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Glioma is the most common malignant tumor in the central nervous system.

The impact of metabolism on cancer development and the immune

microenvironment landscape has recently gained broad attention. Purines

are involved in multiple metabolic pathways. It has been proved that purine

metabolism could regulate malignant biological behaviors and response to

immune checkpoint inhibitors in multiple cancers. However, the relationship of

purinemetabolismwith clinicopathological features and the immune landscape

of glioma remains unclear. In this study, we explored the relationships between

the expression of purine metabolism-related genes (PuMGs) and tumor

features, including prognosis and microenvironment of glioma, based on

analyses of 1,523 tumors from 4 public databases and our cohort.

Consensus clustering based on 136 PuMGs classified the glioma patients

into two clusters with significantly distinguished prognosis and immune

microenvironment landscapes. Increased immune infiltration was associated

with more aggressive gliomas. The prognostic Purine Metabolism-Related

Genes Risk Signature (PuMRS), based on 11 critical PuMGs, stratified the

patients into PuMRS low- and high-risk groups in the training set and was

validated by validation sets from multiple cohorts. The high-risk group

presented with significantly shorter overall survival, and further survival

analysis demonstrated that the PuMRS was an independent prognostic

factor in glioma. The nomogram combining PuMRS and other

clinicopathological factors showed satisfactory accuracy in predicting glioma

patients’ prognosis. Furthermore, analyses of the tumor immune

microenvironment suggested that higher PuMRS was correlated with

increased immune cell infiltration and gene expression signatures of “hot”

tumors. Gliomas in the PuMRS high-risk group presented a higher

expression level of multiple immune checkpoints, including PD-1 and PD-L1,

and a better-predicted therapy response to immune checkpoint inhibitors. In

conclusion, our study elucidated the relationship between the expression level
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of PuMGs and the aggressiveness of gliomas. Our study also endorsed the

application of PuMRS to construct a new robust model for the prognosis

evaluation of glioma patients. The correlations between the profiles of

PuMGs expression and tumor immune microenvironment potentially

provided guidance for immunotherapy in glioma.

KEYWORDS

purine metabolism, glioma, tumor microenvironment, prognosis, immune infiltration,
immune checkpoint inhibitor

Introduction

Glioma is a type of highly aggressive tumor and accounts for

approximately 80% of all malignant central nervous system

(CNS) tumors (Ostrom et al., 2021). The current standard

treatment regime comprises surgery, chemotherapy, and

radiotherapy (Stupp et al., 2005). However, even with

complete treatment procedures, the prognosis of glioma

patients remains unsatisfactory (Weller et al., 2021), especially

for glioblastoma, which presents with highly malignant biological

features and results in fewer than 20 months of median overall

survival (Chinot et al., 2014; Gilbert et al., 2014; Stupp et al.,

2015). Therefore, the treatment of glioma urgently needs novel

therapy to improve patients’ prognosis.

Immunotherapy, which aims to reduce the immune escape of

tumors and enhance anti-tumor immunity delivered by immune

cells, has been proven effective in many cancers (Zhang and

Zhang, 2020). As a vital compartment of immunotherapy,

immune checkpoint inhibitors (ICIs) have succeeded in

improving clinical outcomes in many types of cancer, including

non-small-cell lung cancer (Reck et al., 2016), melanoma (Larkin

et al., 2015), cervical cancer (Tewari et al., 2022), and gastric cancer

(Janjigian et al., 2021). However, almost all the phase 3 trials of ICIs

failed to improve overall survival in glioblastoma patients

(Reardon et al., 2020; Lim et al., 2022; Omuro et al., 2022).

CNS’s immunologically quiescent environment is recognized as

a potential reason for the failures. Nevertheless, the patients with

metastatic brain tumors benefit from ICIs, including metastatic

melanoma (Tawbi et al., 2018) and lung cancer (Hendriks et al.,

2019), indicating that ICIs can deliver enough anti-tumor capacity

to CNS, and the failures in glioma may owe to the distinctive

immune microenvironment of glioma. Additionally, neoadjuvant

ICIs, including PD-1 inibitors nivolumab and pembrolizumab,

could reshape the tumor immune microenvironment and enhance

the immune response in glioblastoma (Cloughesy et al., 2019;

Schalper et al., 2019), suggesting that the tumor immune

microenvironment in glioma could be shifted to be more

susceptible to immunotherapy. Therefore, exploring potential

pathways to reshape the immune microenvironment and

enhance the response to immunotherapy in glioma becomes a

focus topic. Furthermore, recent studies demonstrated that

interventions targeting the abnormal metabolic features in the

tumor might reprogram the immune microenvironment and

synergize with ICIs (Li et al., 2019), indicating that targeting

the aberrant metabolism of tumors might become a new

method to pave the way for immunotherapy.

Purines are critical metabolic precursors for DNA and RNA

synthesis in all living cells. Due to the increased growth rate in

neoplastic cells (Hanahan andWeinberg, 2011), the demands for

purines are enormously upregulated in cancers. Multiple key

genes in purine metabolism were also identified as prognostic

biomarker in hepatocellular carcinoma (Su et al., 2020). In

gliomas, purine synthesis can promote the maintenance of

cancer stem cells (Wang et al., 2017). The role of purine

metabolism on DNA repair and therapy resistance has also

been shown in glioblastomas (Zhou et al., 2020). Besides,

purines could also function as the energy currency of cells

(ATP and GTP) and signaling molecules (cAMP and cGMP)

(Pareek et al., 2021). In addition to direct impact on the anabolic

process of tumor cells, purine metabolism could also influence

the functional status of the tumor immune microenvironment.

Inhibiting purine synthesis in breast cancer was proved to elevate

the pyrimidine to purine ratio, increase immunoproteasome

expression, and enhance the response to immune checkpoint

inhibitors (Keshet et al., 2020). Purinergic receptors on immune

cells, including adenosine receptors, inotropic receptors, and

metabotropic receptors, played critical roles in regulation of

immune response (Cekic and Linden, 2016). For example,

macrophages and dendritic cells expressed A2BR, a subtype of

adenosine receptor, which was activated by adenosine and

functioned to promote macrophages and dendritic cells to

release IL-6 and VEGF (Novitskiy et al., 2008; Cekic and

Linden, 2016). CD39 and CD73, two essential ectoenzymes in

adenosine metabolism, could increase the concentration of anti-

inflammatory adenosine and reduce the concentration of pro-

inflammatory ATP in microenvironment (Deaglio et al., 2007).

