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Metabolic disturbance, particularly of glucose metabolism, is a hallmark of

tumors such as non-small cell lung cancer (NSCLC). Cancer cells tend to

reprogram a majority of glucose metabolism reactions into glycolysis, even

in oxygen-rich environments. Although glycolysis is not an efficient means of

ATP production compared to oxidative phosphorylation, the inhibition of tumor

glycolysis directly impedes cell survival and growth. This review focuses on

research advances in glycolysis in NSCLC and systematically provides an

overview of the key enzymes, biomarkers, non-coding RNAs, and signaling

pathways that modulate the glycolysis process and, consequently, tumor

growth and metastasis in NSCLC. Current medications, therapeutic

approaches, and natural products that affect glycolysis in NSCLC are also

summarized. We found that the identification of appropriate targets and

biomarkers in glycolysis, specifically for NSCLC treatment, is still a challenge

at present. However, LDHB, PDK1, MCT2, GLUT1, and PFKMmight be promising

targets in the treatment of NSCLC or its specific subtypes, and DPPA4, NQO1,

GAPDH/MT-CO1, PGC-1α, OTUB2, ISLR, Barx2, OTUB2, and RFP180 might be

prognostic predictors of NSCLC. In addition, natural products may serve as

promising therapeutic approaches targeting multiple steps in glycolysis

metabolism, since natural products always present multi-target properties.

The development of metabolic intervention that targets glycolysis, alone or

in combination with current therapy, is a potential therapeutic approach in

NSCLC treatment. The aim of this review is to describe research patterns and

interests concerning the metabolic treatment of NSCLC.
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Introduction

Today, cancer is the greatest worldwide public health problem

after cardiovascular and cerebral vascular disease (Bray et al., 2021).

According to the latest epidemiological statistics from 2020, the

global incidence of cancer is 19.3million andmortality is 9.9million,

with lung cancer occupying the second-highest incidence rate

(11.4%) and the highest mortality rate (18%) (Sung et al., 2021).

Lung cancer has been divided into two types, small cell lung cancer

(SCLC) and non-small cell lung cancer (NSCLC), according to

pathological diagnosis. Eighty-five percent of lung cancer cases are

NSCLC (Gridelli et al., 2015), which includes three subtypes:

adenocarcinoma, squamous cell carcinoma, and large cell

carcinoma. Although NSCLC generally has better prognosis and

slower rate of progression than SCLC, about 50% of patients are

diagnosed with local progression or metastasis (Molina et al., 2008;

Niu et al., 2016; Rudin et al., 2021). Despite the development of

various therapeutic approaches—including classical chemotherapy,

targeting therapy, and immunotherapy—the five-year survival rate

ofmetastatic NSCLC in the United States was still under 5% over the

past decade (Arbour and Riely, 2019). The discovery of new drugs

for NSCLC treatment thus remains an urgent issue.

Emerging evidence indicates that cancer is a metabolic-

associated disease. Metabolic disturbances involving glucose,

glutamine, and ketone bodies, and particularly energy

metabolism supplied by glucose, have been reported as features

of tumors progression (Phan et al., 2014; Seyfried et al., 2014;

Reinfeld et al., 2021). Targeting metabolic reprogramming (e.g.,

energy metabolism) is a novel rationale for metabolic drug

development in cancers, including in NSCLC (Wu et al., 2015;

Park et al., 2020). Glucose is the main substance in intracellular

energymetabolism during glycolysis, which produces CO2 or lactate

under aerobic or anaerobic conditions, respectively, with glycolysis

generally referring to anaerobic glycolysis (Lunt andVanderHeiden,

2011). In normal physiology, cells only exhibit glycolysis under

oxygen-limited conditions, while cancer cells tend to exhibit

glycolysis even under aerobic conditions; this is called the

Warburg effect or aerobic glycolysis and distinguishes cancer

cells from normal cells (Vander Heiden et al., 2009; Phan et al.,

2014; Bose and Le, 2018). Briefly, although aerobic glycolysis is not

an efficient means of producing adenosine triphosphate (ATP)

compared to oxidative phosphorylation, cancer cells still

reprogram the metabolism into glycolysis to meet the high

demands of proliferation (Vaupel et al., 2019). Aerobic glycolysis

has been considered the fundamental feature of tumor metabolism

disturbance and not simply the result of a passive response to

mitochondrial damage (DeBerardinis et al., 2008; Wise and

Thompson, 2010; Santos and Schulze, 2012). This metabolic

reprogramming facilitates tumor survival, which can be viewed as

an essential hallmark of cancer (Ward and Thompson, 2012).

Glycolysis is critical for energy supply in tumors, as it is the

most preferential approach toward energy production (Moreno-

Sánchez et al., 2007). Furthermore, glycolysis promotes acidification

of the tumor microenvironment (TME), leading to drug resistance

(Bose and Le, 2018). Similarly, enhanced metabolism of aerobic

glycolysis has been observed in tumors by measurement of intra-

operative 13C-glucose infusions in NSCLC patients (Hensley et al.,

2016). Therefore, targeting the inhibition of glycolytic metabolism

could be a potential therapeutic strategy in cancers like NSCLC

(Ganapathy-Kanniappan and Geschwind, 2013).

In the current review, we focus on advances in the glycolytic

metabolism of NSCLC and provide an overview of key enzymes,

biomarkers, and related pathways, as well as the impact of

current treatments and candidates in glycolysis.

Glycolytic metabolism in tumor cells

Glucose is the major source of energy metabolism and biomass

synthesis (Lunt and Vander Heiden, 2011). Extracellular glucose

crosses the cell membrane with the help of glucose transporter 1

(GLUT1), which also determines the production of glucose 6-

phosphate in the first central metabolism pathway mediated by

hexokinase 1/2 (HK1/2) (Rajas et al., 2019). Glucose metabolism

results in the production of two three-carbon pyruvate molecules

from each glucose molecule through a series of enzyme-catalyzed

reactions. Pyruvate participates in various physiological metabolic

pathways and has several metabolic fates, such as fermentation,

cellular respiration, and fatty acid synthesis (Prochownik andWang,

2021). In normal cells, when oxygen is sufficient, pyruvate is the

substrate of acetyl-CoA synthesis, which generates 36 molecules of

ATP during the TCA cycle via oxidative phosphorylation in

mitochondria. Nicotinamide adenine dinucleotide (NADH) is

generated from the TCA cycle, and ATP is produced most

efficiently through the phosphorylation of ADP, accompanied

with the transformation of NADH to NAD+ through the

electron transfer chain (ETC) in the mitochondrial inner

membrane. This process consumes oxygen and produces CO2

from the breakdown of pyruvate. When the oxygen supply is

insufficient, pyruvate tends to be metabolized to lactate in

anaerobic glycolysis; this process generates lactate and two

molecules of ATP, which is independent on the TCA cycle

during mitochondrial respiration (Sieow et al., 2018). In tumor

cells, aerobic glycolysis occurs and is characterized by 5% oxidative

phosphorylation and 85% glycolysis under oxygen-sufficient

conditions (Vander Heiden et al., 2009; Fan et al., 2019), and

most of the energy supplied is powered by anaerobic glycolysis

instead of oxidative phosphorylation (Zheng, 2012). Unlike

anaerobic glycolysis in normal cells, aerobic glycolysis is not the

passive consequence of hypoxic stress but is rather due to the active

metabolic reprogramming of tumor cells (Xu et al., 2020) (Figure 1).

Although aerobic glycolysis is not the most efficient means of

supplying energy, the proliferation and survival of tumor cells is

benefited by glycolysis, which relies on the consumption of

intracellular glucose with access to a variety of materials for cell

growth, such as nucleotides, amino acids, and lipids (Pavlova and
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Thompson, 2016; Schiliro and Firestein, 2021). Although glycolysis

appears to have weaker energy productivity compared to oxidative

phosphorylation, the ATP/ADP and NADH/NAD+ ratios usually

remain high in tumor cells, indicating sufficient ATP supply in

glycolytic tumor metabolism (Martínez-Reyes and Chandel, 2021).

The accumulation of lactate facilitates acidification in the TME. The

imbalance of nutrient partitioning, as in glutamine metabolism,

further enhances the degree of glycolysis, leading to a repeating cycle

(Damiani et al., 2017; Reinfeld et al., 2021).

