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Iron deficiency has detrimental effects in patients with acute coronary

syndrome (ACS), which is a common nutritional disorder and inflammation-

related disease affects up to one-third people worldwide. However, the specific

role of iron metabolism in ACS progression is opaque. In this study, we

construct an iron metabolism-related genes (IMRGs) based molecular

signature of ACS and to identify novel iron metabolism gene markers for

early stage of ACS. The IMRGs were mainly collected from Molecular

Signatures Database (mSigDB) and two relevant studies. Two blood

transcriptome datasets GSE61144 and GSE60993 were used for constructing

the prediction model of ACS. After differential analysis, 22 IMRGs were

differentially expressed and defined as DEIGs in the training set. Then, the

22 DEIGs were trained by the Elastic Net to build the prediction model. Five

genes, PADI4, HLA-DQA1, LCN2, CD7, and VNN1, were determined using

multiple Elastic Net calculations and retained to obtain the optimal

performance. Finally, the generated model iron metabolism-related gene

signature (imSig) was assessed by the validation set GSE60993 using a series

of evaluation measurements. Compared with other machine learning methods,

the performance of imSig using Elastic Net was superior in the validation set.

Elastic Net consistently scores the higher than Lasso and Logistic regression in

the validation set in terms of ROC, PRC, Sensitivity, and Specificity. The

prediction model based on iron metabolism-related genes may assist in ACS

early diagnosis.
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Introduction

Iron deficiency has detrimental effects in patients with acute

coronary syndrome (ACS) (Kang et al., 2012; Das De et al., 2015),

which is a common nutritional disorder affects up to one-third

people worldwide (Stoltzfus, 2001). Apart from erythropoiesis,

iron serves in many fundamental and physiological processes,

such as oxygen transport and storage, mitochondrial function,

and immune system (Crielaard et al., 2017). Populations at high

risk of iron deficiency often includes infants, children,

adolescents, elderly persons and women, while young adults

ranging from 30 to 45 years old usually have normal iron levels.

Although iron status has been implicated in cardiovascular

disease (CVD), the underlying mechanism of expression

regulation is still unclear. Patients with high iron stores tend

to have high risk in ACS (Jiang et al., 2004), such as those who

had recently undergone amyocardial infarction, disodium EDTA

chelation of heavy metals decreased adverse cardiovascular

outcomes (Lamas et al., 2013). These observations contrast

with the results that a higher iron status may have a

preventive impact on the risk of coronary heart disease,

according to a meta-analysis of observational studies (Das De

et al., 2015). Given the growing prevalence, high morbidity and

mortality burden, ACS was taken as the most crucial challenge in

contemporary cardiology. Despite treatment improvement and

risk factor reduction, young patients with coronary artery disease

(CAD) remain at high risk of acute cardiovascular events (Tsao

et al., 2022). The role of iron deficiency in the progression of

coronary disease for young patients has not been well recognized.

A growing body of evidences have demonstrated that

patients with CAD are more likely suffered from iron

deficiency (Kang et al., 2012; Ponikowska et al., 2013;

Grammer et al., 2014; Das De et al., 2015; Jankowska et al.,

2015). Lacking of iron may impair immune response, myocardial

cell metabolism and oxidative stress, which is associate with

coronary dysfunction. However, the specific role of iron in CAD

progression is opaque. Exploring mechanisms behind iron

discrepancy in CAD may promote the understanding of

coronary disease pathophysiology.

Recent years, biotechnological advancements have enabled

researchers to produce and analyze molecular datasets, such as

genomics (Wu et al., 2021), coding transcriptomics (Cheng et al.,

2020; Yang et al., 2021), non-coding transcriptomics (Zheng

et al., 2021a; Song et al., 2021; Li et al., 2022), proteomics (Li et al.,

2020), epigenomics (Zheng et al., 2021b; Wu et al., 2022),

metabolomics (Liu et al., 2020a), and single cell data (Wang

et al., 2022). Simultaneously, the impact of applications of

machine learning algorithms to Invasive Diagnosis (IVD) have

been well documented across a large number of diseases (Wang

et al., 2020a; Wang et al., 2020b).