The local accumulation adenosine produced by activated

CD39 and CD73 has been implicated in immunosuppression

progress among patients with AIDS (Nikolova et al., 2011).

Inhibition of CD73 also showed synergistic effects with

immune checkpoint inhibitors in multiple cancers (Goswami

et al., 2020; Turiello et al., 2020; Kim et al., 2021; Tu et al., 2022).

These prior findings collectively suggest that purines metabolism

was closely associated with malignancy, immune profiles, and

responses to immunotherapy in cancers, which inspired us to

investigate the purine metabolism in brain gliomas.
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In the present study, we utilized multiple cohorts, including

TCGA, CGGA, REMBRANDT, and our own patients’ cohort, to

explore the relationships between purine metabolism-related

gene expression and clinicopathological features of gliomas.

Furthermore, we constructed a risk signature system based on

purine metabolism-related genes to investigate the potential

ability of purine metabolism to predict clinical outcomes in

glioma patients. Finally, we also explored and clarified the

correlations between purine-metabolism-related genes and the

landscape of the immune microenvironment, aiming to provide

novel aspects for enhancing response to immunotherapy in

glioma.

Materials and methods

Patient cohort and data collection

We obtained clinical information and RNA-sequencing data

of glioma patients from five public databases (TCGA, CGGA,

and REMBRANDT) and our patient cohort. We included those

patients with primary oligodendrogliomas, astrocytomas, and

glioblastomas into this study. Patients with age < 18 or recurrent

gliomas were excluded from this study, because these tumors

represent minority of the sample sets with distinct biological

features (Louis et al., 2021). The Cancer Genome Atlas (TCGA)

TABLE 1 Clinicopathological characteristics of patients in TCGA, CGGA, REMBRANDT, and WCH cohort.

Characteristics TCGA (N = 662) CGGA (N = 415) REMBRANDT (N = 369) WCH (N = 77)

Age: mean (range) 46 (18–89) 43 (19–76) 52 (22–87) 46 (19–77)

Gender

Female 282 (42.6%) 176 (42.4%) 118 (32.0%) 30 (39.0%)

Male 380 (57.4%) 239 (57.6%) 196 (53.1%) 47 (77.0%)

NA 0 0 55 (14.9%) 0

Histology

Astrocytoma 341 (51.5%) 182 (43.9%) 133 (36.0%) 22 (28.6%)

Oligodendroglioma 167 (25.2%) 94 (22.7%) 59 (16.0%) 21 (27.3%)

Glioblastoma 154 (23.3%) 139 (33.5%) 177 (48.0%) 34 (44.2%)

Grade

G2 214 (32.3%) 134 (32.3%) 88 (23.8%) 29 (37.7%)

G3 237 (35.8%) 142 (34.2%) 66 (17.9%) 14 (18.2%)

G4 154 (23.3%) 139 (33.5%) 177 (48.0%) 34 (44.2%)

NA 57 (8.6%) 0 38 (10.3%) 0

IDH status

WT 236 (35.6%) 169 (40.7%) NA 42 (54.5%)

Mutant 421 (63.6%) 207 (49.9%) NA 35 (45.5%)

NA 5 (0.8%) 39 (9.4%) NA 0

1p/19q codeletion

Non-codel 488 (73.7%) 267 (64.3%) 148 (40.1%) 43 (55.8%)

Codel 167 (25.2%) 88 (21.2%) 24 (6.5%) 19 (24.7%)

NA 7 (1.1%) 60 (14.5%) 197 (53.4%) 15 (19.5%)

TERT promoter status

Mutant 340 (51.4%) NA NA 23 (29.9%)

WT 156 (23.6%) NA NA 30 (39.0%)

NA 166 (25.1%) NA NA 24 (31.2%)

MGMT promoter status

Unmethylated 157 (23.7%) 141 (34.0%) NA 13 (16.9%)

Methylated 472 (71.3%) 195 (47.0%) NA 35 (45.5%)

NA 33 (5.0%) 79 (19.0%) NA 29 (37.7%)

ATRX status

Mutant 192 (29.0%) NA NA 53 (68.8%)

WT 459 (69.3%) NA NA 22 (28.6%)

NA 11 (1.7%) NA NA 2 (2.6%)

Abbreviation: TCGA, the cancer genome atlas; CGGA, chinese glioma genome atlas; WCH, west china hospital; IDH, isocitrate dehydrogenase; TERT, telomerase reverse transcriptase;

MGMT, O6-methylguanine-DNA, methyltransferase; ATRX, alpha-thalassemia x-linked intellectual disability syndrome; WT, wild type; NA, not available.
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cohort consisted of 662 primary gliomas. The fragments per

kilobase million (FPKM) and prognosis data of the TCGA cohort

were downloaded from the TCGA website (https://portal.gdc.

cancer.gov/). FPKM data of 415 primary gliomas in the Chinese

Glioma Genome Atlas (CGGA) 693 glioma cohort (which

included 415 primary and 278 secondary or recurrent

gliomas) and array data of 369 gliomas in the REMBRANDT

cohort were downloaded from the CGGA website (http://www.

cgga.org.cn/). The genes with too lowmaximum FPKM values (<
0.1) typically represent sequencing/mapping artifact and were

excluded from the analysis (Supplementary Figure S1A,B).

Our cohort consisted of 77 primary glioma patients from

West China Hospital. We collected their tumor tissue during

resection surgery and sequenced mRNA of these tumor samples.

Then the mRNA-sequencing data were quantified using STAR

and normalized to FPKM. The overall survival was calculated as

the period from surgery to death or the time of the last available

interview (censored value). All four cohorts excluded patients

younger than 18 years old from the analysis. Detailed

information on clinicopathological features is listed in Table 1.

Consensus clustering analysis based on
purine-metabolism-related genes

A total of 163 purine metabolism-related genes (PuMGs) were

exported from the Molecular Signature Database (MSigDB) with

the keyword “purine metabolism” and 136 were kept after

excluding lowly expressed genes. The detailed list of these

PuMGs before and after exclusion was given in Supplementary

Table S1. Unsupervised Consensus clustering analysis was

performed to elucidate different purine metabolism patterns in

gliomas based on the expression level of purine-metabolism-

related genes. Specifically, the “ConsensusClusterPlus” R

package was utilized for the consensus clustering with iterations

set to 100 (Wilkerson and Hayes, 2010). The optional cluster

number depended on the cumulative distribution function (CDF)

curve of consensus index and sample size. Under the premise of a

smoothly escalating CDF, we tried to expand the sample size of

each cluster. The t-Distributed Stochastic Neighbor Embedding

(tSNE) analysis was utilized to visualize the PuMG expression

distinctions among all the clusters. Furthermore, we used the

PuMG expression and cluster labels in the TCGA cohort to

train a random forest model. Based on this model, we

subsequently stratified the patients of the other three cohorts.

