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Bladder cancer (BC) is the most frequent type of urinary system cancer. The

prognosis of BC is poor due to high metastasis rates and multidrug resistance.

Hence, development of novel therapies targeting BC cell death is urgently needed.

As a novel cell death type with strong antitumor potential, ferroptosis has been

investigated bymany groups for its potential in BC treatment. As an iron-dependent

cell death process, ferroptosis is characterized by excessive oxidative phospholipids.

Themolecular mechanisms of ferroptosis include iron overload and the system Xc-

GSH-GPX4 signaling pathway. A recent study revealed that ferroptosis is involved in

the metastasis, treatment, and prognosis of BC. Herein, in this review, we

comprehensively summarize the mechanism of ferroptosis, address newly

identified targets involved in ferroptosis, and discuss the potential of new clinical

therapies targeting ferroptosis in BC.
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1 Introduction

As a genitourinary system tumor, bladder cancer (BC) is the most frequent type of

urinary system cancer, accounting for over 570,000 new patients and 210,000 deaths

globally in 2020 (Sung et al., 2021). According to the depth of invasion, bladder cancer can

be subdivided into two categories: nonmuscle-invasive BC (NMIBC) and muscle-invasive

BC (MIBC). BC patients have a comparatively high risk of mortality without proper

treatment. In Europe, the standard relative five-year survival rate for BC patients is less

than 60%, and the five-year survival rate decreases to 5.5% following metastasis (Richters

et al., 2020; Witjes et al., 2021). Therefore, it is crucial to investigate novel cell death

signaling pathways to reduce drug resistance and provide more therapeutic options.

Ferroptosis is a type of regulated cell death that differs from necrosis or apoptosis. It is

characterized by iron dependence. An imbalance in the generation and degradation of

intracellular reactive oxygen species (ROS) results in reduced cellular antioxidant capacity,

unrestricted lipid peroxidation, and plasma membrane rupture, finally causing ferroptosis

(Aschner et al., 2022; Ozkan and Bakar-Ates, 2022). During ferroptosis, mitochondria are
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characterized by shrinking, absence of cristae, and increased

membrane density. Compared with normal cells, tumor cells

require more iron to support their proliferation. This means that

tumor cells are more susceptible to iron-catalyzed necrosis.

Therefore, ferroptosis has drawn increasing attention because it

provides a promising avenue for oncotherapy (Bano et al., 2022; Bi

et al., 2022). In the current review, we comprehensively summarize

ferroptosis-related mechanisms (Figure 1), discuss newly identified

targets involved in ferroptosis, and assess the potential of new

clinical therapies targeting ferroptosis in BC.

2 Molecular mechanisms of
ferroptosis

Lipid peroxidation and iron overload in cells are two key

signals that induce ferroptosis. Among them, excessive lipid

peroxidation is the core driving mechanism of ferroptosis.

Polyunsaturated fatty acids (PUFAs) are important

components in the formation of cell membranes (Kagan et al.,

2017; Wenzel et al., 2017).

