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The nucleoside inosine is an essential metabolite for purine biosynthesis and

degradation; it also acts as a bioactive molecule that regulates RNA editing,

metabolic enzyme activity, and signaling pathways. As a result, inosine is

emerging as a highly versatile bioactive compound and second messenger

of signal transduction in cells with diverse functional abilities in different

pathological states. Gut microbiota remodeling is closely associated with

human disease pathogenesis and responses to dietary and medical

supplementation. Recent studies have revealed a critical link between

inosine and gut microbiota impacting anti-tumor, anti-inflammatory, and

antimicrobial responses in a context-dependent manner. In this review, we

summarize the latest progress in our understanding of themechanistic function

of inosine, to unravel its immunomodulatory actions in pathological settings

such as cancer, infection, inflammation, and cardiovascular and neurological

diseases. We also highlight the role of gutmicrobiota in connection with inosine

metabolism in different pathophysiological conditions. A more thorough

understanding of the mechanistic roles of inosine and how it regulates

disease pathologies will pave the way for future development of therapeutic

and preventive modalities for various human diseases.
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Introduction

Inosine, an inert purine nucleoside, is formed by breakdown (deamination) of

adenosine both intracellularly and extracellularly; it also generated by the action of 5′-
nucleotidase on inosine monophosphate (IMP) (Conway and Cooke, 1939; Itoh et al.,

1967; Chen et al., 1996). Recent studies have revealed that inosine is also produced by

several species found in the gut microbiome and modulates host immune and

inflammatory functions (Wang et al., 2020; Brown et al., 2021). Inosine can be

metabolized into hypoxanthine, xanthine, and uric acid (Sorensen, 1970; Zoref-Shani

et al., 1988; Doyle et al., 2018; Garcia-Gil et al., 2021). Cell membrane transport of inosine

is mediated by equilibrative and concentrative nucleoside transporters (Körber et al.,

1975; Belt et al., 1993; Cass et al., 1999; Miller et al., 2021). Inosine functions are mediated
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TABLE 1 Recent studies on inosine effects across various diseases.

Disease Subject Intervention Effect Mechanism References

Cancers

Cervical cancer HPV-positive patients after
cervical conization

Inosine pranobex Reduce relapse of HSIL and
high-risk HPV infection

Clear cervical HPV infection Kovachev, (2020)

Colon cancer, bladder
cancer, and melanoma

Mice with xenograft or
chemical-induced tumor

Inosine Augment immune
checkpoint inhibitor
efficacy

Promote Th1 immunity
through activating adenosine
2A receptor

Mager et al. (2020)

Liver cancer HepG2 cells Inosine pranobex Cytotoxic effect Mitochodrial damage Tobólska et al.
(2018)

Melanoma Mice with xenograft tumor Inosine Enhance immunotherapy
efficacy

Support proliferation and
function of effector T cells

Wang et al. (2020)

Cardiovascular diseases

Atherosclerosis Rats with
hypercholesterolemic diet

Inosine Alleviate atherogenic index
and platelet aggregation

Activate eNOS and inhibit the
NF-κB pathway

Lima et al. (2020)

Mitochondrial disease Mt-cardiomyopathy and mt-
diabetes patients

Inosine plus
febuxostat

Decrease BNP and increase
insulinogenic index

Enhance cellular ATP levels Kamatani et al.
(2019)

Infectious diseases

Acute respiratory viral
infection

Laboratory-confirmed viral
infection patients with ILI

Insoine pranobex Reduce time to symptom
resolution

Control viral infection Beran et al. (2016)

COVID-19 SARS-CoV-2-positive patients Inosine pranobex Reduce case-fatality rate Control viral infection Beran et al. (2020)

Influenza Influenza A (H3N2)-infected
mice

Inosine pranobex Extend survival time with
oseltamivir and ellagic acid

Protect from damaging
superoxide radicals

Pavlova et al. (2018)

NTM pulmonary
disease

NTM-infected mice Inosine Decrease bacterial loads in
lungs

Enhance IFN-γ-related
responses

Kim et al. (2022)

Inflammatory disease

Acute hepatic injury LPS-injected mice Inosine Suppress inflammatory
cytokines and conserve
liver function

Alter the microflora
composition and attenuate the
TLR4 pathway

Guo et al. (2021)