Key glycolysis enzymes in NSCLC

Glucose metabolism reprograming, as evident in the

dependence on glycolysis, is a metabolic hallmark and

prognosis parameter of NSCLC, as higher levels of whole-

body metabolic tumor volume (MTV) and whole-body total

lesion glycolysis (TLG) have been found in NSCLC patients

with poor survival rates, based on F-18 fluorodeoxyglucose

positron emission tomography (FDG-PET) (Chen et al., 2012;

Vanhove et al., 2018). In addition, a high level of TLG was the

most accurate risk factor for recurrence in a stage-I postoperative

NSCLC patient as compared with the standardized uptake value

index (SUV index) and MTV (Melloni et al., 2013). A variety of

glycolytic enzymes is aberrantly activated during glycolytic

metabolism in NSCLC. We reviewed most of the key enzymes

in this study.

Glucose transporter

Glucose transporter 1 (GLUT1) functions in extracellular

glucose uptake and has been proposed as a promising therapeutic

target in cancer (Sizemore et al., 2018). In NSCLC, the

heterogeneity of GLUT1 is displayed in its subtypes. FDG-

PET shows higher MTV and TLG values in GLUT1-positive

adenocarcinomas patients as compared to negative cases. Koh

et al. found that high expression of GLUT1 presented in 99% of

FIGURE 1
Aerobic glycolysis in NSCLC. GLUT1, glucose transporter 1; HK, hexokinase; PFKL, phosphofructokinase, liver type; PFKM, phosphofructokinase,
muscle type; PFKP, phosphofructokinase, platelet type; PKM2, pyruvate kinase M2; PKM1, muscle isoform pyruvate kinase M1; PKLR, red cell/liver
pyruvate kinase; LDH, lactate dehydrogenase; MCT1-4, monocarboxylate transporter 1-4; PDK1, pyruvate dehydrogenase kinase 1; PDH, pyruvate
dehydrogenase; DLD, dihydrolipoamide dehydrogenase; DLAT, dihydrolipoamide acetyltransferase; ATP, adenosine triphosphate; NADH,
nicotinamide adenine dinucleotide; PI3K, phosphoinositide 3-kinase; TCA, tricarboxylic acid; ETC, electron transfer chain; MYC, MYC proto-
oncogene; HIF-1α, hypoxia-inducible transcription factor-1 alpha; G-6-P, glucose 6-phosphate; F-1,6-BP, fructose 1,6-phosphate; G-3-P,
glyceraldehyde 3-phosphate; PEP, phosphoenolpyruvate.
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squamous cell carcinoma and 50% of adenocarcinoma patients

(Koh et al., 2017a). Human NSCLC samples, patient-derived

xenografts, mouse models, and The Cancer Genome Atlas

(TCGA) have all consistently showed high expression levels of

GLUT1 in squamous cell carcinoma (Goodwin et al., 2017;

Smolle et al., 2020). These studies indicate that high

expression of GLUT1 is a risk factor for low survival rate in

squamous cell carcinoma and adenocarcinoma in NSCLC. In

addition, AKT-GLUT1/HKII-targeted microRNA miR-124

overexpression inhibits proliferation, glycolysis, and energy

metabolism in A549 cells (Zhao et al., 2017). The Th2-related

cytokine IL-33 has been shown to promote patient-derived

NSCLC cell growth and metastasis in a nude mice model,

with activation of GLUT1 and enhancement of glycolysis

(Wang et al., 2016).

Hexokinase

Hexokinase (HK) plays a vital role in tumor glycolytic

metabolism and includes HK1 and HK2 isoforms. It

phosphorylates the sixth carbon site of glucose, producing

glucose 6-phosphate, and is primary in the pentose phosphate

pathway and in glycogen metabolism (Ciscato et al., 2021). The

HK1 and HK2 proteins are both highly expressed in KRAS-

mutant mouse lung tumors, while the activation of HK2 but not

HK1 is inevitable for tumor initiation and progression (Patra

et al., 2013). In addition, HK2 has been adopted as an essential

metabolic marker for the prognostic spectrum of NSCLC, as

detected in circulating tumor cells (CTCs) in NSCLC patients

(Ma et al., 2020). HK2 is closely associated with survival in

NSCLC, as it is involved in the primary step of glucose

metabolism. HK2 is required for tumor initiation in the

KRAS-driven NSCLC mouse model, and the deletion of

HK2 prolongs the survival of mice (Patra et al., 2013).

Rate-limiting enzyme
phosphofructokinase

Phosphofructokinase (PFK) is the rate-limiting enzyme

converting fructose 6-phosphate to fructose 1,6-bisphosphate.

There are three types of phosphofructokinases: muscle type

(PFKM), liver type (PFKL), and platelet type (PFKP). In

NSCLC, Wang F. et al. (2021) found that PFKP expression

was correlated with lymph node metastasis and that high

expression of PFKP reduced apoptosis and promoted

glycolysis and cell proliferation in H1299 cells. Shen et al.

found PFKP to be highly expressed in tissue samples of

NSCLC patients and in the PC-9, NCI-H1650, NCI-H520,

NCI-H460, H1975, HCC827, and A549 cell lines. The

silencing of PFKP inhibited cell proliferation and cell-cycle

progress in NCI-H1650 and A549 cell lines (Shen et al.,

2020). Additionally, PFKM is prognostic predictor in

postoperative NSCLC patients, according to genetic

polymorphism research (Lee et al., 2016).

Pyruvate kinase

Pyruvate is an essential metabolite in glycolysis and has

various metabolic fates. The blockage of pyruvate kinase slows

the transformation of phosphoenolpyruvate to pyruvate.

Pyruvate kinases include the muscle isoforms pyruvate

kinase M1 (PKM1) and pyruvate kinase M2 (PKM2), and

the liver and red blood cell isoform (PKLR). PKM2, which acts

as a nuclear factor and participates in a metabolic loop with

GLUT1 (Pan et al., 2019), is highly expressed in NSCLC and is

potentially a specific target in treatment of NSCLC, according

to data from nine patient-derived cell lines, two established

cell lines (H1299 and H358), and nude mice (Suzuki et al.,

2019). Hypoxia exacerbates the resistance effects of cisplatin in

A549 cells by transmitting exosomal PKM2 to sensitive cells

(Wang D. et al., 2021). Pyruvate dehydrogenase (PDH) is

one of the key enzyme complexes responsible for the

oxidative decarboxylation of pyruvate. Pyruvate

dehydrogenase kinase 1 (PDK1), which could inactivate

PDH and is an independent risk factor for NSCLC, is

highly expressed in tumor tissues of NSCLC patients, and

its overexpression promotes the proliferation and metastasis

of NSCLC (Liu and Yin, 2017).

Glyceraldehyde 3-phosphate
dehydrogenase

Although glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) is assumed to be a housekeeping gene, it is a

common enzyme with uncommon functions, including

glycolysis (Nicholls et al., 2012). GAPDH, an irreversible

metabolic switch in glycolysis, catalyzes the conversion of

glyceraldehyde 3-phosphate to 1,3-bisphospoglycerate,

accompanied by the production of NADH (Liao et al., 2019).

GAPDH transcription was upregulated in an NSCLC

patient cohort and correlated with the glycolysis and

gluconeogenesis pathways (Wang et al., 2013). Silencing of

GAPDH by RNA interference induced the senescence of

A549 cells and enhanced the therapeutic effects of

antimetabolite drugs (Phadke et al., 2013). The ratio of

GAPDH to mitochondrially encoded cytochrome c oxidase I

(GAPDH/MT-CO1) and the ratio of mitochondrial metabolism

transcriptional coactivator to peroxisome proliferator-activated

receptor-gamma coactivator (PGC)-1 alpha have been

considered as biomarkers for the Warburg effect for

evaluating relative drug usage benefits in stage-Ⅲ NSCLC

patients (Cruz-Bermúdez et al., 2017).
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Lactate dehydrogenase

Lactate dehydrogenase (LDH), which is classified into the

two isoforms LDHA and LDHB, is responsible for the

mutual transformation between pyruvate and lactate.

Intracellular pyruvate is reduced to lactate by LDHA, and

then lactate is transported extracellularly, resulting in an

acidic TME. On the other hand, LDHB catalyzes the

oxidation of lactate to pyruvate (Brisson et al., 2016),

which partially promotes the recruitment of intracellular

pyruvate. In a meta-analysis study, Deng et al. (2018) found

that in lung cancer patients, a high blood LDH

concentration was correlated with poor overall survival rate.