Construction and validation of purine-
metabolism-related genes risk signature

We constructed a risk signature evaluation system based on

the expression of PuMGs to investigate the correlation between

PuMG expression and glioma prognosis. Firstly, the TCGA

dataset cohort was split into training and test sets with a ratio

of 6:4. The other three cohorts were utilized as validation sets.

The PuMGs were monitored using the Least Absolute Shrinkage

and Selection Operator (LASSO) Cox regression analysis in the

training set. The PuMGs whose coefficient was not zero at the

lambdas corresponding to maximum C-index in 100 random

repetitions of LASSO Cox regression were identified as essential

PuMGs in glioma. Then we fitted a final multivariate Cox

regression model to the training set with the essential PuMGs

and calculated the purine-metabolism-related genes risk

signature (PuMRS) using the following formula:

PuMRSRisk Signature � ∑
i�1
(βipExpi) (1)

The β and Exp represent the coefficients and expression levels

of each essential PuMG in the final multivariate Cox regression,

respectively. All patients were allocated into PuMRS high-risk, or

low-risk groups based on the optimal cut-off value of the PuMRS

determined by “surv_cutpoint” in the R package “survminer”

with group proportion ≥ 0.3. Moreover, we used the R package

“timeROC” to illuminate the receiver operating characteristic

(ROC) curve in the validation sets of 1, 2, and 3-year survival and

calculated the area under the ROC curve (AUC).

Functional enrichment analysis and
immune microenvironment landscape
evaluation

Gene set enrichment analysis (GSEA) and over-

representation were used to evaluate the differentially

expressed genes (DEG) with Gene Ontology (GO) enrichment

using the R package “clusterProfiler” based on different

consensus clusters and different PuMRS risk groups. R

package “limma” was utilized to identify differentially

expressed genes (DEGs) based on the consensus clusters and

PuMRS risk groups. In the process of DEGs identification for

GSEA, we stratified the patients into two groups based on

consensus clustering result. Those genes with adjusted

p-value <0.05 and |log2FC| > 0.5 were determined as DEGs.

The logFPKM matrix was transferred to pathway expression

using the R package “GEVA”, and the differentially expressed

pathways were determined using the package “limma”.

For tumor immune microenvironment landscape evaluation,

we utilized the website CIBERSORTx (https://cibersortx.

stanford.edu/) to calculate the absolute infiltration fraction of

22 types of immune cells in gliomas based on the LM22 reference

gene signature. LM22 is a validated leukocyte gene signature

matrix that contains 547 genes distinguishing 22 human

hematopoietic cell phenotypes, including seven T-cell types,

naïve and memory B cells, plasma cells, natural killer (NK)

cells and myeloid subsets. For further details, please refer to

the study published by Newman et al. (2015). The immune
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microenvironment-related scores, including stromal and

immune scores, were calculated by the previously reported

algorithm, the Estimation of Stromal and Immune cells in

Malignant Tumor tissues using Expression data (ESTIMATE)

(Yoshihara et al., 2013). In this algorithm, the stromal-related

genes were selected from the non-hematopoiesis-related genes

that were differentially expressed between tumor cell fraction and

match stromal cells fraction separated by laser capture

microdissection in multiple cancers. Moreover, we utilized the

data previously published by D. Aran et al., which consisted of

tumor purity estimated by the ESTIMATE algorithm and the

consensus purity estimation (CPE) results, to evaluate tumor

purity in gliomas (Aran et al., 2015). To identify immunological

phenotypes, we calculated the tumor immunological phenotype

(TIP) gene signature to distinguish “cold” tumors from “hot”

tumors using the algorithm described by Wang et al. (2021).

Additionally, the TIDE suite (https://tide.dfci.harvard.edu/) was

used to deliver in silico analysis of T cell exclusion and

dysfunction and to predict response to immune checkpoint

inhibitors therapy in gliomas.

Analyses of copy number variation and
gene mutation, amplification, and
homozygous deletion

We fetched the gene alterations and copy number variations

(CNV) data of patients of the TCGA cohort from the cBioPortal

database (https://www.cbioportal.org/) to depict the different

patterns of gene alterations and CNVs between different

consensus clusters and PuMRS risk groups. The R package

“maftools” was utilized to visualize the gene alterations. In

addition, the CNV levels were evaluated by the Genomic

Identification of Significant Targets in Cancer (GISTIC) score.

Nomogram construction based on PuMRS
and other prognostic factors

Univariate and multivariate Cox regression analyses were

utilized to clarify prognosis factors. First, PuMRS and other

potential prognostic factors, including tumor grade, age,

chemotherapy, radiotherapy, gender, KPS, 1p/19q codeletion,

and IDH mutation status, were enrolled in the univariate Cox

regression analysis. Furthermore, we enrolled those factors with a

p-value < 0.05 into multivariate Cox regression analysis to

confirm independent prognostic factors. Those factors with a

p-value < 0.05 in multivariate Cox regression analysis were

determined as independent prognostic factors and included in

nomogram construction.

The nomograms were constructed with the above

independent prognostic factors using the R package “rms”.

Furthermore, we utilized the calibration curves to assess the

efficacy of nomograms for prognosis prediction in glioma

patients.

Statistical Analysis

The R software (version 3.6.1) was used to conduct all the

bioinformatic analyses. The Wilcoxon rank sum test was used to

evaluate the differences between two groups for continuous

variables, and the Kruskal–Wallis one-way analysis was used

on the condition of three or more groups.We used the chi-square

test for categorical variables to determine the difference in

proportions. For survival analysis, the R package “survminer”

was used to conduct Kaplan-Meier (K-M) analysis, and the log-

rank test tested the differences between K-M curves. Cox

regression analysis was performed using the coxph function in

the R package “survival,” and the LASSO-Cox regression was

conducted using the R package “glmnet.” In liner regression of

scatter plots, we used the iterative Grubbs test to remove the

outliers, aiming to guarantee the robustness of correlation

analyses.