The impact of iron deficiency on the occurrence and

development of young ACS has not been verified.

Therefore, we sought to investigate the relationship of iron

metabolism related genes (IMRGs) and ACS. In this study, we

constructed a prediction model for ACS diagnosis using the

transcriptome data of iron metabolism related genes. The

performance of the generated diagnostic model was

superior to the other methods.

Methods

Iron metabolism related genes

The iron metabolism related genes (IMRGs) used in this

study were mainly collected from Molecular Signatures Database

v7.5.1 (http://www.gsea-msigdb.org/) (Subramanian et al., 2005),

consisting of 51 datasets, as well as two relevant literature (Mou

et al., 2020; Zhang et al., 2020). In total, 1,239 unique IMRGs

were finally obtained by removing duplicated genes.

Expression datasets and data processing

Gene expression datasets were downloaded from the Gene

Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/)

database (Barrett et al., 2013). Two datasets GSE61144 and

GSE60993, detected by platforms of Sentrix Human-6

v2 Expression BeadChip (GPL6106) and Illumina

HumanWG-6 v3.0 expression beadchip (GPL6884),

respectively, were used in this study. The two platforms were

applied for the mapping between probe name and gene name.

Genes with duplicate probe names were averaged in expression

value, resulting in 929 IMRGs for GSE60993 and 949 IMRGs for

GSE61144, respectively. Both gene expression datasets were

log2 transformed and quantile normalized (Cheng et al.,

2016a; Cheng et al., 2016b; Liu et al., 2019).

GSE61144 contains 14 ACS patients and 10 normal samples,

which is used as a discovery set divided into 75% as the training

set and 25% as the test set. GSE60993 contains 26 ACS patients

and seven normal samples and it is used as a cross-platform

validation set.

Differential analysis

Differentially expressed genes (DEGs) between normal

samples and patients with acute coronary syndrome (ACS)

were analyzed using the built-in functions of the scipy library

of python. DEGs were defined as those genes with Wilcoxon

Rank-Sum p-value<0.05 and |log2(fold change)| >1.5. In the

training set, 22 out of the 929 IMRGs were identified as DEGs,

including CD7, CYP4F3, DAPK2, DUSP1, FKBP5, G6PD, HLA-

DQA1, IL13RA1, ITGAM, LCN2, LILRB3, LTF, MXD1, NARF,

ORM1, PADI4, PRKCH, PYHIN1, SLC11A1, TNFAIP6,

UCP2 and VNN1. All these genes were also detected in the

Frontiers in Pharmacology frontiersin.org02

Xu et al. 10.3389/fphar.2022.1040845

http://www.gsea-msigdb.org/
http://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1040845


validation set GSE60993, and their corresponding gene

expression values are available.

Model construction

We constructed the diagnostic signature using Elastic-Net

Regression (EN), which is a linear regression model trained using

L1 and L2 norm as prior regularization terms. This combination

allows fitting to a model where only a few parameters are non-

zero sparse, like Lasso, but it still maintains some Ridge-like

regularity properties.

The label is added to the data sets GSE61144 and

GSE60993 as the dependent variable y, with value of (HPS2-

THRIVE randomized placebo, 2013), where 0 represents the

normal group and one represents the ACS group. The expression

value of the 22 DEGs were used as the independent variable X.

The GSE61144 dataset is divided into 75% as the training set to

train the model. After the optimal parameters of elastic network

were determined using multiple trainings, the regularization

parameter α is set to 0.01 and the parameter l1_ratio is set to

0.7. When l1_ratio = 0, the penalty is L2 norm. When l1_ratio =

1, it is L1 norm. When 0 < l1_ratio <1, the penalty is the

combination of L1 and L2.

The output y is a continuous value ranging from 0 to 1, which

cannot directly determine the status of a patient, i.e., ACS or

normal. Therefore, a label discrimination threshold C is set.

When the predicted value of y is greater than C, it is determined

that y is 1, otherwise y is 0, where one indicates ACS and

0 represents normal. The selection of the label discrimination

threshold C is based on the test set, which is composed of the

same number of samples with label 0 and 1.