Alcoholic liver disease Mice with alcohol-induced
liver injury

Inosine plus LGG Improve the liver structure
and function

Suppress oxidative stress and
attenuate inflammatory
cytokine expression

Zhu et al. (2022)

IPEX syndrome Scurfy mouse Inosine Prolong lifespan and reduce
multiorgan inflammation

Inhibit Th1 and Th2 cell
differentiation through
adenosine A2 receptor

He et al. (2017)

NSAID-induced
enteropathy

Mice with indomethacin-
induced enteropathy

Inosinic acid plus
pottasium oxonate

Conserve intestinal
structure

Remove ROS through serum
uric acid accumulation

Yasutake et al.
(2017)

Sepsis LPS-injected mice Inosine
monophosphate

Decrease TNF-α and
increase IL-10

Augment inosine produced by
ecto-5′-nucleotidase

Lovászi et al. (2021)

Systemic lupus
erythematosus

LPS-treated human
monocytes

Inosine Inhibit autophagy and IFN-
β release

Increase phosphorylated
S6 and decrease
phosphorylated IRF3

Wu et al. (2022)

Ulcerative colitis Mice with DSS-induced colitis Inosine Protect intestinal function Activate adenosine
A2 receptor/PPAR-γ axis

Li et al. (2021b)

Neuropsychological disease

Alzheimer’s disease Rats with streptozotocin-
induced Alzheimer’s disease

Inosine Prevent memory deficits
and weight loss

Increase BDNF and anti-
inflammatory cytokines

Teixeira et al.
(2022a)

Alzheimer’s disease Rats with streptozotocin-
induced Alzheimer’s disease

Inosine Attenuate memory loss Modulate the ion pump
activities and clear the
oxidative stress

Teixeira et al. (2020)

Alzheimer’s disease Rats with scopolamine-
induced cognitive impairment

Inosine Protect from memory
consolidation impairment

Modulate the ion pump and
AchE activities and reduce the
oxidative stress

Teixeira et al.
(2022b)

Bipolar disorder Rats with ketamine-induce
mania

Inosine Prevent hyperlocomotion
behavior

Camerini et al.
(2020)

(Continued on following page)
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in receptor-dependent or–independent manners. The receptor-

mediated function of inosine is thought to be related to adenosine

receptor family members including A1, A2A, A2B, and A3

G-protein coupled receptors (Kypson and Hait, 1976;

Fredholm et al., 2001; Fredholm et al., 2011; Welihinda et al.,

2018). Compared with the known role of adenosine as a signaling

molecule, the function of inosine in the context of physiological

and pathological responses in human health and diseases remain

poorly understood.

Earlier studies suggested that the inert purine nucleoside

inosine has neuroprotective, cardioprotective, and

immunomodulatory effects in different experimental models

(Aviado, 1983; Haskó et al., 2004; Guinzberg et al., 2006). The

beneficial function of inosine has been thought to be mediated

through modulation of oxidative stress and inflammatory

responses (Haskó et al., 2004). More recent studies have

revealed therapeutic effects of inosine in motor function

improvement during neurologic injury or stroke (Benowitz

et al., 1999; Kuricova et al., 2014), learning and memory

(Ruhal and Dhingra, 2018), and Parkinson’s disease

(Schwarzschild et al., 2014). Inosine treatment also results in

the activation of anti-tumor and anti-inflammatory responses in

different disease models (Haskó et al., 2000; Mabley et al., 2003;

Panebianco et al., 2018; Tobólska et al., 2018; Kovachev, 2020;

Mager et al., 2020). Importantly, the beneficial effects of inosine

have been demonstrated with the preclinical and clinical use of

Isoprinosine (inosine pranobex), formed by inosine with the

immunostimulatory dimepranol acedoben (acetamidobenzoic

acid and dimethylaminoisopropanol), for treatment of

neurological disorders and acute respiratory viral infections

(Beran et al., 2016; Sliva et al., 2019; Teixeira et al., 2020;

Beran et al., 2021; Nascimento et al., 2021; Teixeira et al.,

2022a; Yang et al., 2022). In this Review, we discuss recent

updates on the regulation of pathological responses by inosine

and its association with gut microbiota remodeling in different

contexts. Furthermore, we discuss the functions of exogenous

TABLE 1 (Continued) Recent studies on inosine effects across various diseases.