However, serum LDHB-positive NSCLC patients presented

higher recurrence-free survival rates than did LDHB-negative

cases, particularly those of the squamous cell carcinoma

subtype (Koh et al., 2017b). Deletion of the LDHB gene

inhibited tumor initiation and progression through

mitochondrial DNA damage in a genetically engineered

NSCLC mouse model with combined p53 knockout and

KRAS (G12D) overexpression (Deng et al., 2022; Stine et al.,

2022).

Monocarboxylate transporter

Monocarboxylate transporters (MCTs) belong to the

SLC16A family. MCT1-4 facilitates the membrane-crossing

exchange of lactate (Payen et al., 2020). MCT1 and MCT4 are

the main functional isoforms of MCTs in cancer and are

associated with tumor invasion and metastasis (Sun X.

et al., 2020). In NSCLC, overexpressed MCT4 was detected

in P29mtB82M human cancer cells (Takenaga et al., 2021),

and MCT4-neutralizing antibodies significantly inhibited

cell proliferation in glycolysis-preference CL1-5 and

Hop62 cells in a concentration-dependent manner (Kuo

et al., 2020). Additionally, MCT2 and GLUT1 were

reported to be significantly co-overexpressed in

adenocarcinomas relative to other NSCLC subtypes

(Giatromanolaki et al., 2017).

In summary, key glycolytic enzymes play critical roles in

cell proliferation, invasion, and metastasis in NSCLC. Most

of the key glycolytic enzymes anomalously expressed in

NSCLC could be potential drug development targets. In

particular, LDHB may serve as a specific prognostic

predictor in the squamous cell carcinomas subtype of

NSCLC. The function of LDHB remains ambiguous in

other tumor cells, such as triple-negative breast cancer

(TNBC) (Naik and Decock, 2020). In addition, targeting

both MCT2 and GLUT1 might be promising in the

treatment of the adenocarcinoma subtype of NSCLC.

Furthermore, PFKM might be a prognostic predictor in

postoperative NSCLC patients.

The regulation and biomarkers of
glycolysis in NSCLC

Since glycolysis metabolism reprogramming is common in

cancers including NSCLC, the identification of biomarkers and

regulators associated with key glycolytic enzymes contributes to

the discovery and evaluation of effective therapeutic approaches,

particularly biomarkers correlated with the diagnosis and

outcome prediction of NSCLC.

Glycolytic enzyme-regulated biomarkers

GFPT2
The glucose uptake-related gene glutamine-fructose-6-

phosphate transaminase 2 (GFPT2) encodes the rate-limiting

enzyme glutamine-fructose-6-phosphate aminotransferase 2

(GFAT2) in the hexosamine biosynthesis pathway. GFPT2 is a

GLUT1-independent prognostic predictor in NSCLC patients

and functions as a key glucose-uptake mediator. Overexpressed

GFPT2 has been detected in cancer-associated fibroblasts in lung

adenocarcinoma and, specifically, regulates metabolic

reprogramming in this NSCLC subtype (Zhang et al., 2018).

SIX1
Sine oculis homeobox homolog 1 (SIX1) is a transcription

factor associated with aerobic glycolysis during tumor growth.

SIX1 has been shown to be highly expressed in A549 cells, and

SIX1 knockdown in mouse embryos has resulted in the

decreasing protein activities of various glycolysis-related

enzymes such as HK2, GLUT1, and LDHA (Li et al., 2018a).

IL-33
Overexpression of IL-33, which has been suggested to

correlate with tumor progression in humans, facilitates tumor

growth and metastasis by upregulating GLUT1 and,

consequently, enhancing glycolysis in NSCLC nude mice

(Wang et al., 2016).

DPPA4
Developmental pluripotency-associated 4 (DPPA4) was

found to be a poor prognostic factor in NSCLC patients due

to the enhancement of glycolytic metabolism via increased

activity of LDHB, HK2, and GLUT4 (Li L. et al., 2019).

NQO1
NADPH quinone oxidoreductase 1 (NQO1) was reported to

be a poor prognostic biomarker based on metabolomic analysis

in NSCLC A549 cells (Cheng et al., 2018). NQO1 was

overexpressed in NSCLC, and the knockdown of the NQO1

gene expression by its specific siRNA inhibited cell proliferation

and tumor glycolysis metabolism in A549 cells by

downregulating HK2 expression (Cheng et al., 2018).
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OCT-1
The high expression of octamer transcription factor-1 (OCT-

1) is a key feature associated with poor survival rate in NSCLC

patients. Glycolysis metabolism was shown to be facilitated by

the overexpression of OCT-1 and activation of HK2 in

H1299 cells (Li et al., 2021).

CD147/basigin
CD147 or basigin (BSG) acts as a molecular chaperone and is

responsible for the transport of lactate from the cytoplasm to the

plasma membrane, followed by MCT-mediated transport to

extracellular matrix. The MCT1/4 expression level and

intracellular glycolysis rate were reduced in CD147/BSG-

knockout A549, H1975, and H292 cell lines (Granja et al., 2015).

Transcription factors MYC and HIF-1α and
their related molecules

Hypoxia-inducible transcription factor-1 alpha (HIF-1α) is a
transcription factor overexpressed in multiple cancer types and

plays an important role in lung cancer metabolism by promoting

tumor survival (Jun et al., 2017). MYC proto-oncogene (MYC) is

a pan-cancer oncogene and is aberrantly amplified in lung cancer

(Massó-Vallés et al., 2020). Most of the key glycolytic enzymes

are affected by MYC and HIF-1α in tumor glycolysis metabolism

(Stine et al., 2015; Soni and Padwad, 2017).

TRAF6
Tumor necrosis factor receptor-associated factor 6

(TRAF6) is a biomarker linked with poor prognosis in

NSCLC patients (Sun et al., 2019). Downregulation of

TRAF6 gene expression by specific shRNA-mediated RNA

interference produced anti-tumor effects in the NSCLC cell

lines A549 and NCI-H358 and in A549-transplanted BALB/ca

nude mice through the activation of the Akt-HIFα pathway

(Feng et al., 2021). In TRAF6-knockdown cells,

HK2 decreased and deficient HIF-1α was induced, and

intracellular glycolysis metabolism was attenuated,

accompanied by glucose consumption and lactate

production (Feng et al., 2021).

KLF5
Knockdown of Krüppel-like factor 5 (KLF5) gene expression

in NSCLC cell lines H1299 and A549 relieved chemotherapy

(cisplatin) resistance mediated by hypoxia, in which HIF-1α was

suppressed, via inhibition of the phosphoinositide 3-kinase

(PI3K)/AKT/mammalian target of rapamycin (mTOR)

signaling pathway (Gong et al., 2018).

NOX4
NADPH oxidase 4 (NOX4) was highly expressed in A549 cells

and promoted c-Myc-dependent glycolysis via the activation of the

reactive oxygen species (ROS)/PI3K/Akt signaling pathway and the

pentose phosphate pathway (Zeng et al., 2016).

RFP180
Ring finger protein 180 (RFP180) is a potential anti-tumor

target, and low expression of RFP 180 indicates poor survival

rates in NSCLC patients (Ding et al., 2022). Upregulation of

RFP180 impaired glycolysis and proliferation in H292 cells, and

similar anti-tumor effects of RFP180 were also shown in the

H358 cell-injected xenograft nude mice model (Ding et al., 2022).

The fundamental basis of RFP180’s anti-tumor effect could be

attributed to the ubiquitin-dependent degradation of c-Myc

(Ding et al., 2022).

EHD1
Downregulation of Eps15 homology domain 1 (EHD1)

attenuated glycolysis and tumor growth in A549 cells, NCI-

H1299 cells, and a xenograft mouse model. EHD1 promoted

tumor progression through the activation of 14-3-3ζ/β-catenin/
c-Myc signaling (Abuduwaili et al., 2022).

Oncogenes EGFR and KRAS and their
related molecules

Although EGFR and KRAS are associated with many tumors

and have been shown to play important roles in NSCLC, they are

also very important in glycolysis regulation.

EGFR
Epidermal growth factor receptor (EGFR) has been identified

as an oncogene in recent decades. About 20% EGFR activation

mutations have been identified in advanced NSCLC cases (Dogan

et al., 2012). Autophagy caused by c-Jun N-terminal kinase (JNK)

induces EGFR degradation, suggesting the therapeutic potential

of the mitogen-activated protein kinase (MAPK)/JNK pathway

in EGFR-activated NSCLC (Kim et al., 2018). The metabolic

activity parameters MTV and TLG were used as predictors for

TKI drug sensitivity and treatment outcomes in EGFR-mutant

NSCLC patients (Jiang et al., 2022).