Ethical approval and consent to
participate

Tumor samples and clinical data collection and use were

performed strictly with ethics regulations and approved by the

institutional review board ofWest China Hospital (No. 2018.569)

based on local ethics regulations and the 1964 Helsinki

declaration and its later amendments. In addition, the patients

signed written consent for tumor tissue collection and

processing.

Results

Consensus clustering analysis based on
purine-metabolism-related genes
unveiled two distinctive glioma subgroups

To explore the relationship between PuMGs and gliomas, we

performed an unsupervised consensus cluster analysis based on

the expression of the 136 PuMGs in the TCGA cohort. After

assessing the clusters’ sizes and CDFs based on the principles

described in the Materials and Methods section, the gliomas

could be classified into two consensus clusters. Their distinction

in PuMGs expression patterns was illustrated by tSNE analysis

(Figure 1A).

Survival analyses revealed that cluster 1 had enormously

better survival outcome than cluster 2 (Figure 1B), with an

approximately 60% survival ratio in 5 years. Based on the

consensus cluster pattern in the TCGA dataset, we classified
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FIGURE 1
Consensus clustering of gliomas based on PuMGs expression. (A) PuMG expression tSNE of the consensus clusters. (B) Kaplan-Meier Curve of
the consensus clusters in TCGA cohort (p < 0.0001). (C–E) K-M Curves of the consensus cluster in CGGA, REMBRANDT, and WCH cohorts (p <
0.0001). (F) Heatmap for the expression levels of 136 PuMGs between the two consensus clusters.
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FIGURE 2
Functional enrichment analysis of the transcriptome of the consensus clusters. (A) Top 20 differentially expressed KEGG gene sets. (B) Top
20 differentially expressed HALLMARKS gene sets. (C) The top five pathways with the highest normalized enrichment score in the KEGG gene sets
between two clusters. (D) The top five pathways with the highest normalized enrichment score in the HALLMARKS gene sets between two clusters.
(E) Pathways with high odds ratio and confidence in the KEGG gene sets. (F) Pathways with high odds ratio and confidence in the HALLMARKS
gene sets.
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the patient of CGGA, REMBRANDT, and WCH cohorts into

two clusters to validate the efficacy of clustering. The results

revealed that all cluster 1 in these three cohorts showed better

prognosis than cluster 2 (Figures 1C–E), indicating that the

consensus clustering pattern based on the TCGA dataset

promised high efficacy and could be expanded to those

cohorts from other datasets. Furthermore, a heatmap was

provided to illustrate the expression levels of all 136 PuMGs

between two clusters (Figure 1F). The differences in the

expression level of all 136 PuMGs were given in

Supplementary Figure S1C.

Analyses of clinicopathological features between the two

clusters demonstrated noticeable distinctions (Supplementary

Figure S2). For example, cluster 2, which showed poorer

prognosis, had significantly higher age at diagnosis, higher

tumor grade, a higher proportion of MGMT promoter

methylation and TERT promoter mutation, and a higher

proportion of glioblastoma compared to cluster 1. In addition,

more isocitrate dehydrogenase (IDH) mutants, more 1p/19q

codeletion, and more alpha-thalassemia x-linked intellectual

disability syndrome (ATRX) gene mutation was observed in

cluster 1.

Distinctive pathway alterations were illustrated in the

functional enrichment analysis. For example, the DNA

replication pathway, which is tightly related to purine

metabolism, was upregulated in cluster 2 (Figure 2A),

suggesting more active purine synthesis of cluster 2 to meet

the demands of DNA replication. The angiogenesis pathway was

also observed to be upregulated in cluster 2 (Figure 2B).

Furthermore, the interferon-γ response [normalized

enrichment score (NES) = 2.879, adjusted p-value < 0.001]

and the G2m checkpoint (NES = 3.345, adjusted p-value <
0.001) were ranked in the top five gene sets of the

HALLMARKS gene sets in the comparison between cluster

1 and 2 (Figure 2D). Besides, the top 5 enriched gene sets in

the DEGs between clusters 1 and 2 in the KEGG dataset were also

listed (Figure 2C). The detailed NES, p-value, and gene list of

these pathways were provided in Supplementary Table S2. The

normal functional enrichment analysis illustrated the pathway

alterations with high odds ratio and high confidence in the

KEGG datasets, including extracellular matrix (ECM) receptor

interaction, focal adhesion, and cell cycle (Figure 2E). Differences

in the epithelial-mesenchymal transition and E2F targets of the

HALLMARKS dataset were demonstrated with high odds ratios

and confidence (Figure 2F).

Gene alterations and copy number
variations analysis between the two PuMG
clusters

Exploring potential differences in gene patterns between the

two clusters, we conducted analyses of gene mutation, gene

amplification, gene homozygous deletion, and copy number

variations (CNVs). The gene mutation analyses manifested

that IDH1, TP53, ATRX, CIC, EGFR, PTEN, and

MUC16 were most frequently mutated in the TCGA cohort

(Figure 3A). As for each cluster, different gene mutation pattern

was depicted. For example, in cluster 1, most glioma samples

harbored IDH1 mutation, which was included in the

tricarboxylic acid cycle and interreacted with purine

metabolism. Besides, TP53, ATRX, and CIC were the other

most frequently mutated genes in cluster 1 (Figure 3B). In

cluster 2, TP53, EGFR, PTEN, TTN, and NF1 were the top

five frequently mutated genes (Figure 3C). The detailed

differences in mutations between the two clusters with

statistical test results were given in Supplementary Table S3.

The analyses of CNVs depicted different karyotype

landscapes between the two clusters (Figure 3D). Gain of

chromosome 7 and loss of chromosome 10 (+7/−10), which

was determined as a diagnostic marker for glioblastoma linked

with poor prognosis, was more frequently observed in cluster 2,

agreeing with clinicopathological features. Several PuMGs

located in chromosome 7 or 10, including NUDT5, POLR3A,

and PDE1C, were likely to be influenced by +7/−10

(Supplementary Table S1). Besides, 1p/19q codeletion, defined

as the specific diagnostic marker for oligodendroglioma, mainly

occurred in cluster 1, proving that most oligodendrogliomas were

located in cluster 1. In the analysis of gene amplification and

homozygous deletion, we found that the frequency of EGFR gene

amplification was enormously higher in cluster 2 (Figure 3E).