Disease Subject Intervention Effect Mechanism References

Need to elucidate, not
associated with adenosine
receptor

CNS injury Rat with unilateral CST
transection

Contralateral inosine
minipump

Stimulate axon collateral
growths

Induce axon sprouting and
crossing

Benowitz et al.
(1999)

CNS injury Rat with spinal cord
compression

Inosine Improve recovery of motor
and urinary function

Increase axonal ramification Kuricova et al.
(2014)

Cognitive dysfunction Aged female rats Inosine Elevate learning and
memory function

Conserve hippocampal
CA1 region with anti-
inflammatory and antioxidant
effect

Ruhal and Dhingra,
(2018)

Diabetic peripheral
neuropathy

Rats with streptozotocin and
nicotinamide induced diabetes

Inosine Recover the structure and
function of the sciatic nerve

Reduce blood glucose level and
oxidative stress

Abdelkader et al.
(2022)

Huntington’s disease Rats with 3-NP-induced
neurotoxicity

Inosine Mitigate the disease
symptoms

Activate adenosine
A2 receptor/BDNF/ERK axis

El-Shamarka et al.
(2022)

Methamphetamine
withdrawal syndrome

Methamphetamine-treated
mice

Inosine Restore the anxiety and
depression-like behavior

Potential neuroprotective
function

Yang et al. (2022)

Multiple system
atrophy

Multiple system atrophy
patients

Inosine
monophosphate

Improve cognitive function Increase serum uric acid Jung Lee et al. (2021)

Parkinson’s disease Early Parkinson’s disease
patients

Inosine Mitigate the disease
progression

Increase cerebrospinal fluid
urate

Schwarzschild et al.
(2014)

Parkinson’s disease Parkinson’s disease patients Inosine plus
febuxostat

Improve disease symptoms Increase blood hypoxanthine
and xanthine but decrease uric
acid

Watanabe et al.
(2020)

Parkinson’s disease Early Parkinson’s disease
patients

Inosine No significant difference in
the disease progression

— Schwarzschild et al.
(2021)

PNS injury Mice with sciatic nerve crush Inosine Accelerate axonal
regeneration and functional
recovery

Reduce the number of
macrophages and myelin
ovoids

Soares Dos Santos
Cardoso et al. (2019)

Abbreviation: 3-NP, 3-nitropropionic acid; AChE, acetylcholinesterase; ATP, adenosine triphosphate; BDNF, brain-derived neurotrophic factor; BNP, brain natriuretic peptide; CNS,

central nervous system; CST, corticospinal tract; DSS, dextran sulfate sodium; eNOS, endothelial nitric oxide synthase; ERK, extracellular signal-regulated kinase; HSIL, high-grade

squamous intraepithelial lesion; HPV, human papilloma virus; IFN, interferon; IL, interleukin; ILI, influenza-like illnesses; IPEX syndrome, immune dysregulation, polyendocrinopathy,

and enteropathy, with X-linked inheritance; IRF3, interferon regulatory factor 3; LGG, Lactobacillus rhamnosus GG; LPS, lipopolysaccharide; Mt, mitochondria; NF-κB, nuclear factor-κB;
NSAID, nonsteroidal anti-inflammatory drug; NTM, nontuberculous mycobacteria; PNS, peripheral nervous system; PPAR, peroxisome proliferator-acitvated receptor; ROS, reactive

oxygen species; TLR4, toll-like receptor 4; TNF, tumor necrosis factor.
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inosine in terms of cancers, inflammation, infection, and

cardiovascular and neurological diseases through its

immunomodulatory roles (Table 1).

Overview of inosine biology

Inosine, an intermediate in purine metabolism, consists of

hypoxanthine and ribose. Three enzymatic reactions can form

inosine endogenously (Figure 1). First, adenosine deaminase

(ADA) irreversibly removes the amine group of adenine ring

intracellularly and extracellularly (Akedo et al., 1972; Van

Heukelom et al., 1976; Van der Weyden and Kelley, 1977;

Akeson et al., 1988). In particular, double-stranded RNA

(dsRNA)-specific adenosine deaminases (ADARs) mediate

adenosine-to-inosine editing (Liddicoat et al., 2015; George

et al., 2016; Eisenberg and Levanon, 2018; Nakahama and

Kawahara, 2020; Pfaller et al., 2021). ADAR1 and

ADAR2 maintain balanced immune activation and self-

tolerance through inhibiting dsRNA-binding proteins, such

as RIG-I-like receptors, protein kinase R, and oligoadenylate

synthases-RNAse L (Yang et al., 2014; Liddicoat et al., 2015;