C � mean (predtest) (1)

where predtest is the prediction result of the test set, and C is the

mean of the prediction result of the test set.

Due to the randomness of the model training process, in

order to eliminate the effect of fluctuations in the results caused

by randomness, we used the elastic network to randomly test

10,000 times. Screen the results with a ROC score greater than

85% on the validation set, and then take the eigengenes i whose

frequency Pi is greater than 75%. Five genes were finally

screened, including CD7, HLA-DQA1, LCN2, PADI4, and

VNN1.

Pi � ni
N

(2)

where N is the number of results with ROC greater than 85%, and

ni is the number of times the differential genes i appears in these

N results.

Finally, we put the five IMRGs into the elastic network to

retrain a new model. The iron metabolism related gene signature

(imSig) is shown as below,

y � −0.19826267p(CD7) − 0.52581069p(HLA − DQA1)
+ 0.47276387p(LCN2) + 0.73707807p(PADI4)
− 0.18809673p(VNN1) (3)

where gene PADI4 has the largest weight. The determinant

function is

y � { 0 , y<C
1 , y≥C

(C � 0.35) (4)

Results

Study population

This study (Multi-omics Study of Young Adults Coronary

Syndrome Patients, Young-COSMOS, http://www.clinicaltrials.

gov/NCT04864457) was a single center, prospective, open-label,

case-crossover clinical trial, that recruited participants between

November 2020 and December 2021 in Shenzhen people’s

hospital. We enrolled 206 young adults aged from 30 to

45 years old with chest pain manifestation (Figure 1A),

patients were eligible for participation in the trial if they had

chest pain manifestation, and requested to experience medical

history obtaining, physical examination, laboratory analysis,

electrocardiogram monitoring, transthoracic echocardiography

as well as coronary angiography. Taken this information

together, they were divided to ACS group and non-ACS

group. Exclusion criteria were myocardiopathy, myocarditis,

cerebral infraction, connective tissue diseases, estimated

glomerular filtration rate of less than 20 ml/min per 1·73 m2,

New York Heart Association class III or IV heart failure or left

ventricular ejection fraction of less than 30%, history of mental

disorder or malignant tumor, and elevation of creatine kinase

more than five times above normal or hepatic aminotransferase

more than three times above normal. All patients provided

written informed consent. The protocol was approved by

ethics committee of Shenzhen people’s hospital.

Importantly, we found the ACS group has a significant low

serum iron concentration than the non-ACS group (p < 0.001,

Wilcoxon test, Figure 1B). In the non-ACS group, the average

iron concentration is 16.38 (12.95–20.54), whereas this value is

12.31 (9.30–15.63) in the ACS group. These results motivated

us to investigate whether the iron-related genes are ACS

biomarkers and their expression abundance may indicate ACS

diagnosis.

Establishment of iron metabolism-related
genes

The iron metabolism related genes (IMRGs) were mainly

collected from Molecular Signatures Database (mSigDB v7.5.1)
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(http://www.gsea-msigdb.org/) (Subramanian et al., 2005) and

two relevant studies [ (Zhang et al., 2020), (Mou et al., 2020)].

mSigDB consists of 51 functional gene sets describing IMRGs

(Figure 1C). Gene set ODONNELL TFRC_TARGETS_UP

contains the most IMRGs 434) that are up-regulated in P493-

6 cells upon knockdown of transferrin receptor 1 (TFRC1) by

RNAi. TFRC1 is a major mediator of iron uptake in mammalian

cells and its overexpression is a common feature of human

malignancies [ (Corral et al., 2021)]. The second largest gene

set is HALLMARK_HEME_METABOLISM, which includes

200 genes involved in metabolism of heme, a cofactor

consisting of iron and porphyrin. The minimal gene set is

HP_METHEMOGLOBINEMIA, which describes abnormally

increased levels of methemoglobin in the blood. There is an

oxidized ferric iron (Fe+3) rather than the reduced ferrous form

(Fe2+) that is normally found in this form of hemoglobin.