The SEC61G, LANCL2, and VOPP1, located in the same locus as

EGFR, were also observed with high amplification frequency in

cluster 2. Moreover, the homozygous deletion of CDKN2A/B,

which was recognized as an indicator for more malignant

biological behaviors in gliomas, was significantly more

frequently observed in cluster 2 (Figure 3F), in line with the

survival analysis.

Differential analyses of immune features in
tumor microenvironment between two
clusters

We performed several analyses based on the two consensus

clusters to explore the relationship between purine metabolism

and the immune microenvironment in glioma. First, the

infiltration fraction of 22 immune cells in the tumor

microenvironment (TME) was evaluated using the

CIBERSORTx algorithm. Results manifested that more

macrophages (M0, M1, and M2), resting NK cells, CD8+

T cells, and neutrophils infiltrated into the TME in cluster 2

(Figure 4A). On the contrary, plasma cells infiltration of cluster

1 was significantly more than cluster 2. Furthermore, we

conducted a differential analysis based on two clusters to

investigate the expression level of several immune-related
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FIGURE 3
Genetic mutations and copy number variations of the two clusters. (A) Gene alterations of top 20 mutated genes. (B) Top 20 mutated genes in
cluster 1. (C) Top 20 mutated genes in cluster 2. (D) Heatmap of copy number variations of the two clusters. (E) Top 10 amplification genes in two
clusters. (F) Top 10 homozygously deleted genes in two clusters.
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FIGURE 4
Differences in immune features of tumor microenvironment between two clusters. (A) Boxplot of the estimated fraction of 22 immune cells in
tumors. (B) The expression level of 33 immunotherapy-related genes in each consensus cluster. (C) TIP scores and related gene expression levels
between two clusters in TCGA and CGGA datasets. (D) Stromal, immune, and ESTIMATE scores of the consensus clusters. (E) Tumor purity is
calculated by the ESTIMATE and CPE algorithms. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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FIGURE 5
Expression signature of PuMGs and its relationship with prognosis. (A) Average of coefficients of 11 critical PuMGs in the LASSOCoxregression at
each lambda value. (B) The effect of every critical PuMG on the prognosis of glioma. (C) The relationship between the consensus clusters and two
CRGRS risk groups. (D) K-M curve of the TCGA validation set, cut off = −1.566. (E) K-M curve of the CGGA cohort, cut off = −3.433. (F) K-M curve of
the REMBRANDT cohort, cut off = 1.128. (G) K-M curve of the WCH cohort, cut off = −0.113.
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genes in TME. The results demonstrated that CD274 (PD-L1),

CD276 (B7-H3), CD44, and PDCD1 were significantly highly

expressed in cluster 2, indicating a more complex immune

microenvironment than cluster 1.

The TIP score, calculated according to the expression 12 hot

tumor–related genes and 3 cold tumor–related genes, was used to

identify the differences in immune phenotype which was shown

to be associated with response of tumors to immunotherapy. In

line with the above results, cluster 2 showed with higher TIP

scores, suggesting that gliomas in cluster 2 were more likely to be

immunologically “hot” tumors compared to those in cluster 1

(Figure 3C). This phenomenon was also validated in the CGGA

dataset. Additionally, the ESTIMATE results revealed that the

stromal score, immune score, and ESTIMATE score were

significantly higher in cluster 2 compared to cluster 1

(Figure 4D). Finally, the results of tumor purity analysis

indicated that the tumor purity in cluster 1 was significantly

higher than in cluster 2, suggesting a purer tumor

microenvironment in cluster 1 (Figure 4E).

Construction and validation of purine-
metabolism-related genes risk signature
and correlation with clinicopathological
features

To identify essential genes for PuMRS construction, we filter

136 purine metabolism-related genes using the LASSO Cox

regression with the training set data. Finally, 11 purine-

metabolism-related genes, including PDE2A, POLR1D, RRM2,

CANT1, NUDT5, POLR3A, AOX1, PPAT, POLR3GL, IMPDH1,

and POLR3H, were determined as essential genes for PuMRS

construction (Figure 5A). The PuMRS was calculated using the

following formula:

0.270*AOX1 + 0.080*PPAT + 0.075*POLR1D + 0.048*CANT1

+ 0.038*RRM2 + 0.030*IMPDH1 − 0.040*PDE2A

− 0.058*POLR3H − 0.062*POLR3A − 0.071*POLR3GL

−0.108*NUDT5 (2)

Among these 11 genes, POLR3A, POLR3H, POLR3GL,

NUDT5, and PDE2A were determined as protective factors

for glioma patients (Figure 5B). The other seven genes were

determined as hazardous factors. To validate the prognostic

effects of these genes, we utilized the representative

immunohistochemical (IHC) staining for POLR1D and

PDE2A from the Human Protein Atlas (Pontén et al., 2008)

(https://www.proteinatlas.org/). These IHC staining revealed

that the protein expression level of POLR1D was higher in

high-grade glioma than low-grade glioma (Supplementary

Figure S3A), and the protein expression level of PDE2A was

lower in high-grade glioma (Supplementary Figure S3B), in

accordance with the results from bioinformatic analyses that

POLR1D was a hazardous and PDE2A was a protective factor.

Then we explored the optimal PuMRS cut-off using the “surv_

cutpoint” algorithm and allocated the patients into PuMRS low-

and high-risk groups. Compared with the consensus clustering,

we found that most patients of cluster 1 were allocated to the low-

risk group, and most cluster 2 patients were allocated to the high-

risk group (Figure 5C). The survival analyses confirmed that the

glioma patients in the high-risk group had significantly poorer

overall survival than the low-risk group in all four validation

cohorts (Figures 5D–G).

The analyses of clinicopathological features according to

the PuMRS risk groups depicted the differences between these

two groups. The PuMRS high-risk group significantly had

higher tumor grade, more TERT promoter mutation, less

IDH mutation, less 1p/19q codeletion, less MGMT promoter

methylation, and less ATRX mutation (Figure 6A). Gene

mutations analysis demonstrated that the mutation

frequency of the 11 essential PuMRS genes was shallow,

which contributed to excluding the potential bias effects

caused by a gene mutation (Figure 6B). The detailed

differences in mutations between the two PuMRS risk

groups with statistical test results were given in

Supplementary Table S4. Furthermore, the CNVs analysis

demonstrated similar patterns with consensus clustering

(Figure 6C). The amplification frequency of EGFR, SEC61G,

and LANCL2 was significantly higher in the high-risk group

compared to the low-risk group (Figure 6D). In addition, the

homozygous deletion of CDKN2A/B was frequently observed

in the high-risk group (Figure 6E). Detailed analyses of

differences in clinicopathological features between the two

risk groups were given in Supplementary Figure S4.

