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Osteoclast is a hematopoietic precursor cell derived from the mononuclear

macrophage cell line, which is the only cell with bone resorption function. Its

abnormal activation can cause serious osteolysis related diseases such as

rheumatoid arthritis, Paget’s disease and osteoporosis. In recent years, the

adverse effects caused by anabolic anti-osteolytic drugs have increased the

interest of researchers in the potential therapeutic and preventive effects of

natural plant derivatives and natural compounds against osteolytic diseases

caused by osteoclasts. Natural plant derivatives and natural compounds have

become major research hotspots for the treatment of osteolysis-related

diseases due to their good safety profile and ability to improve bone. This

paper provides an overview of recent advances in themolecular mechanisms of

RANKL and downstream signaling pathways in osteoclast differentiation, and

briefly outlines potential natural compounds with antiosteoclast activity and

molecular mechanisms.
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Introduction

Bone homeostasis is dynamically regulated by osteoclasts (OCs) mediated bone

resorption and osteoblasts (OBs) mediated bone formation, contributing to a

physiological balance of bone indexes and functions (An et al., 2016; Kim et al.,

2020; Clézardin et al., 2021). Osteoporosis (OP) is the most common bone and a

systemic metabolic bone disease characterized by reduced bone density and

destruction of bone tissue microarchitecture, leading to increased bone fragility

and susceptibility to fracture (Liel, 2018; Compston et al., 2019; Wang et al.,

2022). The main causes of OP include endocrine factors, genetic and

immunological factors, nutritional factors, gender and age factors, disease and

medication factors, substance use and environmental factors (Rachner et al., 2011;

Parveen et al., 2019). The abnormal differentiation of OCs is the critical pathological
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basis for OP (Curtis et al., 2016; Da et al., 2021). OCs are

derived from a monocyte lineage of haematopoietic stem cell

origin and are regulated by a variety of hormones and local

cytokines, but receptor activator of nuclear factor-κB ligand

(RANKL) and macrophage colony stimulating factor (M-CSF)

are the main key molecules in the differentiation of OCs (Feng

and Teitelbaum, 2013; Kodama and Kaito, 2020; McDonald

et al., 2021). In the early stages, M-CSF plays a key role in the

survival and proliferation of OCs precursor cells (Lee et al.,

2018). The receptor activator of nuclear factor-κB (RANK)

family of tumor necrosis factor (TNF) receptor proteins is

expressed on the surface of OCs precursors, mature OCs and

dendritic cells (Li et al., 2000). The crucial stage of their

differentiation is the binding of RANKL produced by OBs

to the RANK on OCs precursor cells to initiate intracellular

downstream cascade transduction signals and the partial

recruitment and activation of the bridging protein tumor

necrosis factor receptor associated factor (TRAF6) in the

cytoplasmic region of RANK. Then, activated

TRAF6 further triggered the activation of downstream NF-

κB, MAPKs, PI3K/AKT, calcium signaling and reactive

oxygen pathways (Boyle et al., 2003; Feng and Teitelbaum,

2013; Hu et al., 2021; Udagawa et al., 2021). All of the above-

mentioned genes are related to the formation and function of

OCs (Takeshita et al., 2000). In summary, as shown in

Figure 1, RANKL is an important regulator of the induced

differentiation of OCs, and its related downstream signaling

pathways have become potential targets for regulating the

formation of OCs differentiation. The RANKL-RANK

signaling pathway plays a critical role in the formation and

function of OCs.

In the last 2 decades, there have been significant advances in

drug treatments for OP, such as (BPs), estrogen therapy (ET),

parathyroid hormone analogue (PTHa) and denosumab

(Johnston and Dagar, 2020; Reid and Billington, 2022). In

recent years, however, several studies have reported that some

adverse effects associated with the long-term use of these drugs

that may not be appropriate for oral medication. BPs are

currently the first-line drugs for the clinical treatment of OP,

while the overall evaluation is high, they are known to cause acute

phase reactions, gastrointestinal discomfort, ocular discomfort

(Favus, 2010; Oryan and Sahvieh, 2021). In 2003, it was first

proposed that BPs could cause osteonecrosis of the jaw and

significantly increase the incidence of esophageal cancer in

patients (Wysowski, 2009; Verron and Bouler, 2014). ET has

become a second-line option for the treatment of OP and is

generally safe to use but may occur in estrogen-dependent

tumours, thrombophilia, venous thromboembolism and fatal

strokes (Rozenberg et al., 2020). PTHa plays a valuable role in

promoting bone formation and is a current treatment for

FIGURE 1
RANKL induced Osteoclastogenesis (A). RAW264.7 cells were not stimulated by RANKL. (B). RANKL-stimulated RAW264.7 cells differentiation
into multinucleated osteoclasts. (C). Box magnified of osteoclast.
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postmenopausal osteoporosis (Kraenzlin and Meier, 2011). Its

adverse effects are nausea, limb pain, headache and dizziness, and

can cause severe bone tumours (Ayub et al., 2021). Denosumab is

the only antagonist approved to target RANKL (Bone et al.,

2017). It inhibits the binding of RANKL to its receptor RANK

and reduces the formation and activation of osteoclasts, thereby

reducing bone resorption, increasing bone mineral density and

reducing the incidence of fractures (Polyzos et al., 2019).

