycolysis (Bonuccelli et al., 2018). Catechin

is a phenolic antioxidant found in chocolate, red wine, green tea,

fruits (apricots or cherry), and vegetables including broad beans,

and it re-sensitizes gastric cancer cell line SNU620 to 5-

fluorouracil by suppressing LDHA activity through binding

the substrate-binding site of LDHA and reducing lactate

production (Han et al., 2021). In addition, shikonin, a

quinone compound present in alkanet roots with a wide

spectrum of biologic properties, inhibited tumor growth by

suppressing tumor cell aerobic glycolysis in a PKM2-dependent

manner in B16 cells (Zhao et al., 2018). Curcumin, isolated from

the root of curcuma longa, is the main component of turmeric and

also effectively inhibits the proliferation of liver cancer cells by

suppressing glycolysis through down-regulating the expression of

LDHA (Man et al., 2020). Dauricine, the major bioactive

component isolated from the roots of Menispermum dauricum

D.C, has shown promising pharmacological activities with a great

potential for clinic use, which inhibited glucose glycolysis and

increased oxidative phosphorylation by downregulating the

expression of HK2 and PKM2 directly targeted by miR-199a In

hepatocellular carcinoma cells (Li W. et al., 2018).

2.1.2 PI3K-AKT-mTOR pathway
Phosphatidylinositol 3-kinases (PI3Ks) are a family of

signaling enzymes that include three major classes of lipid

kinases. Class I PI3Ks generate 3-phosphoinositides in

response to growth stimuli. PI3K activates the serine/

threonine kinase AKT (also known as protein kinase B or

Protein kinase B, PKB) in its downstream signaling pathway,

which plays an important role in regulating various cellular

functions including metabolism, growth, proliferation,

survival, transcription, and protein synthesis (Manning and

Toker, 2017). Mammalian target of rapamycin (mTOR) is one

of the downstream signals of AKT. AKT increases the translation

of the transcription factor HIF-1α by phosphorylating mTORC1,

which activates the glycolytic enzyme PFK (Song et al., 2020).

AKT can also activate mTOR complex 2 (mTORC2), which is

associated with enhanced glycolysis (Huang et al., 2016). The

enzyme MTORC2 promotes cell survival, glucose uptake and

glycolysis through activating AGC kinase family proteins,

including AKT and protein kinase C (PKC) (Hua et al., 2019).

Activated PI3K/AKT signaling stimulates glucose uptake and

enhances glycolysis and lipid biosynthesis by regulating the

expression of GLUT1 (Jin et al., 2021), driving lactate

production and inhibiting the degradation of macromolecules

in cancer cells, affecting tumor cell metabolism (Wasik and

Lehtonen, 2018).
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Emodin (1, 3, 8-trihydroxy-6-methylanthraquinone) is a derived

anthraquinone compound extracted from the leaves, roots and barks

of pharmaceutical plants, including aloe vera, cascara, rhubarb et al.,

and inhibits glycolysis by downregulation of GLUT1 through ROS-

mediated inactivation of the PI3K/AKT signaling pathway (Wang K.

J. et al., 2021). Curcumin, the main polyphenol pigment in the plant

turmeric with antioxidant properties, down-regulates

PKM2 expression by inhibiting the mTOR-HIF1α axis, thereby

inhibiting glucose uptake and lactate production in various cancer

cell lines (Siddiqui et al., 2018a). The activation of the PI3K/AKT

signaling pathway abolished the antitumor effect of a

naphthoquinone derivative Shikonin, derived from the root of the

herbal plant, which indicated that Shikonin suppressed the

progression of nasopharyngeal cancer through inactivation of the

PI3K/AKT signaling pathway (Zhang et al., 2020). Atractylenolide 1,

an active component of Atractylodes Lancea, down-regulates the

phosphorylation of AKT/mTOR pathway-related proteins and

effectively inhibited the proliferation and invasion of colorectal

cancer cells by acting as an inhibitor of AKT/mTOR (Wang

et al., 2020). Tanshinone IIA, a diterpenoid naphthoquinone

extracted from Salvia miltiorrhiza, attenuates oral squamous cell

carcinoma (OSCC) cells by reducing AKT/c-MYC signaling and

enhancing c-MYC ubiquitination and degradation, which results in a

reduction in HK2-mediated aerobic glycolysis in OSCC (Li M. et al.,

2020) (Figure 3; Table 2).