George et al., 2016; Jain et al., 2019; Lamers et al., 2019; Schaffer

et al., 2020; Pfaller et al., 2021; Li et al., 2022). In a recent study,

the severe autoinflammatory disease Aicardi–Goutières

syndrome mouse model with ADAR1 mutation reveals

immunopathology associated with type I interferon signaling

and Z-binding protein 1 (Rice et al., 2012; de Reuver et al.,

2022). Contrary to ADAR1 and ADAR2, ADAR3 suppresses

A-to-I editing by binding to RNA-binding domains (Chen et al.,

2000; Oakes et al., 2017; Raghava Kurup et al., 2022). Second,

5′-nucleotidase catalyzes the reversible dephosphorylation of

IMP both inside and outside cells (Barsotti et al., 2005; Ipata

and Balestri, 2013). Cytosolic 5′-nucleotidase (NT5C2) is

correlated with chemotherapy resistance in acute

lymphoblastic leukemia (Tzoneva et al., 2013). Ecto-5′-
nucleotidase (NT5E, CD73) mediates immune suppression

(Romio et al., 2011; Lovászi et al., 2021). Third, purine

nucleoside phosphorylase (PNP) converts hypoxanthine and

ribose-1-phosphate (R-1-P) into inosine and

thermodynamically favors this enzymatic synthesis over

phosphorolysis (Kalckar, 1947; Friedmin, 1950; Tozzi et al.,

2006). However, the PNP reaction equilibrium is biased toward

inosine degradation due to the more significant concentration

of inorganic phosphate than base and R-1-P (Traut, 1994), and

the linked reaction of hypoxanthine catalyzed by hypoxanthine

phosphoribosyl transferase and xanthine oxidase (Pugmire and

Ealick, 2002; Il’icheva et al., 2020). Xanthine oxidase catabolizes

hypoxanthine into uric acid via xanthine (Heinz et al., 1980;

Moriwaki et al., 1999; Doyle et al., 2018). Humans and higher

primates excrete uric acid in their urine, but other mammals

convert uric acid to allantoin by uricase and then excrete it in

urine (Heinz et al., 1980; Kurtz et al., 1986; Moriwaki et al.,

1999). Uric acid, the end product of human purine metabolism,

is one of the major antioxidants (Ames et al., 1981; Whiteman

et al., 2002; Muraoka and Miura, 2003) and protects against

neurological and intestinal diseases (Hooper et al., 1998;

Hooper et al., 2000; Toncev et al., 2002; Ascherio et al.,

2009; Matsuo et al., 2015; Yasutake et al., 2017).

Consequently, inosine-related metabolism should be

extensively explored for its multidimensional effects on

human illnesses.

In the human gut, 1013–1014 microorganisms are found and

are emerging as important players in the pathogenesis and

therapeutics of a variety of human diseases (Wardman et al.,

2022). Recently, a mechanistic link between microbiota and

inosine has been revealed. For example, the microbiome-

derived Bxa, an abundant ADP-ribosyltransferase (ADPRT)

of Bacteroides, induced secretion of inosine as a carbon source,

thus acting as a bacterial fitness factor (Brown et al., 2021). Gut

microbiota remodeling enriched Bifidobacterium

pseudolongum and supplementation with its metabolite

inosine increased the anti-tumor effects of immune

checkpoint blockade and functioned as a carbon source for

CD8+ effector T-cell function (Wang et al., 2020). In a more

recent study, inosine was found to be a microbiota-derived

immunostimulatory metabolite that enhanced

immunotherapeutic effects and antitumor T-cell responses

(Kroemer and Zitvogel, 2020; Mager et al., 2020). Indeed,

gut microbiota remodeling enriched B. pseudolongum

significantly increased the anticancer immunotherapy

response through the generation of inosine via A2A receptors

(Mager et al., 2020).