ALDOA
Aldolase A (ALDOA) presents high expression levels in

NSCLC, particularly in squamous cell carcinoma. Fu et al.

(2018) found that ALDOA promoted cell proliferation by

increasing aerobic glycolysis through the activation of the

EGFR/MAPK signaling pathway in H157 and H1299 cells.

CPS1
Pham-Danis et al. (2019) found that inhibition of the urea

cycle enzyme CPS1 synergistically enhanced the suppressing

effects of EGFR inhibitor on glycolysis and tumor growth in

EGFR-mutant PC9 and HCC4006 cell lines.
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PFKFB3
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3

(PFKFB3), a regulator of EGFR signaling, is overexpressed in

EGFR-mutant cells in PC9 and HCC827. The exposure of EGFR

tyrosine kinase inhibitor (TKI) in H522 and PC9 cells led to the

upregulation of PFKFB3 expression. The inhibition of both

EGFR (TKI) and PFKFB3 (PFK158) enhanced anti-tumor

efficacy in NSCLC (Lypova et al., 2019). Thus, the

combination of PFKFB3 inhibitor and EGFR TKI is a

prospective treatment strategy in NSCLC.

PDK1
Similarly, the pyruvate dehydrogenase kinase 1 (PDK1)

inhibitor Cpd64, when combined with EGFR TKI, improved

anti-cancer effects in EGFR-mutant NCI-H1975 and NCI-H1650

cell lines and in a xenograft mouse model via the improvement of

oxidative phosphorylation and mitochondrial respiration (Wang

F. et al., 2021).

KRAS
KRAS mutations have been discovered in multiple cancer

types, including NSCLC, and are related to cancer metabolism

reprogramming (e.g., promotion of glutaminolysis and

glycolysis) (Kawada et al., 2017). KRAS (G12D) mutation

significantly increased glycolysis-associated gene expression

and resulted in enhanced glucose uptake and lactate

generation in mouse embryonic fibroblasts (Kerr et al., 2016).

Kim et al. reported that KRAS and tumor suppressor serine/

threonine kinase 11 (LKB1/STK11) co-mutations had high risks

of metastasis and metabolic rewiring through activation of the

hexosamine biosynthesis pathway, according to data from

metabolome and transcriptome profiles in mouse and human

tumors. Furthermore, the silencing of GFPT2 expression

inhibited the cell growth and tumor survival in KRAS/LKB1-

co-mutant H460 andH2122 cells and co-mutant mice (Kim et al.,

2020). Emanuela Pupo et al. found that KRASmutants presented

distinctive metabolic profiles compared with wild types in tumors

(Pupo et al., 2019). Therefore, glycolysis metabolism-related

enzymes are potential therapeutic targets for KRAS-mutant

NSCLC.

Immune- and inflammation-related
molecules

PD-1/PD-L1
PD-1/PD-L1 was detected to be overexpressed in NSCLC

patients, and high expression of F-FDG PET/CT and PD-L1 was

positively correlated with poor disease free survival (DFS) (Grizzi

et al., 2019; Wang et al., 2020). In addition, high expression

of PD-1/PD-L1 in cancer cells and tumor infiltrating

lymphocytes (TILs) was negative-correlated with lactate

dehydrogenase 5 (LDH5) and positive-correlated with HK2

and monocarboxylate transporter 2 (MCT2) Thus, PD-1/PDL-

1 accompanied with glycolysis related markers, such as LDH5,

act as prognostic and immunotherapy-outcome predictors in

NSCLC (Giatromanolaki et al., 2019).

ISLR
High expression of leucine-rich repeat (ISLR) was associated

with lower survival rates in NSCLC patients. The silencing of

ISLR suppressed glycolysis, proliferation, invasion, and

migration in A549 cells by activating the IL-6/JAK/

STAT3 signaling pathway (Zhang P. et al., 2021).

NALP3
Inflammasome activator NLR family pyrin domain

containing 3 (NALP3) depletion switched glucose metabolism

from aerobic glycolysis to oxidative phosphorylation through

interaction with DNA methyltransferase 1 associated protein 1

(DMAP1), which modulated transcription regulator DNA

(cytosine-5)-methyltransferase 1 (DNMT1) in H1299 and

A549 cells (He et al., 2020).

Cell survival-related molecules

ENO1
The high expression of glycolytic enzyme alpha-enolase

(ENO1), a key biomarker in tumor glycolytic metabolism,

dramatically promoted cell growth and migration in

A549 cells by activating the FAK/PI3K/AKT signaling

pathway (Fu et al., 2015).

Barx2
The expression of Human BarH-like homeobox 2 (Barx2), a

tumor suppressor linked to the Wnt/β-catenin signaling

pathway, was relatively lower in tumor samples than in

adjacent samples in NSCLC patients, and low

Barx2 expression is associated with poor prognosis. Moreover,

aerobic glycolysis was enhanced by the downregulation of Barx2,

leading to increased cell proliferation, migration, and invasion in

A549 cells (Chen et al., 2018).

TRIM59
The downregulation of the oncogene tripartitemotif-containing

59 (TRIM59) reduced glycolysis and reversed cisplatin resistance in

A549 cells via the suppression of the PTEN ubiquitination and the

inhibition of AKT/HK2 activities (He and Liu, 2020).

Hsp27
Argpyrimidine is an advanced glycation end product

resulting from the high glycolysis rate in tumor cells.

Argpyrimidine-modified heat shock protein 27 (Hsp27)

facilitated apoptosis evasion in SW1573 cells (van Heijst et al.,

2006).
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TABLE 1 Glycolysis-related biomarkers in NSCLC.

No. Target Related
target and pathway

Publication
year

DOI

1 RING finger protein 180 (RNF180) c-Myc 2022 10.1186/s12957-022-02599-x

2 UDP-glycosyltransferase 8(UGT8) Transcription factor SOX9 2022 10.1016/j.bbrc. 2021.11.099

3 Sine oculis homeobox homolog 1 (SIX1) HK2/LDHA 2022 10.3892/ol. 2022.13304

4 TNF receptor-associated factor 6 (TRAF6) Akt-HIFα Pathway 2021 10.1155/2021/3431245

5 Eps15 homology domain 1 (EHD1) β-catenin/c-Myc signaling 2021 10.1016/j.canlet. 2021.06.023

6 Octamer-transcription factor-1 (OCT-1) HK2 2021 10.1007/s11010-021-04171-9

7 Leucine-rich repeat (ISLR) IL-6/JAK/STAT3 signaling pathway 2021 10.3892/ijmm. 2021.5055

8 Josephin domain containing 2 (JOSD2) Deubiquitinase 2021 10.1038/s41418-020-00639-1

9 Protein kinase cAMP-activated catalytic subunit
alpha(PRKACA)

TPI Ser58 2021 10.1016/j.celrep. 2021.110137

10 Phosphofructokinase (PFKP) Rate-limiting enzyme 2021 10.3892/mmr. 2020.11712

11 Tripartite motif-containing 59 (TRIM59) PTEN/AKT/HK2 2020 10.1016/j.gene. 2020.144553

12 NLR Family Pyrin Domain Containing 3
(NALP3)

DNMT1 2020 10.1016/j.lfs. 2019.117165

13 Carbamoyl phosphate synthetase I (CPS1) Urea cycle enzyme 2019 10.1158/1541-7786.Mcr-18-
1068

14 6-Phosphofructo-2-kinase/fructose-2,6-
bisphosphatase (PFKFB3)

EGFR signaling 2019 10.1074/jbc.RA119.007784

15 Programmed cell death protein 1 (PD-1)/PD-L1 Immune checkpoint 2019 10.1007/s12032-019-1299-4

16 OTU deubiquitinase, ubiquitin aldehyde binding
2 (OTUB2)

Deubiquitinating enzymes 2019 10.7150/thno.29545

17 Developmental pluripotency-associated 4
(DPPA4)

LDHB 2019 10.3892/mmr. 2019.10272

18 PTEN-induced putative kinase 1 (PINK1) ROS 2019 10.1016/j.pharep. 2019.08.002

19 Krueppel-like factor 5 (KLF5) HIF-1α and PI3K/Akt/mTOR pathway 2018 10.1186/s12967-018-1543-2

20 Aldolase A (ALDOA) EGFR/MAPK pathway 2018 10.1186/s40880-018-0290-3

21 Epidermal growth factor receptor (EGFR) EGFR 2018 10.1158/0008-5472.Can-18-
0117

22 Glutamine-fructose-6-phosphate transaminase 2
(GFPT2)

Rate-limiting enzyme of the hexosamine biosynthesis
pathway (HBP)