2.1 Lipid peroxidation in ferroptosis

PUFAs are components of the cell membrane and regulate

many biological functions, including immunity, inflammation,

and cellular growth, and also play a crucial role in promoting

ferroptosis (Yin et al., 2011; Magtanong et al., 2019). The

biosynthesis and transformation of PUFAs in cell membranes

require acyl coenzyme A (CoA) synthetase long-chain family

member 4 (ACSL4) and hemolytic phosphatidylcholine acyl

transferase 3 (LPCAT3) enzymes (Kagan et al., 2017; Liu

et al., 2022a). Under the catalysis of ACSL4, long-chain

FIGURE 1
Mechanisms of ferroptosis. The initiation of ferroptosis requires two key signals, lipid peroxidation and accumulation of free iron. The
generation of polyunsaturated phospholipids (by ACSL4 and LPCAT3) or PUFA-ePLs (by peroxisomal enzymes) and subsequent activation of ALOX
have a major role in promoting lipid peroxidation, which can be inhibited by GPX4 and PKCβII. Extracellular iron enters the cell through TFR and
facilitates the Fenton reaction to promote PUFA-PL oxidation. Some free iron stored in ferritin is released by ferritinophagy-mediated ferritin
degradation. Iron can promote FSP1-CoQ10-NADPH pathways, and BH4 can block the propagation of phospholipid peroxidation and ferroptosis.
Abbreviations: ALOX, lipoxygenase; ACSL4, acyl-CoA synthetase long chain family member 4; BH4, tetrahydrobiopterin; CoA-PUFA, coenzyme
A-polyunsaturated fatty acid; CoQ10, coenzyme Q10; CoQH2, ubiquinol; DPP4, dipeptidyl peptidase 4; DHODH, dihydroorotate dehydrogenase;
Fin56, ferroptosis inducer 56; FSP1, ferroptosis suppressor protein 1; GPX4, glutathione peroxidase 4; GSH, glutathione; GSSG, oxidized glutathione;
H2O2, hydrogen peroxide; LPCAT3, lysophosphatidylcholine acyltransferase 3; Nrf2, nuclear factor erythroid 2-related factor 2; NADPH,
nicotinamide adenine dinucleotide phosphate; NADP+, nicotinamide adenine dinucleotide phosphate; NACOA4, nuclear receptor coactivator 4;
NOX, NADPH oxidase; PKCβII, protein kinase C beta type isoform; PUFA, polyunsaturated fatty acid; PL-PUFA, phospholipid-containing
polyunsaturated fatty acid; PL-PUFA-OOH, phospholipid with a peroxidized polyunsaturated fatty acyl tail; P53, protein 53; PL-OOH, phospholipid
hydroperoxide; ROS, reactive oxygen species; Slc7A11, solute carrier family 7 member 11; SLC11A2, solute carrier family 11 member 2; SLC25A28,
solute carrier family 25 member 28; SLC40A1, solute carrier family 40 member 1; STEAP3, six transmembrane epithelial antigen of the prostate 3;
TFR, transferrin receptor.
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PUFAs (such as free arachidonic acid or epinephrine) combine

with coenzyme A to form PUFA-CoA, which is then promoted

by lysophosphatidylcholine acyl transferase 3 (LPCAT3). The

esterification reaction produces the membrane phospholipid of

polyunsaturated fatty acids (PUFA-PL). Exogenous

administration of the monounsaturated fatty acid (MUFA)

oleic acid (OA, C18:1) can compete with PUFAs for

incorporation into phospholipids (PLs) and therefore inhibit

erastin-induced ferroptosis (Yin et al., 2011). Because of the

presence of bisallylmoieties in PUFAs, PUFA-PLs are prone to

peroxidation to form PL-PUFA-OOH (Yagoda et al., 2007; Doll

et al., 2017; Sung et al., 2021). After oxidation by lipoxygenases

(ALOXs) or cytochrome P450 oxidoreductases (PORs), harmful

lipid peroxidation products (phospholipid hydroperoxides,

PLOOHs) are formed, causing rapid and irreparable damage

to cell membranes and eventually leading to cell death (Li et al.,

2021). Some studies have found that lipid peroxides can activate

protein kinase βII (PKCβII) and that the activated PKCβII can
phosphorylate the T328 site of ACSL4, promoting activation of

ACSL4. The active ACSL4 promotes the synthesis of unsaturated

fatty acid phospholipids and induces the production of lipid

peroxides (Liu et al., 2021) (Liu et al., 2022a).

2.2 Iron overload in ferroptosis

Iron overload in cells is also an important cause of

ferroptosis. The Fe3+ in the blood circulation is bound to

transferrin (Tf). Subsequently, the transferrin receptor (TFRC)

recognizes Fe3+ and transports it into the cytoplasm. Some of the

iron is stored in ferritin, and the rest is reduced to divalent iron

ions by an endosomal membrane protein, namely, STEAP3, and

released into the cytoplasm through solute carrier family

11 member 2 (SLC11A2) (Gao et al., 2015; Li et al., 2021).