Methemoglobin has a reduced affinity for oxygen, resulting in

a reduced ability to release oxygen to tissues. 95 other IMRGs

were collected from two recently published works by Zhang et al.

and Mou et al. [(Zhang et al., 2020), (Mou et al., 2020)]. The

distribution of IMRGs among different functional gene sets are

shown in Figure 1C. In total, 1,239 unique IMRGs were finally

obtained by removing duplicated genes.

Differential and functional analysis of
IMRGs

Although the Young-COSMOS study is in process, we

motivated to take a quick glance at the predictive value of the

IMRGs in ACS diagnosis. Two publicly available blood

transcriptome datasets collected from GEO database

(GSE61144 and GSE60993) were used for constructing the

prediction model of acute coronary syndrome (ACS).

GSE61144 contains peripheral blood samples from 14 patients

with STEMI and 10 normal controls. GSE60993 includes

26 blood samples of ACS patients covering three subtypes,

ST-elevation myocardial infarction (STEMI, n = 7), non-ST-

elevation MI (NSTEMI, n = 10) and unstable angina (UA, n = 9),

as well as seven normal controls. For GSE61144, we identified

FIGURE 1
Establishment of IMRGs. (A)Composition of enrolled samples. (B) Boxplot showing the iron difference clinically. (C) Identification of DEGs from
the training set GSE61144. (D) Venn diagram of all DEGs and IMRGs. (E) Distribution of iron metabolism-related genes among different functional
terms.
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187 up-regulated and 112 down-regulated differentially

expressed genes (DEGs) with Fold Change (FC) > 1.5 and

p-value < 0.05 (Wilcoxon test, Figure 1D).

For these DEGs, 22 out of them are IMRGs in the data set

GSE61144, which serves as the training set in the next section

(Figure 1E). We defined these differentially expressed IMRGs as

TABLE 1 Determined genes in imSig.

Gene symbol Gene name Entrez ID Weight Terms

PADI4 Peptidyl Arginine Deiminase 4 23,569 0.7371 ODONNELL_TFRC_TARGETS_UP

HLA-DQA1 Major Histocompatibility Complex, Class II, DQ Alpha 1 3,117 0.5258 HP_IRON_DEFICIENCY_ANEMIA

ODONNELL_TARGETS_OF_MYC_AND_TFRC_UP

ODONNELL_TFRC_TARGETS_UP

LCN2 Lipocalin 2 3,934 0.4728 GOBP_CELLULAR_IRON_ION_HOMEOSTASIS

GOBP_IRON_COORDINATION_ENTITY_TRANSPORT

GOBP_IRON_ION_HOMEOSTASIS

CD7 CD7 Molecule 924 0.1983 GOBP_IRON_ION_TRANSPORT

GOBP_SEQUESTERING_OF_IRON_ION

VNN1 Vanin 1 8,876 0.1881 GOMF_IRON_ION_BINDING

LUDWICZEK_TREATING_IRON_OVERLOAD

REACTOME_IRON_UPTAKE_AND_TRANSPORT

FIGURE 2
Differential and functional analysis of DEIGs. (A) Identification of differentially expressed IMRGs. (B) Heatmap of the identified DEIGs. Enriched
functions of the DEIGs in the ontology of Biological Process (C), Molecular Function (D), and Cell component (E).
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DEIGs, among which 17 are up-regulated and five were down-

regulated (Figures 2A,B). DEIGs were mainly involved in

biological processes of iron ion transport and homeostasis,

osteoclast differentiation, regulation of protein localization to

membrane, etc. (Figure 2C). For molecular functions, DEIGs

were enriched in terms including iron ion binding, macrolide

binding, immune receptor activity, etc. (Figure 2D). As expected,

these DEIGs tend to locate in lumens and membranes, such as

granule and autophagosome lumen, secretory and tertiary

granule membrane, etc. (Figure 2E).