2.1.3 The AMPK signaling pathway
AMPK exists as a heterotrimeric complex, consisting of a

catalytic a subunit and accessory ß and γ subunits (Steinberg and

Carling, 2019). It is activated upon changes in energy availability,

and thus changes in the ATP-to-ADP or ATP-to-AMP ratio

(Herzig and Shaw, 2018). Once activated, AMPK redirects

metabolism towards increased catabolism and decreased

anabolism through the phosphorylation of key proteins in

multiple pathways, including the mTOR complex 1

(mTORC1) (Benito-Cuesta et al., 2021), glycolysis (Kalezic

et al., 2021) and mitochondrial homeostasis (Trefts and Shaw,

2021) pathways. LKB1, an upstream kinase of AMPK,

phosphorylates and activates the catalytic subunit of AMPK at

its T-loop residue Thr 172 in response to increased AMP/ATP

ratios under metabolic stress (Kottakis and Bardeesy, 2012)

(Figure 4; Table 3). Podophyllotoxin (PTOX), a well-known

naturally aryltetralinlignane extracted from Podophyllum

peltatum and a new PTOX derivative compound SU212,

exhibited selective anticancer toxicity through direct activation

of AMPK, which could regulate glycolysis through the AMPK/

HIF-1α pathway in triple-negative breast cancer cells suggesting

the potential research interest of PTOX derivatives in the field of

tumor glycolysis (Tailor et al., 2021). Lily saponin monomer 13, a

saponin monomer derived from lily flower, suppresses colorectal

cancer cell proliferation by activating the AMPK pathway and

FIGURE 2
Natural products affect glycolysis in tumor cells by directly regulating glycolytic enzymes.
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TABLE 2 Natural products regulate glycolysis through the PI3K-AKT-mTOR signaling pathway in cancer.

Ingredients Target Adjustment
method

Target tumor Source Category References

resveratrol PI3K, AKT,
mTOR

down-regulate cancers grapes, berries, peanuts, red
wine

polyphenol Brockmueller et al.
(2021a)

salvianolic acid B PI3K, AKT down-regulate oral squamous cell
carcinoma

salviae miltiorrhizae polyphenol Wei et al. (2018b)

Shikonin PI3K/AKT inactivate nasopharyngeal
carcinoma

root of the herbal plant naphthoquinone Zhang et al. (2020)

Emodin PI3K, AKT down-regulate renal cell carcinoma Rhubarb anthraquinone Wang et al. (2021a)

triptolide AKT, mTOR down-regulate non-small cell lung
cancer

root extracts of tripterygium
wilfordii

pentacyclic
triterpenoid

Hamdi et al. (2018)

atractylenolide I AKT, mTOR down-regulate colorectal cancer plant-based baizhu sesquiterpenoids Wang et al. (2020)

tanshinone IIA AKT down-regulate oral squamous cell
carcinoma

salvia miltiorrhiza diterpenoid
naphthoquinone

Li et al. (2020a)

compound K AKT, mTOR down-regulate hepatocellular
carcinoma

Saponin metabolite of the
ginsenoside

Shin et al. (2021)

Morusin AKT mTOR down-regulate hepatocellular
carcinoma

the roots of morus alba flavonoid Cho et al. (2021)

Berberine mTOR down-regulate colon cancer roots, rhizomes, stems, and
bark of berberis plan

isoquinoline alkaloid Mao et al. (2018a)

curcumin mTOR down-regulate lung cancer rhizome of the plant curcuma
longa

polyphenol Siddiqui et al.
(2018a)

lily saponin
monomer 13

mTOR down-regulate colorectal cancer dwarf lilyturf tuber saponin monomer Wei et al. (2019)

FIGURE 3
Natural products inhibit glycolysis through the PI3K-AKT-mTOR pathway.
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blocking GLUT1 (Wei et al., 2019). Morusin, isolated from the

root of morus alba, significantly activated phosphorylation of

AMPK/acetyl-CoA carboxylase, but attenuated the expression of

the mammalian target of AKT, mTOR, c-MYC, HK2, PKM2, and

LDH in Hep3B and Huh7 cells (Cho et al., 2021).

2.1.4 Targeting oncogenes
The mutation and abnormal expression of proto-oncogenes

creates oncogenes, which achieve acquisition of nutrients

through enhancing the activity of glycolysis enzymes in tumor

cells and maintain survival and development of cancer cells

through the reprogramming of glycolysis metabolism

(Mukhopadhyay et al., 2021). It is estimated that increased

MYC expression is responsible for at least 40% of human

cancers (Wokolorczyk et al., 2008). The link between MYC

and regulation of glucose metabolism was first established

when an early unbiased screen for MYC target genes

uncovered LDHA among 20 other putative MYC target genes,

and many other glucose metabolism genes directly regulated by

MYC were subsequently documented, including GLUT1, HK2,

PFKM, and enolase 1 (Dang et al., 2009). The environment

supporting tumor growth is affected by oxygen deficiency (Rani

TABLE 3 Natural products regulate glycolysis by targeting AMPK in cancer.