When iron homeostasis is unbalanced in the body, nuclear

receptor coactivator 4 (NCOA4) transports ferritin to

lysosomes where it undergoes autophagic degradation,

releasing free iron ions (Santana-Codina et al., 2021; Zhou

et al., 2022). Fe2+ is unstable and easily oxidized and can

interact with H202 produced by mitochondria. Hydroxyl

radicals are generated through the Fenton reaction, which

further causes PUFA-PL peroxidation and triggers ferroptosis

(Hou et al., 2016; Zheng and Conrad, 2020). Increased levels of

intracellular iron can enhance the sensitivity of cells to

ferroptosis. Recent research has revealed that mitochondria

play a crucial role in regulation of ferroptosis and are also the

main source of reactive oxygen species (ROS) (Takashi et al.,

2020). In the early process of erastin-induced ferroptosis,

intracellular lipid oxygen species localize to mitochondria and

subsequently appear in other cellular regions, such as the cell

membrane. Mitochondria produce ROS and convert them to

H2O2 via superoxide dismutase. H2O2 reacts with labile iron

through the Fenton reaction to generate hydroxyl radicals,

thereby promoting PUFA-PL peroxidation (Zheng and

Conrad, 2020; Lei et al., 2022). In the absence of cysteine,

glutamine changes the electron transport activity of protein

complexes in the inner mitochondrial membrane by

regulating the mitochondrial tricarboxylic acid cycle, causing

the mitochondrial membrane potential to hyperpolarize,

accelerating GSH depletion, promoting lipid ROS

accumulation, and inducing ferroptosis (Gao et al., 2019).

2.3 System xc-GSH-GPX4 signaling
pathway in ferroptosis

The system Xc-GSH-GPX4 pathway is the predominant

signaling pathway for ferroptosis. System Xc belongs to the

heterodimeric amino acid transporter family. It is a

heterodimer that includes solute carrier family 3 member 2

(SLC3A2) and solute carrier family 7 member 11 (SLC7A11)

linked through disulfide bonds. SLC3A2 and SLC7A11 are both

embedded in the cell membrane. SLC7A11, the major functional

subunit in system Xc-, is responsible for transportation of cystine

into cells (Koppula et al., 2021). Cystine is reduced to cysteine

after entering cells (Koppula et al., 2018; Liu et al., 2020).

Cysteine is a key amino acid building block for glutathione

(GSH), limiting the biosynthesis of reduced GSH (Meister,

1995). Glutathione peroxidase 4 (GPX4), which is also named

phospholipid hydrogen peroxide glutathione peroxidase

(PHGPx), is the major enzyme responsible for catalyzing the

reduction of PLOOHS in mammalian cells (Ursini et al., 1982;

Seibt et al., 2019). Through the catalytic selenocysteine residue of

GPX4 and two electrons provided by glutathione (GSH),

GPX4 can reduce phospholipids and cholesterol

hydroperoxides to their corresponding alcohols. Erastin can

prevent cystine import in a Gpx4 knockout mouse model,

leading to PLOOH accumulation and causing unrepairable

and rapid damage to membranes and ultimately cell death

(Maiorino et al., 2018).