2018 10.1158/0008-5472.Can-17-
2928

23 NAD(P)H:quinone oxidoreductase 1 (NQO1) HK2 2018 10.1016/j.bbrc. 2017.12.160

24 Pyruvate dehydrogenase kinase 1 (PDK1) EGFR 2018 10.1016/j.ejphar. 2018.09.016

25 BarH-like homeobox 2 (Barx2) Wnt/β-catenin pathway 2018 10.1111/1759-7714.12593

26 PPARG coactivator 1 alpha (PGC-1alpha) GAPDH 2017 10.1038/s41598-017-17009-6

27 NADPH oxidase 4 (NOX4) c-Myc and ROS/PI3K/Akt signaling pathway 2016 10.1016/j.freeradbiomed.
2016.10.500

28 Interleukin 33 (IL-33) GLUT1/IL-33/ST2 pathway 2016 10.1016/j.bbrc. 2016.09.081

29 Alpha-enolase (ENO1) FAK-mediated PI3K/AKT pathway 2015 10.1186/s13045-015-0117-5

30 CD147/BASIGIN (BSG) MCT1/4 2015 10.18632/oncotarget.2862

31 Kirsten-Ras (KRAS) (GAPDH/PKM2/LDH-A/LDH-B) and pentose
phosphate pathway (PPP)

2014 10.1021/pr500327v

32 Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH)

GAPDH 2013 10.1097/
CAD.0b013e32835e3378

33 Fructose-1,6-bisphosphatase (FBP1) GAPDH-associated cell cycle (GACC) 2013 10.1371/journal.pone.0061262

34 Hypoxia-inducible factor 1 subunit alpha
(HIF-1α)

Glycolysis pathway 2006 10.1186/1471-2407-6-26

35 Heat shock protein 27 (Hsp27) Apoptosis 2006 10.1016/j.canlet. 2005.10.042
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Ubiquitin-related molecules

JOSD2
Krassikova et al. (2021) found that Josephin domain

containing 2 (JOSD2) facilitated the proliferation of A549 cells

by deubiquitinating the metabolic enzyme complex of ALDOA,

phosphofructokinases PFK-1 and PFKL, and phosphoglycerate

dehydrogenase (PHGDH).

OTUB2
Similarly, the deubiquitinating enzyme OTU deubiquitinase,

ubiquitin aldehyde binding 2 (OTUB2) is a glycolytic stimulator

which indicates poor survival outcome in NSCLC patients.

Overexpression of OTUB2 enhanced glycolysis and promoted

cell growth, migration, and invasion via the AKT/mTOR

signaling pathway in A549 and H1299 cells and a xenograft

mouse model (Li J. et al., 2019).

Others

Apart from the diverse biomarkers described earlier, a variety of

additional targets and underlyingmechanisms have been reported to

be correlated with glycolysis in NSCLC. Protein kinase cAMP-

activated catalytic subunit alpha (PRKACA) enhances glycolysis by

activating triosephosphate isomerase (TPI) serine 58 (Ser58) (Duan

et al., 2021). Ji et al. (2022) found that UDP-glycosyltransferase 8

(UGT8) enhanced tumor growth by promoting glycolysis in

A549 cells, H460 cells, and a xenograft mouse model, and the

depletion of UGT8 diminished tumor malignancy in vitro and

FIGURE 2
Biomarkers of glycolysis in NSCLC. RNF180, ring finger protein 180; UGT8, UDP-glycosyltransferase 8; SIX1, sine oculis homeobox homolog 1;
TRAF6, TNF receptor-associated factor 6; EHD1, Eps15 homology domain 1; OCT-1, octamer-transcription factor-1; ISLR, leucine-rich repeat;
JOSD2, Josephin domain containing 2; PRKACA, protein kinase cAMP-activated catalytic subunit alpha; PFKP, phosphofructokinase; TRIM59,
tripartite motif-containing 59; NALP3, NLR family pyrin domain containing 3; CPS1, carbamoyl phosphate synthetase I; PFKFB3, 6-
phosphofructo-2-kinase/fructose-2,6-bisphosphatase; PD-1, programmed cell death protein 1; PD-l1, programmed death-ligand 1; OTUB2, OTU
deubiquitinase, ubiquitin aldehyde binding 2; DPPA4, developmental pluripotency-associated 4; PINK1, PTEN-induced putative kinase 1; KLF5, factor
5; ALDOA, aldolase A; EGFR, epidermal growth factor receptor; GFPT2, glutamine-fructose-6-phosphate transaminase 2; NQO1, NAD(P)H quinone
oxidoreductase 1; PDK1, pyruvate dehydrogenase kinase 1; BARX2, BarH-like homeobox2; PGC-1alpha, pPARG coactivator 1 alpha; NOX4, NADPH
oxidase 4; IL-33, interleukin 33; ENO1, alpha-enolase; BSG, cD147/basigin; KRAS, Kirsten-RAS; GAPDH, glyceraldehyde-3-phosphate
dehydrogenase; FBP1, fructose-1,6-bisphosphatase; HIF-1α, hypoxia-inducible factor 1 subunit alpha; Hsp27, heat shock protein 27.
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in vivo. The depletion of PTEN-induced putative kinase 1 (PINK1)

via shRNA in A549 cells suppressed tumor malignancy and

increased the sensitivity of glycolysis inhibitor 3-BP by disrupting

ATP production, promoting ROS generation, and inducing

apoptosis (Dai et al., 2019). The glycolysis-related biomarkers

reported earlier are summarized in Table 1 and Figure 2.

Current treatments and candidates
targeting glycolysis in NSCLC

Despite the insufficiencies of metabolic treatment in NSCLC,

various current treatments and candidates—including

chemotherapy, targeting therapy, anti-tumor small molecules,

biopharmaceutical therapy, and natural products—present

potent interventions in glycolysis. We summarize relevant

details drawn from previous studies in Tables 2-4 and Figure 3.

Chemotherapy and its resistance

Chemotherapy is the mainstream treatment approach in most

cancer types due to its significant effectiveness. Glycolysis is revealed

to be correlated with the clinical outcomes of chemotherapy.

According to gene polymorphism research in NSCLC patients,

the glycolysis-related genes phosphofructokinase liver type

(PFKL) and glucose phosphate isomerase (GPI) are correlated

with outcomes of patients treated with first-line

paclitaxel–cisplatin therapy, and genetic polymorphism in ATP-

binding cassette subfamily B member 1 (ABCB1) and HIF-1α
predicted the efficacy of paclitaxel-carboplatin therapy (Park

et al., 2016; Choi et al., 2020). Galactose-conjugate (trans-R,R-

cyclohexane-1,2-diamine)-2-chloromalonato-platinum (II) complex

(Gal-Pt) outperformed oxaliplatin and cisplatin in antitumor

activity by affecting the glucose uptake target GLUTs in

H460 cells and a xenograft model (Wu et al., 2016). These

studies indicate that glycolysis-related genes could be adopted

as prediction factors for chemotherapy outcomes and as potential

targets for the enhancement of drug effectiveness.

Moreover, glycolysis is associated with chemotherapy resistance.

The molecule 5-Fu, a pyrimidine analog for pan-cancer treatment,

activated glycose metabolism in resistant A549 cells, while cisplatin-

resistant cells suppressed glycose metabolism (Zhao et al., 2014).

Hypoxia-induced cisplatin-resistant A549 cells featured a high

expression of PKM2, which contributed to tumor glycose

metabolism reprogramming and promoted acidic TME and cell

proliferation in NSCLC cells A549, accelerating cisplatin resistance

effects (Wang D. et al., 2021).