Prediction of glioma prognosis with
PuMRS-Based nomograms

To predict the efficiency of PuMRS in predicting glioma

prognosis, we first conducted ROC analyses to evaluate the

performance of PuMRS alone in predicting glioma patient

survival at 1, 2, and 3 years. In the TCGA validation cohort,

the AUCs of PuMRS at 1, 2, and 3 years were 0.823, 0.879, and

0.939, respectively (Figure 7A). Similar performances were

achieved in the other three validation cohorts (Figures 7B–D).

Furthermore, the univariate cox regression analysis demonstrated

that PuMRS, together with other factors, including tumor grade,

age, radiotherapy, KPS, 1p/19q codeletion, and IDH mutation

(p-value < 0.05), was a potential prognostic factor in glioma

patients (Figure 7E). Subsequently, these factors were enrolled

in multivariate Cox regression analysis to verify independent

prognostic factors. The result of multivariate Cox regression

analysis showed that PuMRS was an independent prognostic

factor (p-value < 0.05), along with tumor grade, radiotherapy,

1p/19q codeletion, and IDH mutation (Figure 7F).
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FIGURE 6
Genetic mutations and copy number variations of the two risk groups. (A) Expression level of 11 critical PuMGs and clinicopathological features.
(B)Gene mutations of 11 critical PuMGs and top 8 frequently mutated genes. (C)Heatmap of copy number variations of the two risk groups. (D) Top
10 amplification genes in two risk groups. (E) Top 10 homozygously deleted genes in two risk groups.
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FIGURE 7
Prognostic value of PuMRS and construction of PuMRS-based nomograms. ROC curves and matched AUC of 1-, 2-, and 3-year survival in (A)
TCGA validation set, (B) CGGA cohort, (C) REMBRANDT cohort, and (D) WCH cohort. (E) Univariate and (F) Multivariate Cox regression analysis of
potential prognostic factors in overall survival of glioma. Nomogram of 1-, 2-, and 3-year survival of glioma patients based on (G) TCGA cohort, (I)
CGGA cohort. Calibration plots of the nomogram based on (H) TCGA cohort and (J) CGGA cohort.
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FIGURE 8
Differences in immune features of tumor microenvironment between two PuMRS risk groups. (A) Boxplot of the estimated fraction of
22 immune cells in tumors. (B) Analyses of correlations of PuMRS with the infiltration of plasma cells, resting NK cells, M2 macrophages, and
neutrophils. (C) Stromal, immune, and ESTIMATE scores of the two risk groups. (D) Tumor purity of the two risk groups based on the ESTIMATE and
CPE algorithms. (E) Analyses of correlations of PuMRSwith the stromal, immune, ESTIMATE score, and tumor purity. *p < 0.05; **p <0.01; ***p <
0.001; ****p < 0.0001.
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FIGURE 9
Differences in expression of immunotherapy targets and response to ICIs between two PuMRS risk groups. (A) The expression level of
33 immunotherapy-related genes in two risk groups. (B) Analyses of correlations of PuMRSwith the expression of CD274, CD276, CD44, and PDCD1.
(C) TIP scores and related gene expression levels between two risk groups in TCGA datasets. (D) Analyses of correlations of PuMRSwith the TIP score.
(E) Percentage of predicted CTL level in each risk group. (F) Percentage of predicted responders to immune checkpoint inhibitors therapy in
each risk group.
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The nomogram construction of the TCGA cohort was based

on these five independent prognostic factors (Figure 7G). The

corrected C-index of this integrated nomogram was 0.857, and

the calibration curves of 1-, 2-, and 3-year endorsed the accuracy

of the nomogram (Figure 7H). Under the same process, the

PuMRS was also confirmed as an independent prognostic factor

in the CGGA cohort, and a nomogram of the CGGA cohort was

based on the PuMRS, along with radiotherapy, IDH mutation,

and tumor grade (Figure 7I). Again, the calibration curves also

endorsed the accuracy (Figure 7J).

Analyses of immune characteristics of
tumor microenvironment based on
PuMRS risk groups

The differences in immune cell infiltration were evaluated

using the CIBERSORTx algorithm. The infiltration fractions of

CD8+ T cells, regulatory T cells (Tregs), resting NK cells,

macrophages (M0, M1, M2), and neutrophils were

significantly lower in the low-risk group compared to the

high-risk group (Figure 8A) in the TCGA cohort. On the

contrary, the infiltrations of activated NK cells, plasma cells,

and monocytes were higher in the PuMRS low-risk

group. Furthermore, the correlation analyses demonstrated

that the infiltration of resting NK cells, M2 macrophage, and

neutrophils were positively correlated with the PuMRS score

(Figure 8B), and the infiltration of plasma cells was negatively

correlated with the PuMRS score, indicating that PuMRS could

become a prediction tool for tumor immune cell infiltration.

Furthermore, the ESTIMATE algorithm was utilized to

analyze the immune scores of each PuMRS risk group. Results

depicted that the stromal, immune, and ESTIMATE scores were

remarkably higher in the PuMRS high-risk group (Figure 8C).

Furthermore, the tumor purity of the PuMRS high-risk group

was significantly lower than the low-risk group (Figure 8D),

suggesting that tumors of the high-risk group might have more

immune infiltration and a more complex tumor

microenvironment. The correlation analyses revealed that the

stomal score, immune score, and ESTIMATE score were

positively correlated with PuMRS, and the tumor purity was

negatively correlated with the PuMRS (Figure 8E), indicating the

potential ability of PuMRS to predict immune-related scores.

Additionally, analyses of the expression of immunotherapy-

related genes demonstrated that CD274 (PD-L1), CD276 (B7-

H3), CD44, and CD279 (PDCD1) were overexpressed in PuMRS

high-risk group compared to the low-risk group (Figure 9A). The

correlation analysis demonstrated that the expression level of

these four immunotherapy-related genes was positively

correlated with the PuMRS (Figure 9B), endorsing the ability

of PuMRS to predict the expression of immunotherapy-related

genes. Immune phenotype analysis revealed that most tumors in

PuMRS high-risk group were immunologically “hotter” than

those in the low-risk group (Figure 9C). The correlation

analysis supported this conclusion, which manifested a

positive correlation between the TIP score and PuMRS

(Figure 9D). Moreover, a higher proportion of cytotoxic T

lymphocytes (CTL) was confirmed in the PuMRS high-risk

group (Figure 9E). Prediction of immunotherapy response

using TIDE revealed that patients with high-risk gliomas were

more likely to benefit from ICIs (Figure 9F). Most previous

findings could be validated in the other three cohorts

(Supplementary Figure S5).