2.4 The role of p53 in ferroptosis

Gaurav et al. found that p53 is the most common genetic

mutation in the population, with a mutation rate of 35%

(Mendiratta et al., 2021). As a critical tumor suppressor gene,

p53 is located at the short arm of chromosome 17 and encodes

the p53 protein. P53 can be induced by many stress signals, bind

to DNA in the form of tetramers, and participate in cell cycle

regulation, DNA repair, cell senescence, and death (Liu et al.,

2019). The SLC7A11 gene is a known target of p53, and the

activation of p53 leads to transcriptional repression of SLC7A11

(Jiang et al., 2015). P53 has also been reported to inhibit the

uptake of cystine by downregulating SCL7A11 expression (Liu

and Gu, 2022). This ultimately results in a decrease in the activity
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of glutathione peroxidase, a reduction in the antioxidant capacity

of cells, and an enhancement of cell resistance to ferroptosis

sensitivity (Liu and Gu, 2021; He et al., 2022; Hu et al., 2022). In

an analysis of the expression levels of ferroptosis genes, GPX4,

SLC7A11, and GSS were found to be highly expressed in some

bladder cancer patients, and ACSL1 and ACSL4 were expressed

at low levels. This means that bladder cancer cells can evade

ferroptosis (Tang et al., 2022). The p53-SLC7A11 pathway has

been reported to stimulate ferroptosis in a GSH-independent

manner. Lipid oxidase ALOX12 is a key regulator of p53-

dependent ferroptosis. ALOX12 is located on human

chromosome 17p13.1 and is a popular site for heavy

monoallelic deletions in human cancers. It has been reported

that free ALOX12 oxidizes the polyunsaturated fatty acid chains

of cell membrane phospholipids, leading to cell iron death.

SLC7A11 can directly bind to free ALOX12 and limit its

function. When p53 downregulates SLC7A11 expression,

ALOX12 is released to induce ferroptosis (Chu et al., 2019). A

p53 inducer can directly regulate the level of iPLA2β, but this
response is very sensitive to the treatment time and

concentration of the p53 inducer. The phospholipase iPLA2β
can specifically hydrolyze the sn-2 acyl bonds of phospholipids,

scavenge peroxidized phospholipids, and inhibit ROS-induced

ferroptosis, independent of GPX4 and FSP1 (Li et al., 2021).

P53 in mitochondria can bind with solute carrier family

25 member 28 (SLC25A28) to form a complex (p53-

SLC25A28). Therefore, SLC25A28 activity is greatly enhanced,

which leads to redox-active iron accumulation and ferroptosis

(Zhang Z. et al., 2020). P53 can also directly bind to DPP4,

preventing it from entering the cytoplasm and binding to NOX1,

thereby promoting ferroptosis (Xie et al., 2017). In addition, the

ferroptosis marker molecule PTGS2 was also confirmed to be a

target gene of p53 (Yagoda et al., 2007; Doll et al., 2017; Guan et

al., 2020; Sung et al., 2021). Numerous studies indicate that

p53 promotes ferroptosis.

2.5 Other inhibitors of ferroptosis

Nuclear factor erythroid 2 (Nrf2), which plays a key role in

antioxidant activity, is considered to be an important regulatory

factor in ferroptosis. On one hand, Nrf2 can regulate the

expression of GPX4 protein, while GPX4 overexpression

results in ferroptosis resistance (Fan et al., 2017; Cui et al.,

2021; Gao et al., 2022). On the other hand, Nrf2 can directly

bind with the antioxidant-responsive element (ARE) sequence of

the SLC7A11 subunit promoter, increasing the expression of

SLC7A11 and increasing the GSH level to inhibit ferroptosis

(Carpi-Santos and Calaza, 2018; Dong et al., 2020; Chen et al.,

2022). Nrf2 regulates the intracellular free iron content by

activating iron metabolism-related genes (SLC40A1).

SLC40A1 can transport iron ions out of cells and inhibit the

occurrence of ferroptosis (Chen et al., 2021) (Wu et al., 2017).

The ferroptosis suppressor protein 1 (FSP1)-coenzyme Q10

(CoQ10) signaling pathway is another important ferroptosis

inhibitory pathway. FSP1 is a flavoprotein oxidoreductase.

FSP1 overexpression can suppress ferroptosis caused by

GPX4 inhibition (Bersuker et al., 2019; Yan et al., 2021).