Ingredients Target
glycolysis

Adjustment
method

Target tumor Source Category References

Morusin AMPK up-regulate hepatocellular
carcinoma

the roots of morus
alba

flavonoid Cho et al. (2021)

podophyllotoxin AMPK active cancers podophyllum
peltatum

aryltetralinlignane Fan et al. (2021)

lily saponin monomer 13 AMPK active colorectal cancer dwarf lilyturf tuber saponin monomer Wei et al. (2019)

arsenic trioxide cooperates
cryptotanshinone

AMPK activate epatocellular
carcinoma

cryptotanshinone salvia miltiorrhiza Jiang et al.
(2022)

FIGURE 4
Natural products regulate glycolysis through the AMPK signaling pathway.
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et al., 2022). High expression levels of hypoxia-inducible factor-

1a (HIF-1α) and its target genes have been shown to promote

tumor aggressiveness. Cancer cells utilize the activated

transcription factor HIF-1α to increase glucose uptake and

increase glycolytic flux to promote glucose catabolism and

adapt to hypoxic environments, ensuring tumor growth (Lee

et al., 2020).

Accumulating evidence demonstrates that natural products

can regulate known oncogenes, including MYC and HIF1-α, that
contribute to the genesis of many human cancers, by altering

glycolysis to inhibit tumor progression (Figure 5; Table 4).

Saponins, including tanshinone IIA, betulinic acid and

compound K, were reported to target MYC and inhibit tumor

glycolysis in tumors (Jiao et al., 2019a; Li M. et al., 2020; Shin

et al., 2021). Tanshinone IIA, isolated from Danshen, decreased

glucose consumption, lactate production, and promoted intrinsic

apoptosis in oral squamous cell carcinoma cells through

inhibition of AKT-c-MYC signaling and promotion of

E3 ligase FBW7-mediated c-MYC ubiquitination and

degradation, which eventually reduced HK2 expression at the

transcriptional level (Li M. et al., 2020). Betulinic acid is a natural

pentacyclic triterpenoid that is found in the bark and other plant

parts of several species of plants including Syzygium claviflorum.

It inhibits aerobic glycolysis activity by hampering lactate

production, glucose uptake and extracellular acidification rate,

as well as suppressing aerobic glycolysis-related proteins

including c-MYC, LDH-A and p-PDK1/PDK1 (pyruvate

dehydrogenase kinase 1) in breast cancer cell lines MCF-7

and MDA-MB-231 (Jiao et al., 2019a). Compound K, a

ginseng saponin metabolite found in minute quantities of

aged ginseng, was shown to induce apoptosis via inhibition of

glycolysis and AKT/mTOR/c-MYC signaling in 7 human

hepatocellular carcinoma cell lines and is a potent anticancer

candidate for liver cancer (Shin et al., 2021).

In recent years, a growing number of natural products

targeting HIF-1α to reduce HIF-1α expression and inhibit

tumor glycolysis have been investigated to treat tumors.

Polyphenols, including curcumin, salvianolic acid B,

TABLE 4 Natural products regulate glycolysis via oncogenes in cancer.

Ingredients Target
glycolysis

Adjustment
method

Target tumor Source Category References

betulinic acid c-MYC down-regulate breast cancer birch bark pentacyclic terpene Jiao et al. (2019a)

compound K c-MYC down-regulate hepatocellular
carcinoma

saponin a metabolite of the
ginsenosides

Shin et al. (2021)

astragalus saponins c-MYC down-regulate colorectal cancer medicinal herb radix
astragali

total saponin Guo et al. (2019)

tanshinone IIA c-MYC down-regulate oral squamous cell
carcinoma

diterpenoid
naphthoquinone

salvia miltiorrhiza Li et al. (2020a)

Morusin c-MYC down-regulate hepatocellular
carcinoma

the roots of Morus alba flavonoid Cho et al. (2021)

phenethyl
isothiocyanate

c-MYC down-regulate prostate cancer cruciferous vegetables isothiocyanate Singh et al. (2018)

salvianolic acid B HIF-1α down-regulate oral squamous cell
carcinoma

salviae miltiorrhizae polyphenol Wei et al. (2018b)

licochalcone A HIF-1α down-regulate hypoxic cancer glycyrrhiza uralensis phenol chalconoid Park et al. (2021b)

curcumin HIF-1α down-regulate lung cancer rhizome of the plant
Curcuma longa

phyto polyphenol Siddiqui et al.
(2018a)