Construction of imSig

We aimed to determine an IMRG-based molecular

signature of ACS and to identify novel serum iron gene

markers for early stage of ACS. To this end, GSE61144 was

used as the discovery set, which was divided to 75% for model

training and 25% for parameter optimization (Figure 3A). The

22 DEIGs were trained by the Elastic Net to build the

prediction model. Since the resulting genes were not

consistent when using different random computation seeds,

we performed LASSO 10,000 times and selected the genes

occurred most frequently. A majority of the genes were

randomly picked up and only five genes were consistently

identified in more than 75% (>7,500) rounds with ROCs

greater than 0.85 (Figure 3B), indicating the importance

and generalizability of these genes in classification. The

weights of the five genes, PADI4, HLA-DQA1, LCN2, CD7,

and VNN1, were then retained to obtain the optimal

performance (Figure 3C). The details of these genes are

listed in Table 1. Finally, the generated model was assessed

by the validation set GSE60993 using a series of evaluation

measurements.

Among the five imSig genes, PADI4 contributes the most

in the model. It is a member of a gene family which encodes

enzymes responsible for the conversion of arginine residues to

citrulline residues. PADI4 may play a role in granulocyte and

macrophage development leading to inflammation and

immune response, both of which are the main pathogenesis

of ACS.

Performance evaluation of imSig

The final imSig5 model using Elastic Net obtained a ROC of

0.95 on the training set and 0.96 on the cross-platform validation

set. Then, we compared the performance of Elastic Net with other

two machine learning methods, Lasso and Logistic regression. In

the validation set, the performance of Elastic Net was superior to

the others (0.88 for Lasso and 0.90 for Logistic regression,

Figure 4). To perform a comprehensive evaluation, we also

compared the performance of the three models using PRC,

Sensitivity, and Specificity. Elastic Net consistently scores the

higher than Lasso and Logistic regression in the validation set.

Specifically, the PRCs are 0.98, 0.96, and 0.96 for Elastic Net,

Lasso and Logistic regression, respectively. Although all the three

methods achieved a specificity of 1, Elastic Net obtained a

sensitivity of 0.92, which is much higher than Lasso (0.85)

and Logistic regression (0.77). Apart from Lasso and Logistic

regression, we also compared the performance of Elastic Net with

two other machine learning methods, Random Forest (RF) and

FIGURE 3
Construction of miSig model (A)Workflow of this study. (B) Feature gene selection using 10,000 randommodels. Blue grid indicates the gene is
included in a powerful model with ROC >0.85, while white grid represents the gene is not included in any powerful model. (C)Weight of genes in the
miSig model.
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FIGURE 4
Prediction performance of the five machine learning methods in the training set (A) and the validation set (B).

FIGURE 5
Expression difference of the genes inmiSig (A) Expression difference of the genes in the training set. (B) Expression difference of the genes in the
validation set. Enriched functions of the miSig genes in the ontology of Biological Process (C), Molecular Function (D), and Cell component (E).
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Support Vector Machine (SVM), and achieved the same

conclusion.

In the training set, CD7 and HLA-DQA1 were down-

regulated in ACS group while LCN2, PADI4 and VNN1 were

up-regulated (Figure 5A). The same trend was also observed in

the validation set (Figure 5B). Interestingly, the imSig genes in

the normal group generally expressed in a small range, whereas

they fluctuated in expression among the ACS samples.

Comparing to the DEIGs, the imSig genes were implemented

in some specific functions, such as positive regulation of

leukocyte cell-cell adhesion, positive regulation of T cell

activation, ect. PADI4 functions in histone and protein

citrullination (Figure 5C), which increased innate

immunostimulatory capacity, and immune complexes

containing citrullinated histones activated macrophage

cytokine production and propagated neutrophil activation. As

mentioned above, accordingly, PADI4 is involved in granulocyte

and macrophage development causing inflammation and

immune response. For the ontologies of molecular functions

and cellular component, the imSig genes are enriched in

enterobactin binding and pantetheine hydrolase activity

(Figure 5D) and tend to resident in lysosomal and vacuolar

membrane (Figure 5E).

Discussion

In this work, we developed an ACS prediction signature

based on the expression of iron metabolism-related genes and

identified novel serum iron gene markers for early stage of ACS.

Five genes, PADI4, HLA-DQA1, LCN2, CD7, and VNN1, were

calculated using Elastic Net and included in the final model

imSig, which outperforms the other machine learning methods

in the validation set.