Further studies found that FSP1 can act as an oxidoreductase

to reduce COQ to COQ-H2 on the plasma membrane (Shukla

and Dubey, 2018). CoQ, a lipophilic metabolite composed of a

redox-active quinone head group and a long polyisoprenoid lipid

tail, plays an essential role as a reversible redox carrier in the

Golgi apparatus membrane and in plasma membrane electron

transport. Its fully reduced form CoQH2 can act as a free-radical-

trapping antioxidant to reduce lipid peroxidation free radicals

(Stocker et al., 1991; Morre and Morre, 2011) (Gao et al., 2019)

(Liu et al., 2022b). DHODH is the rate-limiting enzyme in the

pyrimidine synthesis pathway and is an iron-containing flavin-

dependent enzyme located on the inner mitochondrial

membrane. One study found that a mitochondrial enzyme,

dihydroorotate dehydrogenase (DHODH), on the outer

surface of the inner mitochondrial membrane, can reduce

coenzyme Q (CoQ) to ubiquinol (CoQH2) (Mao et al., 2021;

Wang and Min, 2021). Tetrahydrobiopterin (BH4) is an

alternative ferroptosis defense system independent of the

GPX4-independent inhibitor of ferroptosis. BH4 is a powerful

free radical-trapping antioxidant in cell membranes that

promotes regeneration of CoQH2 and alpha-tocopherol to

combat lipid peroxidation and ferroptosis (Crabtree et al.,

2009; Kraft et al., 2020; Soula et al., 2020). BH4 is regenerated

from its oxidized form boron dihydride (BH2) by dihydrofolate

reductase (DHFR). Thus, DHFR inactivation significantly

increases cellular susceptibility to ferroptosis (Hadian, 2020;

Kraft et al., 2020).

3 The role of ferroptosis in bladder
cancer

Abnormal expression of multiple ferroptosis-related proteins

(FRPs), long noncoding RNAs (lncRNAs), microRNAs

(miRNAs), and circular RNAs (circRNAs) has been found in

bladder cancer specimens, indicating that ferroptosis plays an

important role in the occurrence of BC (Zhang Y. et al., 2020). At

the same time, FRPs and lncRNAs show good predictive value for

prognosis and drug resistance in bladder cancer.

3.1 Predictive role of ferroptosis-related
genes

Ferroptosis gene expression levels and the clinical data of BC

patients were analyzed in The Cancer Genome Atlas (TCGA)

and Gene Expression Omnibus (GEO) databases. It was found

that a number of ferroptosis-related genes were abnormally
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expressed, such as SLC7A11, GPX4, TFRC, NCOA4, ACSL4,

ALOX15, glucose-6-phosphate dehydrogenase (G6PD), and

DPP4(66). Based on these ferroptosis regulator genes, various

prognostic signatures have been established that can predict not

only disease progression but also patient response to

programmed death 1 (PD-1) and programmed death 1 (PD-

L1) immunotherapy (Yi et al., 2021; Liu et al., 2022c; Gui et al.,

2022). By analyzing data downloaded from multiple databases,

Yue found that 23 FRGs were abnormally expressed and that low

expression of recombinant heat shock 70 kDa protein 5 (HSPA5)

and high expression of CDGSH iron sulfur domain 1 (CISD1)

were associated with poor 1-, 3-, and 5-year overall survival

(Yang et al., 2022). Xia used the Consensus Cluster Plus R

package to divide the validated ferroptosis genes (VFGs) into

four VFG clusters and found that there were differences in the

prognosis of patients with different VGF clusters and tumor

clinical manifestations. Scoring based on these phenotype-related

genes revealed that VFR Cluster A had the highest score and was

related to a worse response to PD-1 blockade immunotherapy

(Xia et al., 2022).

3.2 Predictive role of lncRNAs

Accumulating evidence has demonstrated that multiple

ferroptosis-related lncRNAs can be used to predict the

prognosis and drug resistance of BC patients (Liang et al.,

2021; Zhou et al., 2021; Li et al., 2022a; Liu et al., 2022a).