FIGURE 1
Inosine generation in the body and its effect. Inosine
originates either within or outside the body. Three different
reactions produce endogenous inosine:①Hydrolytic deamination
of adenosine by adenosine deaminase (ADA), ②
dephosphorylation of inosine monophosphate (IMP) by 5′-
nucleotidase (5′NT), and ③ reaction of hypoxanthine and ribose-
1-phosphate (R1P) by purine nucleoside phosphorylase (PNP).
Exogenous inosine is from two ways: ④ Supplementation such as
isoprinosine or inosine acedoben dimepranol (IAD) or⑤ secretion
from gut microbiota. Inosine has various effects on the body.
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A multifaceted role for inosine in
cancer

Multiple studies have suggested that inosine functions as a

crucial biomarker metabolite associated with cancer metastasis,

drug resistance and/or treatment, and tumor progression (Li

et al., 2021a; Lee et al., 2021; Stockard et al., 2021). A recent study

showed that inosine can predict the metastatic potential of lung

squamous cell carcinoma (Lee et al., 2021). Inosine has also been

shown to be associated with acute myeloid leukemia with

cytarabine resistance (Stockard et al., 2021). In esophageal

squamous cell carcinoma, inosine has been associated with

cancer progression (Li et al., 2021a). In colorectal cancer

organoids, inosine was elevated following treatment with 5-

fluorouracil (Neef et al., 2020), although the underlying

mechanism is unclear. In head and neck squamous cell

carcinoma, inosine and adenosine are abundant purine

metabolites present in exosomes from the supernatant of

UMSCC47 cells (Ludwig et al., 2020). Inosine is a crucial

serum metabolite that can differentiate between low- and

high-grade bladder cancer patients (Tan et al., 2017).

Moreover, urine and serum levels of inosine as well as other

metabolites can be used to characterize hepatocellular carcinoma

patients (Chen et al., 2011; Ladep et al., 2014). These data suggest

that inosine has a promising role in the diagnosis and grading of

tumors as a signature metabolite. By contrast, inosine levels are

generally decreased in pancreatic cancer patients, and elevated by

a low carbohydrate ketogenic diet, compared to a general hospital

diet (Kang et al., 2019). These data collectively suggest that

inosine functions as a potential biomarker for prediction of

cancer risk, drug response, and early detection of metastasis of

various tumors.

Several recent studies have indicated the role of inosine in

anti-tumor responses in various cancers. In a xenograft model of

pancreatic ductal adenocarcinoma, gemcitabine-mediated

chemotherapy significantly induced activation of nuclear

factor (NF)-κB-mediated inflammatory responses and

decreased the proportion of Firmicutes and Bacteroides. The

chemotherapy also suppressed serum levels of inosine and

xanthine (Panebianco et al., 2018), suggesting chemotherapy

may influence gut microbiota remodeling and changes in

serum metabolites. Moreover, inosine supplementation

promoted immune checkpoint blockade and provided a

carbon source for CD8+ effector T-cell function (Wang et al.,

2020). In a more recent study, inosine was found to be a

microbiota-derived immunostimulatory metabolite that

enhanced immunotherapeutic effects and antitumor T-cell

responses (Kroemer and Zitvogel, 2020; Mager et al., 2020).

Indeed, gut microbiota remodeling enriched B. pseudolongum

and significantly increased the effects of immunotherapy through

the generation of inosine via A2A receptors (Mager et al., 2020).

Although inosine pranobex (isoprinosin) has been shown to

exhibit significant antiviral effects (Beran et al., 2021), few

studies have investigated its effects in cancer. Treatment

with isoprinosin significantly increased the clearance of

cervical human papillomavirus (HPV) infection during

postoperative immunotherapy in women receiving surgical

treatment for high-grade squamous intraepithelial cervical

lesions (Kovachev, 2020). Addtionally, a previous study

revealed increased cytotoxicity of fibroblasts and

hepatocellular carcinoma HepG2 cells following inosine

pranobex treatment (Tobólska et al., 2018). Because inosine

pranobex is useful in viral infections and has remarkable

immunomodulating functions in both cellular and humoral

immune responses (Kovachev, 2021), the therapeutic

application of inosine pranobex is challenging in terms of

virus-related tumors accompanied with chronic

inflammation and immunosuppression. Although it would

have been shown to be therapeutically beneficial in animal

studies, the use of inosine pranobex in anticancer regimens

should be considered following more data from clinical trials.