Baicalein HIF-1α down-regulate tamoxifen-resistant
breast cancer

Scutellaria baicalensis Polyphenol Chen et al. (2021a)

oleanolic acid HIF-1α down-regulate gastric tumor cell leaves and roots of oleaceae
family plants

pentacyclic
triterpenoid saponin

Li et al. (2019)

Deoxypodophyllotoxin HIF-1α down-regulate non-small cell lung
cancer

anthriscus sylvestris (L.)
Hoffm

natural lignans Yang et al. (2021)

parthenolide HIF-1 a down-regulate colorectal cancer extracts of Mexican Indian
medicinal plants

sesquiterpene lactone Kim et al. (2017)

astragaloside IV HIF-1α down-regulate gastric carcinoma astragalus membranaceus triterpenoid saponin Zhang et al. (2018)

cardamonin HIF-1α down-regulate breast cancer alpinia katsumadai chalcone Jin et al. (2019a)

berberine HIF-1α down-regulate colon cancer roots rhizomes stems, bark
of Berberis plan

isoquinoline alkaloid Mao et al. (2018a)

resveratrol HIF-1α/ROS down-regulate Cancers grapes, berries, peanuts, red
wine

polyphenol Brockmueller et al.
(2021a)

astragaloside IV p53 up-regulate gastric carcinoma astragalus membranaceus triterpenoid saponin Zhang et al. (2018)
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licochalcone A and baicalein, have anticancer potential through

suppression of the HIF-1α pathway (Wei et al., 2018a; Man et al.,

2020; Park et al., 2021a; Chen Y. et al., 2021). Among these

components, curcumin, a yellow pigment found primarily in

turmeric, enhanced the antitumor effect of sorafenib in

hepatocellular carcinoma via inhibition of LDH and HIF-1α
to suppress aerobic glycolysis (Man et al., 2020). In addition,

salvianolic acid B, the most abundant and bioactive water-soluble

compound of Salviae miltiorrhizae, has been reported to inhibit

aerobic glycolysis as well as PI3K/AKT and HIF-1α signaling

pathways in two well-characterized oral squamous cell

carcinoma Cal27 and HN4 cell lines (Wei et al., 2018a).

Licochalcone A, a chalconoid derived from root of

Glycyrrhiza inflate, enhances intracellular oxygen

concentations by directly inhibiting mitochondrial respiration,

resulting in oxygen-dependent HIF-1α degradation (Park et al.,

2021a). Terpenoids, such as oleanolic acid, parthenolide and

astragaloside IV, exert an anti-cancer effect by regulating

glycolysis and HIF1α expression (Li et al., 2019). Oleanolic

acid (OA), a common triterpenoid, is abundantly present in

the family Oleaceae, including Olea europaea (olive), other

dietary. OA induced HIF-1α-mediated aerobic glycolysis and

proliferation by decreasing the expression and intracellular

activities of glycolysis rate-limiting enzymes HK2 and

PFK1 and downregulating HIF-1α expression in human

gastric tumor cells (Li et al., 2019). Curcumin is a

polyphenolic yellow spice derived from the rhizomes of

Curcuma longa L. plant. It can suppress the two key

glycolysis-regulating proteins including hypoxia-inducible

factor 1-alpha (HIF-1α) and pyruvate dehydrogenase kinase 1

(PDK1) and target and cellular metabolism by promoting the

differential expression of let-7C in ACHN human kidney cancer

cells (Obaidi et al., 2022). Cardamonin, a chalcone isolated from

Alpiniae katsumadai, reduced glucose uptake as well as lactic acid

production and efflux and inhibits breast cancer growth by

repressing HIF-1α-dependent metabolic reprogramming (Jin

et al., 2019a).

2.1.5 Targeting other signalling pathway to
regulate glycolysis

Natural products exert antitumor activity by increasing

antioxidant agents, induction of apoptotic factors, modulation

of the immune system and decreasing glucose uptake and lactate

production. Accordingly, the main targets of natural products

includes SIRT6, glycerol-3-phosphate dehydrogenase (GPD2),

Hsp90α, GAPDH, S-phase kinase-associated protein 2 (Skp2),

ITGB2/focal adhesion kinases (FAKs), miR-491-5p/PKM2, miR-

145, p53/miRNA-34a/LDHA, p53/TP53-induced glycolysis and

apoptosis regulator (TIGAR), tet methylcytosine dioxygenase 3

(TET3), CD147, lncRNA SNHG10/miR-1271-5p/TRIM66 and

pyruvate dehydrogenase kinase 1 (PDK1) (Table 5). Natural

compounds can act as modulators of SIRT6, an NAD +

FIGURE 5
Natural products inhibit aerobic glycolysis by targeting oncogenes.
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dependent histone deacetylase enzyme and a unique Sirtuin

family member in treatment of cance r (Akter et al., 2021).