Targeting therapy

Various small molecules or antibodies which specifically

target the biomarkers of glycolysis have been investigated as

FIGURE 3
Current treatments and candidates targeting glycolysis in NSCLC. HK2, hexokinase 2; PKM2, pyruvate kinase M2; LDHA, lactate dehydrogenase
A; SOCS2, suppressor of cytokine signaling 2; ABCE1, ATP-binding cassette subfamily Emember 1; VEGF, vascular endothelial growth factor; HIF-1α,
hypoxia-inducible factor 1 subunit alpha; c-Myc, MYC proto-oncogene; METTL3, methyltransferase 3.
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NSCLC-targeting treatments. Gefitinib, a tyrosine kinase

inhibitor (TKI), suppressed NSCLC cell growth by impairing

cellular glycolysis and inhibiting the PI3K-Akt-mTOR signaling

pathway in A549 andH1975 cells (Zhou et al., 2020). The efficacy

of the anaplastic lymphoma kinase (ALK) inhibitor crizotinib

was suspended by HK2-mediated glycolysis, and the inhibition of

glycolysis and AKT/mTOR signaling pathway dramatically

improved crizotinib sensitivity in both ALK (+) H3122 and

H2228 cells (Lin et al., 2021). As an oncogene, AKT kinase

was overexpressed in multiple tumors, including NSCLC, and

facilitated glycolysis metabolism in tumor cells (Elstrom et al.,

2004). The combination of AKT inhibitor and microtubule-

targeting agents (MTAs) caused a synergic anti-tumor effect

in multiple paclitaxel-resistant or anti-EGFR-resistant NSCLC

cell lines (A549, A549/EpoB40, HCC827, H1650, and

H1975 cells) and human NSCLC xenografts (Le Grand et al.,

2017). The combination of glycolysis inhibitor 2-deoxy-

d-glucose (2DG) with the EGFR TKI afatinib enhanced the

sensitivity of H1975 and PC9-GR cells with an EGFR T790M

mutation by inhibiting glycolysis through suppression of the

AMPK/mTOR/Mcl-1 signaling pathway (Kim et al., 2013). The

molecule 5-(n-(8-methoxy-4-quinolyl) amino) pentyl nitrate

(5MPN), a selective inhibitor of glycolytic regulatory enzyme

6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4

(PFKFB4), effectively attenuated glycolysis and tumor growth

in C57BL mice, with high oral bioavailability (Chesney et al.,

2015). THZ1, a cyclin-dependent kinase 7 (CDK7) inhibitor,

induced cell cycle arrest and apoptosis in H1299, A549, H292,

and H23 NSCLC cells, which is attributed to the blockage of

glycolysis-related pathways (Cheng et al., 2019). These studies

indicate the promising therapeutic efficacy of cancer metabolism

intervention, along with targeting therapy.

Anti-tumor small molecules

Methyl N-(6-phenylsulfanyl-1H-benzimidazol-2-yl) carbamate

(fenbendazole, FZ), a microtubule-interfering agent, significantly

inhibited the glycose uptake genes GLUT and HK2 in A549 cells

and impeded the growth of human xenografts in a nu/nu mice

model (Dogra et al., 2018). Albendazole (ABZ), a broad-

spectrum benzimidazole carbamate anthelminthic and a

microtubule inhibitor, presented similar anti-glycolysis effects

with FZ by intervening in HIF-1α-dependent glycolysis. ABZ
suppressed A549 and H1299 NSCLC cell growth and decreased

VEGF and HIF-1α expression in an A549 xenograft mouse

model (Zhou et al., 2017). These studies confirm the critical

role of glycolysis intervention and tumor-microenvironment

metabolism in NSCLC treatment.

The metabolic agent dichloroacetate (DCA), an inhibitor of

pyruvate dehydrogenase, has demonstrated therapeutic potential

in NSCLC. Aerobic glycolysis was ameliorated in DCA-treated

A549 and H1299 cells, with decreased lactate generation and

glucose consumption (Allen et al., 2015). The combination of

angiogenesis inhibitor 2-methoxyestradiol (2-ME) with DCA

showed synergistic anti-tumor effects in A549 cells by

reducing the signaling transduction of HIF-3α and, partially,

of HIF-1α (Romero et al., 2020). The combination of the energy

metabolism inhibitor 3-bromopyruvate (3-BrPA) with the

mTOR inhibitor rapamycin synergistically suppressed cell

growth in H1299 and H23 cell lines and tumor growth in an

A/J mouse model, respectively, indicating the promising

therapeutic potential of both mTOR signaling and glycolysis

inhibition in NSCLC (Zhang et al., 2015). Therefore, multiple

anti-tumor small molecules increase their effects in NSCLC by

directly or indirectly targeting the regulation of tumor glycolysis

metabolism. Intervention in glycolysis could not only induce cell

apoptosis but also reverse drug resistance. The anti-tumor small

molecules discussed earlier are listed in Table 2.

Biopharmaceutical therapy

The development of biotechnologies and biopharmaceutics

for cancer treatment has grown rapidly in recent years. Ad-

apoptin is an oncolytic adenovirus that impairs AMPK-

dependent glycolysis in NSCLC. Ad-apoptin inhibited tumor

cell invasion andmigration in A549 and NCI-H23 cells, as well as

suppressing tumor growth in nude mice. The mechanism

underlying the anti-NSCLC effect of ad-apoptin is the

inhibition of glucose uptake and lactate generation through

suppression of the AMPK/mTOR signaling pathway (Song

et al., 2021).

Zhang et al. developed an effective TME biomimetic

nanoplatform for NSCLC treatment, which was a hybrid

nanovesicle loaded with siRNA against glycolytic regulator

phosphoglycerate mutase 1 (PGAM1) and the chemotherapeutic

drug docetaxel (DTX). This pH-driven siRNA and DTX hybrid

nanoplatform ensured precise drug release and synergistic glycolysis

impairment in A549 cells and impeded tumor growth in A549-cell

tumor-bearing nude BALB/c mice (Zhang W. et al., 2021).

Moreover, non-coding RNAs including microRNA (miRNA),

circular RNA (circRNA), and long non-coding RNA (lncRNA)

have beenwidely studied for the impairment of glycolysis inNSCLC.

Most miRNAs have targeted key glycolytic enzymes such as HK2

(miR-143 and miR-206) (Fang et al., 2012; Jia et al., 2020), LDHA

(miR-449a and miR-16-5p) (Li et al., 2018b; Arora et al., 2022), and

HIF1α (miR-21, miR-182, and miR-199a) (Ding et al., 2013; Jiang

et al., 2016; Wang et al., 2018). The circRNA and lncRNA target

sequences have presented diverse glycolytic biomarkers under

various molecular mechanisms in NSCLC. For instance, the

activation of circ_0008797 showed anti-glycolysis effects in

A549 and H1229 cells, as well as in a nude mouse model, by

sponging miR-301a-3p and targeting suppressor of cytokine

signaling 2 (SOCS2) (Abuduwaili et al., 2022). The lncRNA

HOXA transcript antisense RNA myeloid-specific 1
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(HOTAIRM1), which sponges the miR-498/ATP-binding cassette

subfamily E member 1 (ABCE1), attenuated glycolysis metabolism

in NCI-H1299 and A549 cells (Chen et al., 2021). Additionally, the

regulation of miR-498 might reverse the resistance effects of

osimertinib through the inhibition of the key glycolytic enzymes

GLUT1, HK2, and LDHA in NCI-H1299 and A549 cells (Ma et al.,

2020). Thus, various biologics have been reported to be correlated

with the regulation of intracellular glycolytic metabolism. Although

most of the previous research studies have been conducted in vitro,

biopharmaceutics targeting glycolysis are a promising strategy for

cancer treatment. The information detailed earlier is listed in

Table 3.

Natural products

Natural compounds or extracts from animals, plants, or

minerals, have been shown to have multiple medicinal and

pharmacological activities. Natural products are a precious

library for anti-tumor drug discovery, which has been a

cutting-edge research field in the recent decades. In research

into NSCLC drug candidate discovery, various natural products

have been identified with potential for NSCLC treatment via

their anti-glycolysis activities. Shikonin, an active ingredient

derived from Lithospermum erythrorhizon, dampened

intracellular glycolysis in A549 and PC9 cells. Shikonin

improved the sensitivity of cisplatin in NSCLC mice by

inhibiting the key glycolytic enzyme PKM2. The combination

of shikonin with cisplatin synergistically inhibited PKM2 and

GLUT1, according to data from immune-histological assays of

tumor tissues. Furthermore, shikonin affected the glycolysis

regulator PFKFB2 at the transcriptome level in A549 and

H446 cells (Sha et al., 2021; Dai et al., 2022). Alpha-hederin is

derived from the Pulsatilla chinensis (Bunge) Regel

(Ranunculaceae). Fang et al. (2021) found a-hederin to

demonstrate anti-proliferation effects in A549, NCI-H460, and

NCI-H292 cells and in a xenograft mouse model by suppressing

sirtuin 6 (SIRT6)-correlated glycolysis. The natural flavonoid

deguelin is extracted fromDerris trifoliata Lour, while resveratrol

is an active ingredient derived from Veratrum grandiflorum.