LncRNAs, which are noncoding RNAs approximately

200 nucleotides in length, play a variety of roles in cancer

immune responses and the tumor microenvironment (Yu

et al., 2018; Yu et al., 2021). Liu found that lncRNAs were

closely related to the tumor microenvironment and

immunotherapy response. High-risk groups were associated

with a poor prognosis and lower expression of certain

proteins, including PD-1, PD-L1, and cytotoxic T lymphocyte-

associated antigen-4 (CTLA-4), which indicate a poorer

treatment response to immunotherapy (Liu et al., 2022a; Liu

et al., 2022d). By analyzing ferroptosis-related lncRNA pairs and

constructing a Cox proportional hazards model, it was found that

multiple ferroptosis-related signaling pathways were altered in

BC (Wang et al., 2022; Hou et al., 2022). The study showed high

ferroptosis risk scores were correlated with high expression levels

of the gene encoding PD-1, with a lower half-maximal inhibitory

concentration (IC50) value for docetaxel, cisplatin, and

pazopanib. This suggests that the combined use of ferroptosis-

related drugs with immune checkpoint inhibitors in the high-risk

group would benefit patients (Li et al., 2022b).

3.3 Potential therapeutic targets of
circRNAs

CircRNAs are another type of noncoding endogenous RNAs,

and they have circular configurations and stable structures (95).

CircST6GAINAC6 was found to be significantly reduced in

TABLE 1 Treatments for induction of ferroptosis in bladder cancer.

Drug Ferroptosis
(inducer
inhibitor)

Target
gene

Mechanism Model References

7j Inducer GPX4 Inactivated GPX4, in lipid peroxidation ↑ In vitro Chen et al. (2020)

OTUB1 Inhibitor SLC7A11 SLC7A11↑, cystine ↑,GSH ↑,GPX4↑ In vitro/in vivo Shimada et al. (2016)

Emp1 Inhibitor SLC7A11 SLC7A11↑, cystine ↑,GSH ↑,GPX4↑ In vitro Hao et al. (2022)

Erianin Inducer NRF2 Inactivated NRF2, ROS↑, GSH↓ In vitro/in vivo Xiang et al. (2021)

CircST6GAINAC6 Inducer SLC7A11 SLC7A11↓, GPX4↓, activate the P38/MAPK
pathway

In vitro 96

Fin56 Inducer GPX4 GPX4↓, lipid peroxidation ↑ In vitro 97

LncRNA RP11-89 Inhibitor PROM2 Fe3+↓, Ferritin↓, SLC7A11↑, GPX4↑ In vitro Luo et al. (2021)

Au@Chl/Fe Inducer Iron ROS↑, GSH↓, lipid peroxidation ↑ in PDT In vitro/in vivo Liao et al. (2022)

Fe3O4@Chl/Fe CNPs Inducer Iron Iron ion overload, ROS ↑,GSH↓, GPX4↓ In vitro/in vivo Chin et al. (2022)

AuNRs&IONs@Gel Inducer Iron Release iron ions in cell, ROS ↑ In vitro/in vivo Guo et al. (2020)

Bupivacaine Inducer Fe2+ Fe2+↑, ROS↑, GPX4↓, MDA↑ In vitro/in vivo Hao et al. (2022)

Huang qin Inducer FTH1 FTH1↓, Fe2+↑, ROS↑ In vitro/in vivo Kong et al. (2021)

Gold clusters (PAA4, PAA5) Inducer GSH GSH↓, GPX4↓ In vitro Xiao et al. (2022)

Note. ↓stands for decreases the expression of, and ↑ stands for increases the expression of.