a-Hederin, a potent bioactive compound of Pulsatilla chinensis

(Bunge) Regel (Ranunculaceae), inhibited glucose uptake and

ATP generation; and reduced lactate production by activating

SIRT6 in A549 cells (Fang et al., 2021a). Scopolin obtained from

Smilax china L. plays the role in controlling hepatocellular

carcinoma by regulating the expression of glycolysis proteins

glucose-6-phosphate isomerase (GPI), GPD2, mitochondrial and

phosphoglycerate kinase 2 (PGK2) and affecting the interaction

between Hsp90α and GPD2, which may provide a novel potential

treatment direction for hepatocellular carcinoma (Wang et al.,

2022). GAPDH exerts metabolic flux control during aerobic

glycolysis and therefore is an attractive therapeutic target for

cancer. 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG)

downregulated the GAPDH-dependent glycolysis pathway in

LPS-stimulated macrophages, which represents a novel class

of GAPDH inhibitors (Li et al., 2022a). Parthenolide was

identified as a moderate activator of PKM2, a vital kinase in

the glycolysis system, and showed significant anti-Glioblastoma

multiforme activity and significantly suppressed tumor growth in

the HT29 xenograft model (Ding et al., 2020; Liu X. et al., 2021).

Dioscin, a natural steroid saponin derived from several plants,

significantly inhibited glycolysis in colorectal cancer cells growth

through regulating Cdh1-mediated F-box protein

Skp2 degradation (Zhou et al., 2020). Bufalin is extracted

from traditional Chinese medicine Chansu and was reported

to inhibit cellular glycolysis-induced cell growth and

proliferation through repression of the ITGB2/FAKs pathway

in ovarian cancer cells (Li H. et al., 2018). MicroRNAs are

responsible for the regulation of the key enzymes in glycolysis.

Berberine is an alkaloid extracted from coptis, phellodendron

and three needles. It increased TET3-mediated demethylation

and promoted the suppression of miR-145 on HK2 to antagonize

the Warburg effect of ovarian cancer cells (Li et al., 2021).

Asragaloside IV (ASIV), one of active compounds in A.

membranaceus, can inhibit glycolysis through dually

mediating p53/miRNA-34a/LDHA and p53/TIGAR pathways

and also suppresses glycolic processes via restoring aberrance of

Monocarboxylate transporter 1/4 (MCT1/4), CD147, and HIF-

1α (Zhang et al., 2018). LncRNA SNHG10 promoted glucose

uptake via interacting with related miRNA in osteosarcoma and

TABLE 5 Natural products regulate glycolysis through the lasted signal pathway in cancer treatment.

Ingredients Target glycolysis Adjustment
method

Target tumor Source Category References

α-Hederin SIRT6 active lung cancer pulsatilla chinensis pentacyclic
triterpenoid saponin

Fang et al.
(2021a)

scopolin PGK2 GPI GPD2 inhibit hepatocellular
carcinoma

smilax china L alkaloid Wang et al.
(2022)

1,2,3,4,6-penta-
O-galloyl-β-D-
glucopyranose

GAPDH inhibit glioblastoma
multiforme

plants a tannin family
compound

Ding et al.
(2020)

parthenolide PKM2 active colorectal cancer extracts of Mexican Indian
medicinal plants

sesquiterpene
lactone

Liu et al.
(2021b)

Dioscin Skp2 down-regulate colorectal cancer plants steroidal saponin Zhou et al.
(2020)

Bufalin ITGB2/FAKs pathway inhibit ovarian cancer traditional Chinese
medicine Chansu

major digoxin-like
component

Li et al. (2018d)

berberine miR-145 up-regulate colon cancer roots rhizomes stems, bark
of Berberis plan

isoquinoline
alkaloid

Li et al. (2021)

Astragaloside IV MCT1 MCT4 CD147/
miRNA-34a TIGAR

down-regulate gastric carcinoma A.membranaceus a marker for the
active constituent

Zhang et al.
(2018)

oviductus ranae miR-491-5p PKM2 down-regulate hepatocellular
carcinoma

dried oviduct of mature
female Rana dybowskii

traditional animal-
based medicine

Xu et al. (2018)

Curcumin GLUT 1 PKM LDHA AKT down-regulate liver cancer rhizome of the plant
curcuma longa

phyto polyphenol Man et al.
(2020)

Curcumin P53 up-regulate liver cancer rhizome of the plant
curcuma longa

phyto polyphenol Man et al.
(2020)

Resveratrol PKM2 down-regulate melanoma grapes, berries, peanuts,
red wine

polyphenol Jia et al. (2021)