Discussion

According to the cancer statistics of 2020, there was

approximately annually 251 thousand death caused by CNS

malignant tumors worldwide (Siegel et al., 2021). Glioma

accounted for more than 80% of all these cases (Ostrom et al.,

2021). Despite researchers from all over the world constantly

trying to improve the treatment outcomes for glioma, the overall

survival of glioma patients remains unsatisfactory. For example,

even with standard treatment, including surgery, chemotherapy,

and radiotherapy, the median overall survival of glioblastoma

patients, which accounts for over 50% of newly diagnosed brain

gliomas, was 14.6 months (Stupp et al., 2005; Stupp et al., 2017).

Therefore, researchers have been persistent efforts on multiple

novel therapies for glioma. Immunotherapy, targeting the

defense effects of the immune system to attack tumor cells,

has made breakthroughs in multiple cancers (Eggermont

et al., 2018; Gandhi et al., 2018; Choueiri et al., 2021; Cortes

et al., 2022). There are also many attempts to applicate

immunotherapy to glioma. However, almost all these attempts

finally failed to improve overall survival (Weller et al., 2017;

Wakabayashi et al., 2018; Reardon et al., 2020; Lim et al., 2022;

Omuro et al., 2022). Many reasons were put forward to explain

these failures. One important reason was that the blood-brain

barrier (BBB) would prevent most peripheral immune cells,

including circulating monocytes, naïve lymphocyte, and

dendritic cells, from entering CNS and creating an

immunologically quiescent microenvironment in CNS

(Jackson et al., 2014; Jackson et al., 2019). However, an

astonishing study revealed a novel lymphatic pathway for the

egression of antigen-presenting cells from the brain (Louveau

et al., 2015). Then the B and T lymphocytes outside the brain

would be primed and deliver robust immune responses (Lim

et al., 2018). These studies supported that the CNS was of distinct

immune patterns, but if we could further elucidate and utilize

these distinct features, there were also adequate opportunities to

apply immunotherapy in glioma.

The reshaped metabolic patterns of the tumor have been

noted for their interaction with immune responses (Xia et al.,

2021). Purine metabolism, which could maintain cellular pools of

guanylate and adenylate, was a critical compartment of cellular
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metabolism and a potential therapeutic target in cancers (Yin

et al., 2018). Recent evidence also demonstrates that

purinosomes, the punctate bodies in the cellular cytoplasm

that activates the de novo purine biosynthesis, could interact

with mitochondria, and regulate cell cycle (Yin et al., 2018).

Purine metabolism has been proven to regulate the maintenance

of glioma, initiating cells and apoptosis of astrocytes (Di Iorio

et al., 2002; Wang et al., 2017). Furthermore, a recent study

revealed that manipulation of purine metabolism could enhance

the response to immune checkpoint inhibitors (Keshet et al.,

2020). Besides, purine metabolic checkpoint could regulate

autoimmunity (Saveljeva et al., 2022). Therefore, to explore if

purine metabolism was involved in the pathophysiology of

gliomas and the immune features of the glioma

microenvironment, we analyzed the expression pattern of

purine-metabolism-related genes (PuMG) in gliomas and

investigated the correlation of purine-metabolism-related

genes risk signature (PuMRS) with the clinicopathological

characteristics, molecular features, and immunological

landscapes of gliomas using public and in-house datasets.

Based on the different expression patterns of PuMGs, we first

cluster the glioma patients into two subgroups. Distinctive

patterns of clinicopathological features and prognosis of these

two subgroups were introduced. Moreover, the functional gene

sets enrichment analysis indicated that different expression

patterns of PuMGs could regulate several pathways, including

DNA replication and angiogenesis, which corroborated with the

functions of purine metabolism. The activity of DNA replication

was directly related to cell proliferation. Purine metabolism

regulated the activity of DNA replication, suggesting the

relationship between purine metabolism and tumor

proliferation, which might lead to totally different prognosis

in gliomas with different purine metabolism pattern. Besides,

the response to IFN-γ was also significantly different in different

clusters. IFN-γ was an important cause of PD-L1 expression and

consequent immunosuppressive effect in glioma (Qian et al.,

2018), suggesting the potential correlation between purine

metabolism and immunosuppression, which might cause the

poorer prognosis of cluster 2. The patterns of gene alterations

were also different in these two subgroups. IDH mutation,

recognized as an important marker for the classification and

prognosis of glioma, would lead to production of the

oncometabolite D-2- hydroxyglutarate and might reprogram

the metabolism (Yan et al., 2009; Pirozzi and Yan, 2021).

Additionally, codeletion of 1p/19q and IDH mutation with

either mutant TERT promoter or ATRX has been reported to

be closely associated with better prognosis of glioma patients

(Eckel-Passow et al., 2015; Louis et al., 2021), and MGMT

promoter methylation has been shown capable of predicting

better response to temozolomide, a first-line chemotherapy for

glioblastomas (Hegi et al., 2005). Our results revealed that the

incidence of IDHmutation differs enormously in two subgroups,

suggesting that the expression of purine metabolism-related

genes might interact with IDH mutation in gliomas. However,

even enrolling PuMRS with IDH mutation into multivariate

analysis, the PuMRS was still proved as independent

prognostic factor, indicating that PuMRS was a robust

prognostic factor even after considering the correlation with

IDH mutation. Furthermore, the alteration incidence of

epidermal growth factor receptor (EGFR), which was

recognized as essential for glioma development and frequently

mutated, amplified, and overexpressed in malignant glioma

(Eskilsson et al., 2018), was significantly different in two

subgroups, suggesting potential interactions between purine

metabolism and EGFR. Many EGFR-targeted therapies have

been developed and evinced favorable efficacy in many

tumors (Mok et al., 2009; Ramalingam et al., 2020). However,

all attempts to improve the overall survival of glioma patients

using EGFR inhibitors eventually failed (Chinot et al., 2014;

Gilbert et al., 2014; Weller et al., 2017). Although the relationship

between purine metabolism and EGFR remained unclear, our

study found clues and might provide a novel direction for

applications of EGFR-targeted therapies in glioma and

overturn previous failures.