Inosine and antimicrobial immunity

In nonhuman primate models infected with human

immunodeficiency virus type 1/simian immunodeficiency

virus (HIV-1/SIV), elevated inosine levels have been related to

immune activation and disease progression markers (He et al.,

2015). The disease-progressive model reveals higher ADA

activity and CD26 expression on intestinal T cells than the

nonprogressive model, suggesting that adenosine degradation

stimulates T cells (He et al., 2015). In addition, several recent

studies have suggested a link between inosine and antimicrobial

function during bacterial infection. Our recent study showed that

inosine, as a metabolite of B. pseudolongum, contributes to

antimicrobial responses in mouse models with

Mycobacteroides abscessus (Mabc) infection (Kim et al., 2022).

Interestingly, ʟ-arginine administration of Mabc-infected mice

led to gut microbiota remodeling toward enrichment of B.

pseudolongum, which promoted effector T-cell responses with

IFN-γ activation and inducible nitric oxide synthase (iNOS)

expression, indicating a Th1-mediated M1 shift (Kim et al.,

2022). Importantly, ʟ-arginine administration upregulated the

serum level of inosine in mice infected with Mabc, and inosine

treatment exhibited a similar protective phenotype as observed in

ʟ-arginine-treated conditions in the context of NTM infections

(Sun et al., 2020; Kim et al., 2022). It was previously reported

suberic acid is produced by B. pseudolongum (Sun et al., 2020);

however, treatment of Mabc-infected mice with suberic acid did

not show any protective immune responses during Mabc

infection. These data strongly suggest that inosine, produced

by B. pseudolongum, plays a distinct role in the enhancement of

antimicrobial responses during NTM infection.

Isoprinosine appears to be an effective treatment for various

viral infections through pleiotropic immunomodulatory roles
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including T-cell activation and proinflammatory cytokine-

mediated functions (Sliva et al., 2019; Beran et al., 2021).

Isoprinosine combined with antiviral and antioxidant drugs

has been shown to produce a protective effect, with increased

survival and decreased lung pathologies, in influenza

H3N2 virus-infected mice (Pavlova et al., 2018). In addition, a

Phase 4 clinical study showed that isoprinosine is safe for

treatment of patients with acute respiratory viral infections

and is effective in the resolution of influenza-like symptoms

in individuals less than 50 years of age (Beran et al., 2016). A

preliminary report emphasized the effectiveness of inosine

pranobex in the reduction of the case-fatality rate in older

COVID-19 patients in the Czech Republic (Beran et al.,

2020), although larger-scale trials are warranted to clarify the

therapeutic effects of inosine pranobex against COVID-19.

Inosine acedoben dimepranol (IAD), another licensed inosine-

based drug, has been shown to boost NK cell numbers in clinical

trials (Rumel Ahmed et al., 2017). Future clinical studies are

needed to determine whether isoprinosine or IAD can be

effectively used as adjunctive drugs in antiviral therapeutics

without overt complications.

Inosine and therapeutic implications
for inflammation

A recent report showed that inosine, metabolized from IMP,

suppressed tumor necrosis factor (TNF)-α in vitro and in vivo,

although A2A, A2B, and A3 receptors were not involved (Lovászi

et al., 2021). In addition, inosine augmented IL-β production in

response to NLRP3 inflammasome stimuli in macrophages

(Lovászi et al., 2021). These data suggest that inosine is

involved in the activation or suppression of inflammatory

responses, depending on the stimuli.

Several studies have shown the combined beneficial effects of

inosine and probiotics in experimental inflammatory disease

models. For example, Lactobacillus rhamnosus GG (LGG)

combined with inosine has been shown to ameliorate hepatic

inflammation and restore regulatory T-cell function in an

alcohol-induced liver injury model (Zhu et al., 2022).

Importantly, combined treatment of LGG and inosine

significantly improved immune homeostasis and intestinal

microecology with amelioration of gut dysbiosis during liver

injury (Zhu et al., 2022). Interestingly, inosine treatment can alter

gut microbiota toward an abundance of Bifidobacterium and

Lachnospiraceae UCG-006 and suppress TLR4 signaling, thus

negatively regulating hepatic inflammation and damage (Guo

et al., 2021).