Deguelin and resveratrol have been studied in multiple cancer

types for years and are well-known anti-tumor compounds with

inhibitory properties against AKT1 andHK2-mediated glycolysis

in the human NSCLC cell lines H460, H1650, and HCC827 (Li

et al., 2016; Li et al., 2017). Jolkinolide B (JB), triptolide, and

oroxylin A are bioactive compounds extracted from Euphorbia

fischeriana Steud, Tripterygium wilfordiiHook F, and Scutellariae

radix, respectively. These three natural compounds exhibited

anti-metastasis effects in H1299, NCI- H460, and A549 cells and

in nude mice, and the underlying mechanism is their

intervention in intracellular glycolysis and the AKT/mTOR

pathway (Wei et al., 2013; Gao and Han, 2018; Hamdi et al.,

2018). Ligustilide, a derivative of Angelica sinensis, inhibited cell

proliferation in H1299 and A549 and attenuated tumor growth in

nude mice via inhibition of the PTEN/AKT signaling pathway

(Jiang et al., 2021). The antimalarial drug dihydroartemisinin

(DHA), which is extracted from Artemisia annua, showed

cytotoxicity in diverse tumor models, including NSCLC. DHA

inhibited glucose uptake and glycolysis in NCI-H358, A549, and

PC-9 cells by downregulating GLUT1, mTOR, and S6 ribosomal

protein through suppression of the ERK/c-Myc signaling

pathway (Mi et al., 2015; Zhang et al., 2022). Beta-elemene,

which is an essential oil of Curcuma wenyujin, inhibited miR-

301a-3p-inducedWarburg effects in NSCLC cell line NCI-H1650

by activating adenosine monophosphate-activated protein kinase

a (AMPKα) (Li et al., 2020). Tanshinone IIA (Tan IIA), the active

TABLE 2 Small molecules and novel preparations targeting glycolysis in NSCLC.

No. Drug name Target Publication
year

Category DOI

1 Caudatin Raf/MEK/ERK pathway 2022 Chemical molecular 10.1080/13880209.2022.2050768

2 Crizotinib Anaplastic lymphoma kinase (ALK)
inhibitor

2021 Chemical molecular 10.1111/1759-7714.14184

3 Gefitinib EGFR 2020 Chemical molecular 10.12122/j.issn.1673-
4254.2020.06.17

4 Dichloroacetate
(DCA)

HIF-3α 2020 Chemical molecular 10.1155/2020/3176375

5 Fenbendazole Acetylcholinesterase (AChE) 2018 Chemical molecular 10.1038/s41598-018-30158-6

6 Albendazole HIF-1α/VEGF 2017 Chemical molecular 10.1007/s11010-016-2927-3

7 Gal-Pt GLUTs 2016 Chemical molecular
conjugate

10.1016/j.ejmech. 2016.01.016

8 Ad-apoptin AMPK/mTOR signaling pathway 2021 Oncolytic adenovirus 10.1016/j.yexcr. 2021.112926

9 siRNA and DTX Phosphoglycerate mutase 1 (PGAM1) 2021 Nanovesicle 10.1186/s12951-021-01085-y
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ingredient of Salvia miltiorrhiza, exhibited antitumor effects in

NSCLC cells A549 and H292 and xenograft BALB/c-nu/nu nude

mice by targeting the glycolytic mediator sine oculis homeobox

homolog 1 (SIX1), which is a poor-prognosis predictor in

NSCLC (Qi et al., 2022). The natural compound

piperlongumine, an active component of Piper longum L,

suppressed cell proliferation and colony formation in NSCLC

cells HCC827 and H1975 by inhibiting cellular glycolysis

and activating the apoptosis pathway. Additionally, the

blockage of HK2 and AKT1 was essential for the anti-tumor

effects of piperlongumine in a xenograft mouse model (Zhou

et al., 2019).

Natural extracts have also presented effective anti-cancer

effects in NSCLC through inhibition of glycolytic metabolism.

Calderón-Montaño et al. (2013) found that hydroalcoholic

extract from the leaves of Nerium oleander, a plant toxic to

livestock, demonstrated anti-tumor effects in A549 cells

through suppression of glycolysis. Lee et al. (2018) detected

that water-extracted branch from Cinnamomum cassia Blume,

which is widely used as a food additive or spice, suppressed

aerobic glycolysis in A549 and H1299 cells via inhibiting

pyruvate dehydrogenase kinase (PDHK), resulting in

increased ROS and mitochondrial damage and consequently

inducing cell apoptosis. Shenmai injection (SMI), which was

developed from the medicinal Chinese herbs Radix Ginseng

Rubra and Radix Ophiopogonis, is a commercially available

drug for treating cardiovascular diseases. Sun et al. found that

the combination of SMI with cisplatin increased the cisplatin

sensitivity of resistant A549/DDP cells by suppressing

glycolysis through inhibition of the AKT-mTOR-c-Myc

signaling pathway (Sun Y. et al., 2020). Thus, natural

products have shown inhibitory effects on glycolysis

TABLE 3 Non-coding RNAs targeting glycolysis in NSCLC.

No. RNA name Target Publication year Category DOI

1 miR-16-5p LDHA 2022 miRNA 10.1016/j.lfs. 2022.120722

2 miR-206 HK2 2020 miRNA 10.1093/jb/mvz099

3 miR-449a LDHA 2018 miRNA 10.3727/096504017 × 15016337254605

4 miR-182 HIF1α 2018 miRNA 10.1016/j.bbrc. 2018.06.035

5 miR-214 HK2/PKM2 2018 miRNA 10.1016/j.biopha. 2018.06.009

6 miR-124 AKT1/GLUT1/HK2 2018 miRNA 10.1177/1010428317706215

7 miR-512-5p Cyclin-dependent kinase inhibitor p21 2016 miRNA 10.3892/ijo. 2015.3279

8 miR-21 HIF1α 2016 miRNA 10.3892/mmr. 2016.5010

9 miR-199a HIF1α 2013 miRNA 10.1007/s11010-013-1795-3

10 miR-143 HK2 2012 miRNA 10.1074/jbc.M112.373084

11 circ_0008797 miR-301a-3p/SOCS2 2022 circRNA 10.1002/tox.23518

12 circ_0016760 miR-4295/E2F3 2022 circRNA 10.1089/cbr. 2020.3621

13 circ_0020123 miR-193a-3p/IRF4 2022 circRNA 10.4149/neo_2022_211013N1449

14 circEHD2 miR-3186-3p/FOXK1 2022 circRNA 10.1080/21655979.2022.2031385

15 circ_0006677 miR-578/SOCS2 2021 circRNA 10.3389/fphar. 2021.657053

16 circ_0000517 miR-330-5p/YY1 2021 circRNA 10.1002/kjm2.12440

17 circPUM1 miR-590-5p/METTL3 2021 circRNA 10.1080/15384101.2021.1934625

18 circ_0000735 miR-635/FAM83F 2021 circRNA 10.1080/01902148.2021.1881188

19 circSLC25A16 miR-488-3p/HIF-1α/LDHA 2020 circRNA 10.1038/s41419-020-2635-5

20 circ-ACACA miR-1183/BCL-2 2020 circRNA 10.3892/ijmm. 2020.4549

21 circ_0002130 miR-498/ABCE1 2020 circRNA 10.2147/ott.S243214

22 lnc-CYB561-5 HK2/PFK1 2022 lncRNA 10.1111/jcmm.17057

23 ABHD11-AS1 METTL3 2021 lncRNA 10.1002/jcp.30023

24 HOTAIRM1 miR-498/ABCE1 2021 lncRNA 10.1007/s13258-021-01052-9

25 LINC00243 miR-507/PDK4 2020 lncRNA 10.1007/s11010-019-03635-3

26 AC020978 PKM2/HIF1α 2020 lncRNA 10.7150/thno.43839

27 BCYRN1 miR-149/PKM2 2020 lncRNA 10.3892/mmr. 2020.10944

28 HOTTIP miR-615-3p/HMGB3 2019 lncRNA 10.1016/j.ejphar. 2019.172615

29 NORAD miR-136-5/E2F1 2019 lncRNA 10.3892/mmr. 2019.10210

30 LINC01123 miR-199a-5p/c-Myc 2019 lncRNA 10.1186/s13045-019-0773-y
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metabolism in cancer for multiple targets. However, the anti-

tumor effects of most natural products against NSCLC have

been determined in vitro. The combination of natural

compounds with current therapies is a promising direction

of studies, as well as in vivo study, and clinical study is needed

in the future. Detailed information is given in Table 4.