Resveratrol AMPK up-regulate melanoma grapes, berries, peanuts,
red wine

polyphenol Jia et al. (2021)

1,2,3,4,6-penta-
O-galloyl-β-D-
glucopyranose

GAPDH inhibit colon cancer natural plants tannin family
compound

Li et al. (2022b)
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up-regulated TRIM66 via sponging miR-1271-5p (He et al.,

2020). The Chinese medicine Qi Ling inhibited docetaxel

resistance and glycolysis of castration-resistant prostate cancer

possibly via lncRNA SNHG10/miR-1271-5p/TRIM66 pathway

(Cao et al., 2021). Oviductus ranae, the dried oviduct of mature

female Rana dybowskii, is a famous traditional animal-based

medicine, which inhibits the growth, metastasis and glycolysis of

hepatocellular carcinoma cells by targeting miR-491-5p/

PKM2 axis (Xu et al., 2018).

Some natural products trigger a selective yet potent host

immune reaction against cancer cells, particularly given the

interest in strategies which could improve response rates to

immune checkpoint inhibitors by turning “cold” tumours

“hot” (Galon and Bruni, 2019). Studies showed that glycolytic

activity enhances PD-L1 expression on tumor cells and promotes

anti-PD-1/PD-L1 immunotherapy response (Jiang et al., 2019).

Natural products such as curcumin, the main active ingredient of

turmeric, enhance the antitumor efficacy of sorafenib through

activating immune function, downregulating EMT, suppressing

anaerobic glycolysis and decreasing the lipid synthesis in IL-6/

JAK/STAT3, IL-1β/NF-κB and PI3K/AKT pathway (Man et al.,

2020). Co-delivery of PD-L1 siRNA and resveratrol, natural

polyphenol detected in more than 70 plant species, especially

in grapes’ skin and seeds, showed boost of anti-tumor immune

response by modulation of TME via balancing glucose metabolic

pathways of glycolysis and mitochondrial OXPHOS (Jia et al.,

2021). 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose, a major

component of the root of P. suffruiticosa inhibits LPS-

stimulated macrophage activation through specific

downregulation of GAPDH-dependent glucose consumption

and lactate production (Li et al., 2022a).

2.2 The chemical classifications and
effects of natural product targeting
glycolysis

Natural products have received remarkable attention as

anticancer agents that regulate glycolysis of cancer cells. Plant-

derived bioactivecompounds-including polyphenols, alkaloids,

quinones and terpenoids show promise as useful anticancer

agents.

Polyphenols are a complex class of plant secondary

metabolites consisting of an aromatic ring with at least one

hydroxyl group, such as phenolic acids, cinnamic acids,

coumarins, flavonoids, xanthones and stilbenes, comprised

phenolic groups. Phenolic compounds, like quercetin (Jia

et al., 2018), curcumin (Man et al., 2020), morusin (Cho

et al., 2021), epigallocatechin gallate (Chen et al., 2022a),

oleuropein (Ruzzolini et al., 2020), inhibit glucose and lactate

cellular uptake, downregulate PKM2 andGLUT1 expression, and

inhibit MCT1-mediated lactate reuptake in cancer treatments.

Polyphenols, such resveratrol (Brockmueller et al., 2021b),

salvianolic acid B (Wei et al., 2018a), and morusin (Cho et al.,

2021), regulate glycolysis by down-regulating PI3K and AKT

expression. Curcumin (Siddiqui et al., 2018a) decreases the

Warburg effect through decreasing the expression of mTOR

in cancer cells.

Alkaloids are a large and complex group of cyclic compounds

that contain a nitrogen-bearing molecule. Dauricine, an

isoquinoline alkaloid, downregulates the expression of

HK2 and PKM2 in hepatocellular carcinoma cells (Li W.

et al., 2018). Scopolin inhibits glycolysis by inhibiting PGK2,

GPI and GPD2 in hepatocellular carcinoma (Wang et al., 2022).

Berberine decelerates glucose metabolism via suppression of

mTOR-dependent HIF-1α protein synthesis in colon cancer

cells (Mao et al., 2018a).

Quinone is an aromatic compound with two carbonyl

functional groups in the same six-membered ring. Emodin

(Wang K. J. et al., 2021) down-regulates the expression of

GLUT1. Tanshinone IIA (Li M. et al., 2020) and rhein (Wu

et al., 2019) decrease HK2 expression. The important glycolytic

enzyme PKM2 is inhibited by shikonin (Wang et al., 2018).

Shikonin (Zhang et al., 2020) and emodin (Wang K. J. et al.,

2021) also inhibit the PI3K/AKT signal pathway. Tanshinone IIA

(Li M. et al., 2020) down-regulates AKT and the c-MYC

oncogene expression.