In the context of colitis, dietary barley leaf supplementation

has been shown to produce anti-inflammatory effects in dextran

sulfate sodium (DSS)-induced colitis and dysbiosis of the gut

microbiome. Mechanistically, dietary barley leaf elicits inosine

accumulation in colonic epithelial cells through the alteration of

gut bacterial composition, such as an abundance of Lactobacillus

(Li et al., 2021b). In addition, the exogenous inosine

administration showed a similar protective effect on colitis

through the activation of A2A receptor and peroxisome

proliferator-activated receptor (PPAR)-γ signaling (Li et al.,

2021b). Furthermore, indomethacin-induced enteropathy is

ameliorated by inosinic acid (1,000 mg/kg, i.p.) in mice.

Inosinic acid treatment leads to increased serum levels of uric

acid, resulting in protection against intestinal injury via

antioxidative effects (Yasutake et al., 2017).

A recent study showed that NAD + precursor

nicotinamide riboside (NR) suppresses lipopolysaccharide-

induced IFN-β production and autophagy activation in

myeloid cells at least partly through inosine-mediated

signaling (Wu et al., 2022). Importantly, NR indicated anti-

inflammatory effects in monocytes from patients with the

autoimmune disorder systemic lupus erythematosus (SLE),

showing dysregulated type I IFN production (Wu et al., 2022).

Plasma inosine increase via Limosilactobacillus reuteri (LR)

administration exhibits a protective effect in the scurfy mouse,

lacking regulatory T cells, that mimics human IPEX syndrome

(immune dysregulation, polyendocrinopathy, and

enteropathy, with X-linked inheritance) (He et al., 2017;

Liu et al., 2021). LR reverses decreased inosine levels in

plasma from scurfy mice and impacts the amelioration of

disease pathologies and multiorgan inflammation through

A2A receptors (He et al., 2017; Liu et al., 2021).

Interestingly, the ability of LR to increase plasma inosine is

unique compared to the probiotic LGG (Liu et al., 2021).

These data suggest inosine may act as a bioactive molecule

responsible for distinct anti-inflammatory properties in

immunodeficiency and autoimmune diseases.

Inosine and other diseases

Inosine and cardiovascular diseases

Inosine is thought to be as “a coronary dilator” through

relaxation of the coronary artery and inotropic action, although

the mechanisms of action remain unclear (Aviado, 1983).

Alternatively, the role of ADA competitive inhibition by

inosine cannot be excluded. In addition, accumulating

evidence suggests that adenosine has a protective role against

endothelial dysfunction and vascular inflammation (Kutryb-

Zajac et al., 2020). Dysregulated ADA activity leads to

cardiovascular pathologies such as atherosclerosis, thrombosis,

and myocardial ischemia-reperfusion injury (Kutryb-Zajac et al.,

2020), suggesting that ADA may be a critical target for treatment

of cardiovascular disease. Interestingly, co-administration of

febuxostat and inosine exhibited a favorable response in two

patients with mitochondrial diseases, cardiomyopathy and

diabetes (Kamatani et al., 2019).
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In a hypercholesterolemic rat model, inosine treatment

improved endothelium-mediated vasodilatation and

antiplatelet function (Lima et al., 2020). A recent study

suggested that urinary inosine is inversely associated with

coronary heart disease risk in men (Yoon et al., 2020).

Several metabolites including inosine are prominent

biomarkers in Kawasaki disease patients with coronary

artery lesions (Qian et al., 2021). The existence of brown

adipose tissue (BAT) is an independent factor for lowering

cardiovascular and metabolic disease (Becher et al., 2021).

Extracellular inosine enhances the energy expenditure of BAT

in mice. In addition, loss of function mutation of human

SLC29A1, which decreases extracellular inosine levels, is

strongly correlated with lean body mass and non-obese

(Niemann et al., 2022). These data underpin the protective

effects of inosine on the cardiovascular system.

Inosine in psychiatric and neurological
pathologies

Recent studies have shown neuroprotective and

neuromodulatory functions of inosine in a variety of

neurological and psychiatric diseases (Nascimento et al.,

2021). Inosine treatment ameliorated 3-nitropropionic acid

(3-NP)-induced neurotoxicity and boosted brain-derived

neurotrophic factor (BDNF) levels, p-cAMP response

element-binding protein (CREB) expression, and

glutathione content (El-Shamarka et al., 2022). In addition,

metformin-mediated amelioration of methamphetamine

withdrawal syndrome is at least partly mediated through

altered bacterial composition and metabolite changes such

as abundance of Rikenellaceae and inosine (Yang et al., 2022).