It has been reported that iron is essential for numerous

biological processes, such as oxygen and lipid metabolism,

protein production, cellular respiration, and DNA synthesis.

In addition to the physiological role, disorders of iron

metabolism are also involved in the pathological mechanisms

of several common human diseases, such as type 2 diabetes,

obesity, non-alcoholic fatty liver disease and coronary artery

disease, even participating in the regulation of nerve and brain

function. Genetically instrumented serum iron was reported

positively associated with type 2 diabetes [ (Wang et al.,

2021)]. A meta-analysis indicated that elevated serum ferritin

was a risk factors for type 2 diabetes, and soluble transferrin

receptor-to-ferritin ratio was inversely related to the risk of type

2 diabetes [ (Liu et al., 2020b)]. Moreover, iron deficiency (ID) is

particularly frequent in obese patients due to increased

circulating levels of acute-phase reactant hepcidin and

adiposity-associated inflammation which reduced iron

absorption [ (Bjørklund et al., 2021)]. Jordi et al. uncovered

microbiome- and iron-linked metabolomic and transcriptomic

signatures involving imbalances in gluconeogenic metabolites,

ketone bodies and cellular transport, which altogether modulate

liver fat accumulation [(Mayneris-Perxachs et al., 2021)].

Moreover, blood iron level has been reported have important

effects on brain and cognitive function [ (Wenger et al., 2022)]

and the change of brain function will also affect the heart disease

vice versa. Myocardial ischemia can be induced by mental stress

and coronary heart disease patients have not only pathological

changes of circulation of blood but also abnormal behaviors in

their spiritual consciousness [(Geng and Yin, 2017), (Geng,

2022)].

Iron and iron deficiency are increasingly being studied in

patients with CVD and accumulating evidences suggest that iron

deficiency is associated with high risk of CVD [ (Stoltzfus, 2001;

Kang et al., 2012; Das De et al., 2015), (Lamas et al., 2013),

(Grammer et al., 2014), (Jankowska et al., 2015), (Lewis et al.,

2017), (von Haehling et al., 2015)]. The bivalent ferrous form

(Fe2+) can donate electrons whereas the trivalent ferric form

(Fe3+) can accept electrons, which are required for oxygen

transport and enabled iron deficiency induce CVD [ (von

Haehling et al., 2015)]. Meng et al. observed that decreases in

the levels of irons in the peripheral blood could be a predictive

biomarker of coronary atherosclerosis from a study of

4,243 patients, which is consistent with our results [ (Meng

et al., 2022)]. Therefore, serum iron metabolism is worthy of

paying more attention to study and elucidate mechanisms of iron

homeostasis because of its double-edged impacts.

Ferroptosis is a new form of regulated cell death

characterized by iron-dependent lipid peroxidation and

involved in many metabolic processes, including iron, lipid

and glutathione metabolism (Fang et al., 2022). Iron plays an

essential role in inducing ferroptosis, because iron is associated

with energy metabolism, which is closely linked to ferroptosis.

The role of the identified imSig genes in Ferroptosis will be

further investigated in our future work.

The major limitation of our study is the sample size of the

training and test set. Merely dozens of samples were used for the

construction of the prediction model. However, the datasets used

in this study are the only available public resources. To address

this problem, we build a cohort study Young-COSMOS including

206 samples to study ACS and non-ACS patients, which is a great

complement for the repository of ACS and CAD

transcriptome data.

Another problem needs to be addressed is the prediction of

ACS subtypes. The root cause is still the problem of sample size.

Although several subtypes were included in some dataset, each

subtype contains few samples, due to the limited total sample

size. In Young-COSMOS, ACS contains three subtypes, i.e., ST-

elevation myocardial infarction (STEMI), Non-ST-elevation MI

(NSTEMI) and unstable angina (UA), where the size is much

larger than the dataset used in the current study. Therefore, we

believe an updated and more powerful prediction model will be

launched soon.
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In conclusion, we found ACS patients have decreased serum

iron concentration and constructed a prediction model based on

iron metabolism-related genes, which may assist in the early

diagnosis of ACS.
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