Conclusion and future perspectives

NSCLC is the leading cause of death in cancer. Glycolytic

metabolism heterogeneity is a critical feature of tumor

metabolism that can distinguish cancer cells from normal

cells. The reprogramming of glucose metabolism is

common in multiple tumors, including NSCLC. As in other

tumors, glycolysis represents the main metabolic process in

NSCLC, instead of oxidative phosphorylation. Thus, glycolysis

is vital for tumor cell survival, and targeting the inhibition of

glycolysis is promising in the treatment of NSCLC.

However, most of the key glycolytic enzymes are involved

in the progression of NSCLC, which means that the scope of

target selection is broad and its specificity difficult to

guarantee. The identification of appropriate targets and

biomarkers in glycolysis that are specific for NSCLC

treatment is still a challenge at present. However, high

expression of PDK1 is an independent prognostic factor in

NSCLC. LDHB is a potential specific target since it has been

reported as a positive survival predictor in NSCLC, although

the exact process of the lactate metabolism is complicated and

LDHB has also been revealed to be a risk factor in other tumor

cell types. Targeting both MCT2 and GLUT1 might be

promising in the treatment of the adenocarcinoma subtype

of NSCLC. PFKM might also be a prognostic predictor in

postoperative NSCLC patients. DPPA4, NQO1, GAPDH/MT-

CO1, PGC-1α, OTUB2, ISLR, Barx2, OTUB2, and

RFP180 might be biomarkers or prognostic predictors of

NSCLC. In addition, natural compounds or extracts may be

promising therapeutic approaches in targeting the multiple

TABLE 4 Natural products targeting glycolysis in NSCLC.

No. Drug name Target Publication
year

Category DOI

1 Shikonin PFKFB/PKM2 pathway 2022 Natural
compound

10.1080/
21655979.2022.2086378

2 Dihydroartemisinin ERK/c-Myc pathway 2022 Natural
compound

10.1016/j.bcp. 2022.114941

3 Tanshinone IIA Sine oculis homeobox homolog 1 (SIX1) 2022 Natural
compound

10.3892/ol. 2022.13304

4 Ligustilide PTEN/AKT signaling pathways 2021 Natural
compound

10.1016/j.taap. 2020.115336

5 α-Hederin SIRT6 2021 Natural
compound

10.1080/
13880209.2020.1862250

6 β-Elemene Adenosine monophosphate-activated
protein kinase α (AMPKα)

2020 Natural
compound

10.1042/bsr20194389

7 Piperlongumine HK2 2019 Natural
compound

10.7150/ijbs.31749

8 Jolkinolide B HK2/Akt/mTOR pathway 2018 Natural
compound

10.1002/jcb.26742

9 Triptolide HK2/Akt/mTOR pathway 2018 Natural
compound

10.1016/j.biopha.
2018.04.198

10 Deguelin HK2/AKT1 2017 Natural
compound

10.18632/oncotarget.15937

11 Resveratrol HK2/AKT1 2016 Natural
compound

10.1016/j.yexcr. 2016.11.002

12 Oroxylin A HK2/c-Src 2013 Natural
compound

10.1016/j.bbagen.
2013.03.009

13 Shenmai injection (SMI) AKT-mTOR-c-Myc signaling pathway 2020 Natural extract 10.1155/2020/9243681

14 Water-extract branch from Cinnamomum
cassia Blume

Pyruvate dehydrogenase kinase (PDHK) 2018 Natural extract 10.1016/j.jphs. 2018.10.005

15 Hydroalcoholic extract from the leaves of
Nerium oleander

Suppression of glycolysis 2013 Natural extract 10.1055/s-0032-1328715
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steps of glycolysis metabolism since natural products always

present multi-target properties.

Although current therapies including chemotherapy,

targeting therapy, and biopharmaceutical therapy have shown

dramatic effectiveness in the treatment of NSCLC, partially

through glycolysis suppression, the occurrence of drug

resistance during treatment is a crucial concern. Targeting

the enhancement of tumor glycolytic metabolism inhibition

may also be beneficial in reversing drug resistance and

enhancing the anti-tumor effects of current treatments in

NSCLC. Thus, the combination of natural products, small

molecules, and biopharmaceutics systems targeting the inhibition

of glycolysis with current therapeutic approaches might be a

promising strategy as in vivo and clinical studies accumulate in

the future.

In conclusion, targeting glycolysis might be a potential

therapeutic approach in NSCLC treatment, although finding

specific targets and biomarkers is still challenging at present.

The combination of glycolysis intervention with current

therapeutic approaches might increase treatment efficacy in

NSCLC patients.
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Glossary

ABCB1 ATP-binding cassette subfamily B member 1

ABCE1 ATP-binding cassette subfamily E member 1

ABZ albendazole

AChE acetylcholinesterase

ADP adenosine diphosphate

ALDOA aldolase A

ALK anaplastic lymphoma kinase

AMPK adenosine monophosphate-activated protein kinase

AMPKα adenosine monophosphate-activated protein kinase a

ATP adenosine triphosphate

Barx2 BarH-like homeobox 2

BSG basigin

CDK7 cyclin-dependent kinase 7

circRNA circular RNA

CPS1 carbamoyl phosphate synthetase I

CTC circulating tumor cell

DCA dichloroacetate

DHA dihydroartemisinin

DPPA4 developmental pluripotency-associated 4

DTX docetaxel

EGFR epidermal growth factor receptor

EHD1 eps15 homology domain 1

ENO1 alpha-enolase

ETC electron transfer chain

FBP1 fructose-1,6-bisphosphatase

FDG-PET F-fluorodeoxyglucose positron emission tomography

5MPN 5-(n-(8-methoxy-4-quinolyl) amino) pentyl nitrate

Gal-Pt galactose-conjugate (trans-R,R-cyclohexane-1,2-

diamine)-2- chloromalonato-platinum (II) complex

GAPDH glyceraldehyde-3-phosphate dehydrogenase

GFPT2 glutamine-fructose-6-phosphate transaminase 2

GLUT1 glucose transporter 1

GPI glucose phosphate isomerase

HIF-1α hypoxia-inducible transcription factor-1 alpha

HK hexokinase

Hsp27 heat shock protein 27

IL-33 interleukin 33

ISLR leucine-rich repeat

JB jolkinolide B

JNK c-Jun N-terminal kinase

JOSD2 Josephin domain containing 2

KLF5 Krũppel-like factor 5

KRAS Kirsten RAS

LDH lactate dehydrogenase

lncRNA long non-coding RNA

MAPK mitogen-activated protein kinase

MCT1-4 monocarboxylate transporter 1-4

miRNA microRNA

MTAs microtubule-targeting agents

MTH1 MutT homolog 1

mTOR mammalian target of rapamycin

MTV metabolic tumor volume

NADH nicotinamide adenine dinucleotide

NALP3 NLR family pyrin domain containing 3

NOX4 NADPH oxidase 4

NQO1 NADPH quinone oxidoreductase 1

NSCLC non-small cell lung cancer

OCT1 octamer-transcription factor 1

OTUB2 OTU deubiquitinase, ubiquitin aldehyde binding 2

PD-1 programmed cell death protein 1

PDK1 pyruvate dehydrogenase kinase 1

PFKFB3 6-phosphofructo-2-kinase/fructose-2,6-

bisphosphatase 3

PFKL phosphofructokinase, liver type

PFKM phosphofructokinase, muscle type

PFKP phosphofructokinase

RFP180 ring finger protein 180

PGAM1 phosphoglycerate mutase 1

PINK1 PTEN-induced putative kinase 1

PI3K phosphoinositide 3-kinase

PKLR liver and red blood cell isoform

PKM1 muscle isoform pyruvate kinase M1

PKM2 pyruvate kinase M2

PRKACA protein kinase cAMP-activated catalytic subunit

alpha

ROS reactive oxygen species

SCLC small cell lung cancer

SIX1 sine oculis homeobox homolog 1

SOCS2 suppressor of cytokine signaling 2

STK11 serine/threonine kinase 11

Tan IIA tanshinone IIA

TCA tricarboxylic acid

TKI tyrosine kinase inhibitor

TLG total lesion glycolysis
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TME tumor microenvironment

TRAF6 TNF receptor-associated factor 6

TRIM59 tripartite motif-containing 59

2DG 2-deoxy-d-glucose

2-ME 2-methoxyestradiol

3-BrPA 3-bromopyruvate

UGT8 UDP-glycosyltransferase 8

VEGF vascular endothelial cell growth factor
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