After filtering PuMGs, 11 PuMGs were recognized as

essential genes for glioma prognosis. For example,

Ribonucleotide Reductase Regulatory Subunit M2 (RRM2) was

a catalytic subunit of ribonucleotide reductase and functioned as

a critical enzyme in the process of DNA replication and repair

(Chabes and Thelander, 2000; Torrents et al., 2002; Nordlund

and Reichard, 2006), and RRM2 has been proved negatively

correlated with prognosis of glioma (Sun et al., 2019).

Furthermore, RRM2 could also facilitate immune infiltration

of tumors (Tang et al., 2021). Our results revealed that RRM2was

a hazardous prognostic factor for glioma, and the subgroup with

a higher expression level of RRM2 harbored more immune

infiltration and expressed more immunotherapy-related

markers, agreeing with the conclusions of previous studies.

Besides, phosphodiesterase 2A (PDE2A) could regulate cyclic

nucleotide signaling and the response to multiple stimulations

(Barbagallo et al., 2020). Our results demonstrated that a higher

expression level of PDE2A was correlated with better overall

survival and less immune infiltration in glioma. The purine-

metabolism-related genes signature (PuMRS) was constructed

based on these 11 essential genes. It was manifested with strong

potential to serve as a critical factor for prognosis prediction in

glioma patients, indicating that PuMRS were tightly related to the

prognosis of glioma.

Analyses of immune features depicted the correlation

between purine metabolism and the immune

microenvironment of glioma. The CIBERSORTx analysis

determined higher infiltrations of several immune cells. For

instance, M2 macrophage, which functioned as a critical role in

tumor promotion and immunosuppressing (Noy and Pollard,

2014), was significantly more infiltrated into gliomas of the

PuMRS high-risk group. Circulating monocytes and adjacent
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resident macrophages could be recruited to the tumor

microenvironment and be polarized from M1 to

M2 macrophages, forming tumor-associated macrophages

(TAMs) (Anderson et al., 2021). TAMs could function to

produce cytokines to suppress functions of T cells, secret

chemokines to recruit Treg cells, and upregulate

immunosuppressive surface proteins (Curiel et al., 2004;

Colombo and Piconese, 2007; Yang and Zhang, 2017).

These functions of TAMs contribute to immune escape in

glioma, leading to a worse prognosis for high-risk group, which

harbored more infiltration of TAMs. Moreover, TAMs could

also express PD-L1 to inhibit tumor immunity and

phagocytosis (Gordon et al., 2017), an essential target

immune checkpoint inhibitor to enhance anti-tumor

immunity (Cha et al., 2019). The expression level of PD-L1

was also remarkably higher in PuMRS high-risk group,

suggesting that the higher expression level of immune

checkpoints was related to poorer prognosis in glioma,

which is consistent previous pan-cancer studies (Liu et al.,

2020). Furthermore, the immunological “hot tumor” features

were confirmed in the PuMRS high-risk group gliomas. These

findings endorsed the potential ability of PuMRS to predict the

immune characteristics of the tumor microenvironment in

glioma. Those gliomas with high PuMRS would have more

immune cell infiltration and overexpress several

immunotherapy targets (PD-1, PD-L1, B7-H3, and CTLA4).

Even though the overexpression of these markers might be

correlated with a worse prognosis, a better response to immune

checkpoint inhibitors might be accompanied by the

overexpression of these immune-related markers.

Consequently, PuMRS would help determine the immune

characteristics and choose an optimal strategy for

immunotherapy in gliomas.

Our present study investigated the relationship of PuMGs

with the clinicopathological features and immunological

characteristics of glioma. However, there are still some

limitations to our study. First, the sequencing protocols and

data preprocessing procedures differ among the four

independent datasets. Second, some critical markers,

including IDH mutation status, were unavailable in the

REMBRANDT database. Besides, since the results of the

current study were mostly derived from bulk RNA-

sequencing data, we were not able to delineate the

expression of PuMGs for each cell type in tumors. For the

same reason, the findings about the relationship between purine

metabolism-related genes and immune profiles were concluded

based on analyses of mRNA expression rather than protein

studies. Therefore, the findings of our study require future

experimental validation to further elucidate the mechanism

for the correlations, as well as the regulation of PuMGs and

their downstream factors.

Conclusion

In conclusion, we demonstrated that the expression of

PuMGs was closely related to clinicopathological features and

immune landscapes of glioma based on the comprehensive

analyses of four independent datasets. The novel PuMRS

showed up strong potential in predicting the prognosis of

glioma patients. Moreover, it could also function as a

potential marker for predicting immune cell infiltration and

expression level of immunotherapy targets in gliomas. Based

on these findings, we believe the PuMRS might be useful in

directing immunotherapy in gliomas. Furthermore, we identified

several essential PuMGs that influenced prognosis a lot, which

might be a great resource for glioma studies to investigate the

mechanisms of purine metabolism regulation and potential

therapeutic targets.
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SUPPLEMENTARY FIGURE S1
(A) Distribution of maximum FPKM values of genes in the TCGA dataset
between 0–100. (B) Distribution of maximum FPKM values of genes in
the TCGA dataset between 0–1. (C) Differences in the expression of
136 PuMGs between two consensus clusters. *P < 0.05; **P < 0.01; ***P <
0.001; ****P < 0.0001.

SUPPLEMENTARY FIGURE S2
Differences in the clinicopathological features between two consensus
clusters. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

SUPPLEMENTARY FIGURE S3
Representative immunohistochemical staining for POLR1D and PDE2A
from the Human Protein Atlas. (A) Representative IHC staining for
POLR1D in high- and low-grade gliomas (https://www.proteinatlas.
org/ENSG00000186184-POLR1D/, antibody: HPA039337). (B)
Representative IHC staining for PDE2A in high- and low-grade gliomas
(https://www.proteinatlas.org/ENSG00000186642-PDE2A/, antibody:
CAB009752).

SUPPLEMENTARY FIGURE 4
Differences in the clinicopathological features between two PuMRS risk
groups. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

SUPPLEMENTARY FIGURE 5
Differences in immunological characteristics of tumor
microenvironment between two PuMRS risk groups in CGGA,
REMBRANDT, and WCH cohorts. *P < 0.05; **P < 0.01; ***P < 0.001;
****P < 0.0001.
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