Abbreviations: Au@Chl/F, aurum@iron chlorophyll; AuNRs&IONs@Gel, aurum nanorods, and iron oxide nanoparticles@ gel; CircST6GAINAC6, circular RNA ST6GAINAC6; Emp1,

epithelial membrane protein 1; Fe, ferrum; Fe3O4@Chl/Fe CNPs, ferroferric oxide@ iron chlorophyll cluster-structured nanoparticles; Fin56, ferroptosis inducer 56; FTH1, ferritin heavy

chain; GSH, glutathione; GPX4, glutathione peroxidase 4; LncRNA RP11-89, long non-coding RNA RP11-89; MDA, malonaldehyde; NRF2, nuclear factor erythroid 2-related factor 2;

OTUB1, ovarian tumor family deubiquitinase 1; PDT, photodynamic therapy; PROM2, prominin 2; ROS, reactive oxygen species; SLC7A11, solute carrier family 7 member 11.
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bladder cancer cells according to second-generation sequencing

technology. One study showed that circST6GAINAC6 can bind

to the N-terminus of heat shock protein 1, block phosphorylation

at Ser15, activate the P38/MAPK pathway, and decrease the levels

of SLC7A11 and GPX4, thereby promoting ferroptosis in bladder

cells (96).

3.4 Potential therapeutic targets

Ferroptosis has a unique role in anticancer therapeutic

strategies (Yi et al., 2021; Liu et al., 2022c; Gui et al., 2022).

Treatments for induction of ferroptosis in bladder cancer are

shown in Table 1. The system xc-GSH-GPX4 pathway is a

classical inhibitory ferroptosis pathway. In recent years, most

studies on potential therapeutic drugs or targets have focused on

this pathway. SLC7A11 is an important functional component of

system Xc-, and regulation of SLC7A11 can affect cell ferroptosis.

Iron metabolism disorder is also an important cause of

ferroptosis. One study found that RP11-89 mediates miR-129-

5p expression and upregulates PROM2. Elevated PROM2 in cells

is associated with diminished iron export, multivesicular body

formation, and reduced mitochondrial abnormalities. Thus,

RP11-89 may serve as a potential biomarker or therapeutic

target in bladder cancer (Luo et al., 2021). The expression of

ovarian tumor family deubiquitinase 1 (OUTB1) is significantly

increased in human bladder cancer. Through in vitro and in vivo

experiments, knocking out the OTUB1 gene was found to reduce

the level of SLC7A11, inhibit the uptake of cystine by cells, and

promote ferroptosis (Shimada et al., 2016). Epithelial membrane

protein 1 (EMP1) was found to be downregulated in BC cells. In

cells lacking EMP1, the addition of the ferroptosis inducer erastin

promoted anti-ferroptosis cell death through upregulation of

SLC7A11 expression (Hao et al., 2022). Thus, OUTB1 and

EMP1 may be potential therapeutic targets.

4 Potential therapeutic drugs

4.1 Chemotherapy and
immunosuppressants

For traditional chemotherapy, cisplatin, gemcitabine, or

carboplatin have certain effects in the treatment of bladder

cancer (Taber et al., 2020; Pfister et al., 2022). Other

chemotherapies, such as quinazolinyl-arylurea derivative 7j,

can bind to active GPX4, inhibit the sxc-/GPX4/ROS

pathways, and induce ferroptosis (Chen et al., 2020). Immune

checkpoint drugs, such as atezolizumab and pembrolizumab, are

also effective against several diseases, including bladder cancer

(Nadal and Bellmunt, 2019). Although single-drug treatment

with immune checkpoint inhibitors (ICIs) has been successful,

the long-term persistent remission rate is still very low, and many

patients relapse. Early efforts to combine ICIs with traditional

chemotherapy have shown a minimal impact on clinical benefits

(Nadal and Bellmunt, 2019).

4.2 Traditional Chinese medicine

Traditional Chinese medicine has been used in the

treatment of bladder cancer. Huang qin, which is extracted

from the roots of S. baicalensis Georgi (Scutellariae Radix),

triggers ferroptosis in vitro and in vivo by increasing

intracellular chelate iron enrichment and ROS

accumulation through overexpression of ferritin heavy

chain 1 (FTH-1) (Kong et al., 2021). Erianin, a ferroptosis

inducer, can promote ROS accumulation by inactivating

nuclear factor E2-related factor (Nrf2) and GSH, thereby

inducing ferroptosis in tumor cells (Xiang et al., 2021).