Interestingly, inosine supplementation of mice improved

methamphetamine withdrawal-mediated anxiety and

depression-like symptoms (Yang et al., 2022), indicating

that metformin effects may depend on microbiota-derived

inosine.

In rat models of Alzheimer’s disease, inosine treatment

has been shown to prevent memory deficits, suppress

immunoreactivity via brain A2A receptor, and enhance

anti-inflammatory cytokine levels and oxidative alterations

in the brain (Teixeira et al., 2020; Teixeira et al., 2022a). In

addition, inosine administration had beneficial effects in a rat

model of diabetic peripheral neuropathy, resulting in a

hypoglycemic effect and enhanced myelination (Abdelkader

et al., 2022). Inosine-induced neuroprotective function

depends on Nrf2 expression, downstream HO-1, and

suppression of PKC and TRPV1 (Abdelkader et al., 2022).

Inosine treatment also resulted in elevated memory

acquisition and consolidation in a rat model of

scopolamine-induced cognitive impairment. These effects

are partly mediated through modulation of brain redox

status, cholinesterase function, and ion pump activity,

suggesting promising approaches for neurodegenerative

diseases (Teixeira et al., 2022b). In a ketamine-induced rat

mania model, inosine administration may prevent

hyperlocomotion and attenuation of maniac phase

symptoms (Camerini et al., 2020). In an experimental

model of sciatic nerve crush injury in mice, inosine

treatment resulted in accelerated axonal regeneration and a

recovery of motor and sensory functions (Soares Dos Santos

Cardoso et al., 2019).

A clinical trial with co-administration of febuxostat and

inosine showed improvement of the symptoms of

Parkinson’s disease (Watanabe et al., 2020). However,

another recent clinical trial showed that inosine

treatment does not modify progression of early

Parkinson’s disease (Schwarzschild et al., 2021). In a

clinical trial for use of IMP in multiple system atrophy

(MSA), IMP raised serum levels of uric acids, and was

considered to be tolerable and safe during a 24-week

treatment (Jung Lee et al., 2021), although a more long-

term follow-up study is warranted.

Concluding remarks

Recent advances have contributed to our understanding of

the role of inosine as a biomarker or a regulator of immunity,

infection, inflammation, cancer, and other pathological

conditions. In addition, accumulating reports suggest that

the levels of inosine or inosine-related enzymes are

dysregulated in diseases such as cancers. More studies are

needed to identify how inosine levels are regulated in different

tissues under various physiological and pathological

conditions. The information available on the impact of

inosine on immunomodulatory and protective functions

has identified this metabolite as a possible therapeutic

target for tumors, inflammation, infection, and

cardiovascular and neurological disorders. Future studies

with preclinical models and clinical research are required

to bring the inosine-based therapeutic approach into the

clinic.

Several microbes from the intestinal microbiota have been

reported to produce inosine, exhibiting therapeutic efficacy in

various disease models. Future molecular studies will be

important to reveal how the link between the microbiota and

inosine regulates immune and inflammatory responses in specific

human diseases.

The use of isoprinosine, a synthetic agent of inosine with

an immunostimulant, in several clinical trials has suggested

that inosine or inosine-based drugs may be therapeutically

useful in neurological and autoimmune diseases. However,

most data regarding the physiological and therapeutic

potential of inosine have been derived from experimental
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studies. There are also concerns for the possibility of uric acid

stones, which can be produced by inosine metabolism.

Therefore, another strategy based on the regulation of

inosine-degrading enzymes (i.e., PNP) could be also useful

for potential treatment targeting inosine-based therapeutics.

Future preclinical and clinical trials are needed to assess the

safety and adverse effects associated with long-term use of

inosine or inosine-related enzyme modulation.

To date, there is limited information on the molecular

mechanisms through which inosine exerts its biological

functions as a signaling mediator. Evidence suggests that

inosine may function through multiple subtypes of adenosine

receptors. However, it remains unclear how inosine targets

adenosine receptor subtypes or whether there are alternative

inosine receptors in different cell types. Understanding the

pathways responsible for the dysregulation of inosine

production and finding inosine-specific effectors will facilitate

the development of therapeutic strategies against various

disorders.
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