Terpenoids, also known as isoprenoids or terpenes, usually

have a cyclic structure. The triterpenoid molecules cucurbitacin

D (Sikander et al., 2019) and a-Hederin (Fang et al., 2021a)

down-regulate GLUT1 expression. HK2 was inhibited by

tanshinone IIA (Li M. et al., 2020), triptolide (Hamdi et al.,

2018) and oleanolic acid (Li et al., 2019). Triptolide (Hamdi et al.,

2018) and tanshinone IIA (Li M. et al., 2020) both also decrease

the expression of AKT. Moreover, the oncogene HIF-1α is

inhibited by astragaloside IV (Zhang et al., 2018) and

oleanolic acid (Li et al., 2019).

2.3 Natural products in clinical research

More than 100 plant and animal based natural compounds have

been used in clinical treatment. From 1981 to 2019, about 40% of

anticancer drugs were derived in part or whole from natural sources

(Newman and Cragg, 2020), including (-)-β-elemene, paclitaxel,

hydroxycamptothecin, camptothecins, colchicine and artemisinin.

Morphine, the alkaloids mainly produced in the opium poppy

(Papaver somniferum), marketed by Merck in 1826, is the first

commercial pure natural product introduced for blocking moderate

to severe pain that may be acute or chronic. Fermented wheat germ

extract (FWGE), derived from the germof thewheat plant, interferes

with anaerobic glycolysis, the pentose cycle and ribonucleotide

reductase and has significant antiproliferative effects, killings

tumor cells by the induction of apoptosis via the caspase-poly

[ADP-ribose] polymerase-pathway. It indicated a significant

benefit for patients treated with the chemotherapy drug
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dacarbazine in combinationwith FWGE in terms of progression free

survival and overall survival according to clinical data from a

randomized phase II trial in melanoma patients (Mueller and

Voigt, 2011). Silibinin is an extract from the medicinal plant

Silybum marianum (milk thistle) reported to inhibit tumor

aerobic glycolysis and alter PD-L1 expression by interfering with

HIF-1α/LDH-A mediated cell metabolism in nasopharyngeal

carcinoma (Sellam et al., 2020). Silibinin inhibits growth of

prostate cancer cells by targeting the epidermal growth factor

receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R)

and NF-kappaB (nuclear factor-kappa B) pathways in prostate

cancer. Clinical trials in human prostate cancer patients are

ongoing (Singh and Agarwal, 2006). ACT001, derived from

parthenolide, is an orphan drug currently in clinical trials for the

treatment of glioblastoma (Zhang T. et al., 2022). It selectively

activates PKM2 through covalent binding at residue cysteine

424 to promote tetramer formation and inhibit tumour

metabolism (Li J. et al., 2018). Rhizoma Paridis Saponins (RPS),

the major active component of Rhizoma Paridis, played an

antitumor role in many clinical indications (Man et al., 2014)

through regulation of glycolytic and lipid metabolism (Yao et al.,

2018). Dauricine, the major bioactive component isolated from the

roots of Menispermum dauricum D.C, has shown promising

pharmacological activities with a great potential for clinical use,

inhibiting glucose glycolysis and increasing oxidative

phosphorylation by downregulating the expression of HK2 and

PKM2 directly targeted by miR-199a in hepatocellular carcinoma

cells (LiW. et al., 2018). Resveratrol, a polyphenol phytoalexin present

in a variety of plant species, has been reported to have beneficial effects

in tumor prevention, daily doses of resveratrol at 0.5 or 1.0 g produce

levels in the human gastrointestinal tract that are of an order of

magnitude sufficient to elicit anticarcinogenic effects (Patel et al.,

2010). Curcumin, found primarily in turmeric, has characters of

safety, tolerability, and non-toxicity at high doses. Circumin has

exhibited activities against numerous cancer types in human

clinical trials, including breast cancer, colorectal cancer, lung

cancer, pancreatic cancer, prostate cancer, multiple myeloma, oral

cancer and head and neck squamous cell carcinoma (Gupta et al.,

2013). ß-Elemene is a bioactive triterpenoid derived from various

plants. Qureshi et al. analyzed the results of clinical trials using ß-

elemene to demonstrate that it regulates cancer progression and

metastasis via various signal transduction cascades, including

tumor necrosis factor related apoptosis-inducing ligand, signal

transducers and activators of transcription, transforming growth

factor/SMAD, NOTCH, and mammalian target of rapamycin

pathways (Qureshi et al., 2019). Tanshinone IIA, isolated from the

roots and rhizomes of the Chinese medicinal herb Salvia miltiorrhiza

Bunge (Danshen), is currently used to treat patients with

cardiovascular system abnormalities, diabetes, apoplexy, arthritis,

sepsis and other diseases in China and neighboring countries. It

has also been reported to have antitumor effects (Fang et al., 2020).