4.3 Nano drugs and gold clusters

A variety of nano drugs have been reported to specifically

adhere to bladder cancer cells and deliver iron through

endocytosis when exposed to laser irradiation, resulting in

ROS generation and accumulation and subsequent GSH and

GPX4 depletion, ultimately leading to ferroptosis (Liao et al.,

2022). Another approach is to enhance photodynamic therapy

(PDT)-chemodynamic therapy (CDT) sensitivity and induce

toxicity (Chin et al., 2022; Liao et al., 2022). AuNRs&IONs@

Gel is a gel delivery platform with embedded gold nanorods

(AuNRs) and iron oxide nanoparticles (IONs). The IONs can be

absorbed by bladder tumor cells and activate iron-mediated lipid

peroxidation (Guo et al., 2020). The innovative antitumor

mechanism of gold complexes has attracted attention. Gold

clusters (PAA4 and PAA5) can trigger the rapid release of

Au(l) ions from GSH, thus inhibiting thioredoxin reductases,

stimulating oxidative reactions, and accelerating ferroptosis

(Xiao et al., 2022).

4.4 Other potential therapeutic drugs

Many additional drugs have shown therapeutic prospects.

The compound Fin56, a ferroptosis inducer derived from

caspase-3/7-independent lethal 56, can induce ferroptosis by

inhibiting mTOR-mediated autophagy to degrade GPX4 in

BC cells (Shimada et al., 2016; Sun et al., 2021). Bupivacaine

(0.25–16 mM), a common local anesthetic, was found to inhibit

PI3K/AKT signaling pathway activity by increasing Fe2+ levels

and ROS levels. Furthermore, it reduced GSH levels and

increased malonaldehyde (MDA) levels in BC cells, which

suppressed the growth of xenografted tumors and induced

ferroptosis (Hao et al., 2022).
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5 Conclusion and perspectives

Bladder cancer has a high recurrence rate and high morbidity

and mortality. Current treatments cannot effectively cope with

the resistance of cancer cells to existing chemotherapy drugs.

With the development of precision medicine, precise disease

diagnosis and individualized selection of the best treatment

strategy have become a trend in developing treatment

strategies. Ferroptosis is a new type of cell death that differs

from apoptosis and necrosis. Many studies have demonstrated

that ferroptosis is involved in the metastasis, treatment, and

prognosis of bladder cancer. The prediction of prognosis and

drug resistance based on a ferroptosis-associated gene-based

molecular typing model has also received extensive attention.

By analyzing the related ferroptosis gene data of bladder cancer

patients in The Cancer Genome Atlas (TCGA) and Gene

Expression Omnibus (GEO) databases, the constructed risk

score model can predict bladder cancer prognosis and

sensitivity to chemotherapy drugs. Therefore, based on the

precise identification of biomarkers of ferroptosis in bladder

cancer patients, it is expected that subsequent molecular

targeted precision therapy can be achieved. Some conventional

drugs that activate ferroptosis have shown favorable antitumor

effects in vivo and in vitro. Through intravesical injection, drug-

containing compounds can reach a high concentration in the

bladder without entering the bloodstream, which avoids many

side effects of systemic medication. At present, a variety of iron-

containing nanomedicines have achieved good efficacy in vivo.

This will be a new research direction. However, no drug targeting

the canonical ferroptosis pathway has undergone clinical trials in

bladder cancer. We believe that with more in-depth studies on the

mechanisms and targets of action of ferroptosis inhibitors, clinical

trials are essential. Clinical trials may become the key for future

research. As shown here, targeting ferroptosis in bladder cells

could become a new anticancer therapy approach in the future.
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