Minnelide, a water-soluble prodrug of triptolide that is isolated from a

Chinese medicinal herb, is currently in phase II clinical trials for

treatment of pancreatic cancer. Only a few patients treated with

Minnelide have been evaluated in phase I clinical trials. Plasma levels

of the agent can be achieved, giving responses in patients with very

refractory gastric or pancreatic cancer, and the agent can be givenwith

a margin of safety (Noel et al., 2019). Russo et al. reported that

sulforaphanemodulates cellular homeostasis through the activation of

the transcription factor Nrf2. Five of 20 completed or ongoing clinical

trial from ClinicalTrials.gov were cancer related and partially confirm

the promising anticancer potential of sulforaphane observed in pre-

clinical experiments (Russo et al., 2018). Epigallocatechin-3-gallate, an

active compound of green tea, modulates multiple molecular targets

and inhibits the pathogenesis of cancer through inhibition of

initiation, promotion and progression. Clinical trials on human

subjects confirm that Epigallocatechin-3-gallate plays a role in

various cancer prevention, including prostate cancer, urinary

bladder cancer, head and neck cancer, breast cancer, ovarian

cancer, and lung cancer (Almatroodi et al., 2020).

Natural products that target glycolysis to suppress tumor

progression are used in the rarely currently and this is for a

number of reasons. Firstly, many natural products are non-

selective, and the translational potential of these glycolytic

inhibitors is limited. Secondly, many immune cells such as

T cells require high levels of glucose for their effector function,

while drugs targeting tumor glycolysis will have undesirable effects

on the glycolysis of tumor associated immune cells. Thirdly, low oral

bioavailability limits the application of these products. Thus, as the

value of these products is better appreciated, it will become necessary

to invest in determining effective modifications that can overcome

the drawbacks currently limiting their use. It is also vital to note, in

the current climate, that bringing a natural product into clinical

development requires a sustainable and economically viable supply

of sufficient quantities of the natural product.

3 Conclusion and future perspectives

Natural product targeting glycolysis can effectively inhibit

the development of tumors and provide an approach for the

effective treatment of various cancers.

With respect to the tumor itself, tumor cells located in a

nutrient-rich environment exhibit low or no sensitivity to

targeted metabolic inhibitors (Ayuso et al., 2020). Tumors

may judiciously use their environment to boost the body’s

metabolism, providing the material basis for escape from the

immune system (Kooshki et al., 2022). However, high glycolytic

flux depends on glycolysis-related genes (Massari et al., 2016).

Thus, targeting glycolysis is beneficial to the treatment of tumor.

Metabolic reprogramming is a central hallmark of cancer and is

critical for tumorigenesis and tumor progression (LiuD. et al., 2021).

Natural products can inhibit the proto-oncogene MYC, which

ultimately suppresses HIF-1α-mediated metabolic reprogramming

towards a glycolytic phenotype. Natural products have advantages in

ameliorating cancer cell metabolic reprogramming by their poly-
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pharmacological actions. In the glycolysis signaling pathway,

activation of AMPK and inhibition of PI3K/AKT/mTOR are the

key targets of these products.

Compared to chemotherapy, natural products have the

advantage of availability, high efficacy, and low toxicity. However,

“natural” is not equivalent to “safe”, and the toxicity still severely

hinders the wide use of natural products. Indeed, natural products

possess a broad spectrum of chemical functional groups, some of

which are recognized as structural alerts for toxicologically-based

chronic effects, such as the chemical initiation of carcinogenesis.

This demonstrates the importance of evaluating their potential

toxicity. Metabolomics and in silico models have been used to

evaluate for toxicity of natural products (Chen et al., 2016;

Abdel-Wahab et al., 2021), but a more comprehensive

understanding of their toxicity is urgently required.

This review has highlighted that natural products target

glycolysis through regulating glycolytic enzymes and related

proteins, oncogenes and glycolytic signaling pathways. More and

more Chinese medicines have been proved to be widely used as

adjuvant therapy after surgery, chemotherapy, radiotherapy or other

types of treatment for cancer, alleviating various side effects caused

by chemotherapy, such as gene mutation, cytotoxicity and drug

resistance, showing promising therapeutic effects (Xiang et al., 2019)

in clinical treatment. Continued exploration of the effective targets of

natural products in glycolysis is required to obtain a more

comprehensive picture of the mechanisms involved and the

potential therapeutic targets.
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