However, it has been reported in the document that long-

term use can cause hypercalcaemia and increase the risk of

primary malignancies, as well as jaw osteonecrosis or atypical

femur fractures and that abrupt discontinuation of the drug can

cause an increased risk of multiple spinal fractures (Pang et al.,

2020). Therefore, the search for highly effective and low-toxic

anti-osteoporosis drugs is of clinical importance and medical

value. In recent years, there has been an increasing number of

studies on natural compounds that act mainly on pathways

related to downstream of RANKL differentiation of OCs such

as NF-κB, MAPKs, PI3K/AKT, calcium signaling and reactive

oxygen species. Moreover, the inhibitory effect on OCs may also

promote bone health through its anti-inflammatory and

antioxidant properties. This essay aims to summarize the

latest research progress of RANKL and its downstream

signaling pathways in the differentiation of OCs and provide

further insights into the use of RANKL as a drug target for the

treatment of OP. In addition, we briefly described several natural

plant derivatives and natural compounds that inhibit the

differentiation of OCs and their preventive effects on

osteolysis diseases by modulating RANKL-related signaling

pathways.

Receptor activator of nuclear factor-
κB ligand-mediated classical
signaling pathways

Receptor activator of nuclear factor-κB
ligand/NF-κB signaling pathway

In the early stages of the downstream signaling pathway

activated by RANKL, the activation of NF-κB plays a critical

regulatory role in the formation of OCs (Abu-Amer, 2013).

Jimi et al. (2019) showed that NF-κB knockout mouse models

exhibited severe osteosclerosis due to impaired OCs formation,

which demonstrated that activation of NF-κB is a cytokine

necessary for OCs formation. NF-κB is a family of dimeric

transcription factors with five members: RelA (p65), RelB, Rel

(c-Rel), NF-κB1 (p50) and NF-κB2 (p52) (Boyce et al., 2010).

In the resting state, NF-κB is present in the cytoplasm as a

heterodimer of two subunits of p50/p65 and binds to the

inhibitor IκB to form a complex (Novack, 2011).

Phosphorylation of IκB is a prerequisite for NF-κB cascade

activation, which is regulated by the IκB kinase (IKKs)

complex, it phosphorylates IκB, degrades the IκB
proteasome, translocates the active NF-κB dimer released

from IκB into the nucleus, and causes transcription and

expression of specific genes for OCs differentiation (Hirata

et al., 2019).

Receptor activator of nuclear factor-κB
ligand/MAPK signaling pathway

Mitogen-activated protein kinases (MAPKs) signaling

pathway are also involved in various cellular activities such as

gene expression, mitosis, differentiation, proliferation and

transformation (Oikawa et al., 2007; Lee et al., 2018). MAPKs

is a member of the second messenger family that transmits cell

surface signals to the nucleus in response to a variety of

hormones, chemicals and external stimuli (Zhang et al., 2021).

MAPKs are composed of three main kinases: extracellular signal-

regulated kinase 1/2 (ERK1/2), Jun N-terminal kinase (JNK) and

p38-MAPK, all involved in the formation of OCs and can be

activated by RANKL stimulation (Lee et al., 2016). During the

formation of OCs differentiation, RANKL binds to the receptor

RANK on OCs precursors to activate MAPKs signaling

molecules, thus further inducing the expression of

transcription factors such as NFATc1 and AP-1 to promote

OCs differentiation (Liao et al., 2021). The p38-MAPK

signaling pathway is particularly significant in the early stages

of OCs differentiation, promoting the expression of

Micropthalmia-associated transcription factor (MITF) and

TRAP, which ultimately promote OCs differentiation (Lu

et al., 2017). ERK1/2 and JNK also play a crucial role in the

formation of OCs and have been shown to promote the

differentiation of OCs by upregulating the expression of c-Fos

and c-Jun (Xiao et al., 2020).

c-Src/PI3K/Akt signaling pathway

PI3K/Akt signaling pathway was involved in pathological

bone diseases such as osteoporosis, osteoarthritis and

osteosarcoma, and in regulating the proliferation,

differentiation and apoptosis of OCs and OBs (Hinz and

Jücker, 2021). The RANK-TRAF6 complex may induce

activation of the PI3K/Akt signaling cascade by recruiting

the Src kinase family. The c-Src kinase, a member of the Src

family, is essential for the differentiated formation of OCs and

the uptake function of mature OCs (Kong et al., 2020). c-Src

stimulates phosphatidyl inositol 3-kinase (PI3K) and activates

PI3K I phosphorylate phosphatidylinositol 4,5-bisphosphate

(PIP3) (Fattahi et al., 2020). PIP3 is a “second messenger”

used by many cell surface receptors to control mitosis, growth,

survival and differentiation, and it can recruit serine/

threonine kinase (Akt) expression to the plasma membrane
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(Wang et al., 2021). PI3K/Akt signaling additionally enables

the binding of Smad1/5 and CBP (CREB binding protein) to

regulate M-CSF expression in osteoblasts, thereby promoting

the differentiation of OCs (Miyazaki et al., 2004; Mandal et al.,

2009). PI3K stimulates the formation of actin filaments and

regulates cytoskeletal functions such as chemotaxis, adhesion

and spreading (Irelli et al., 2019). It has been indicated that

inhibition of PI3K can block the bone resorption function of

mature osteoclasts (Nakamura et al., 1995; Smith et al., 2007).

Moon et al. (2012) found that overexpression of Akt promoted

the formation of the inactive form of GSK3β and nuclear

localization of NFATc1, while overexpression of the active

form of GSK3β reduced osteoclast formation by

downregulating NFATc1. This suggests that Akt could

induce osteoclastogenesis by activating the GSK3β/
NFATc1 signaling axis. Kawamura et al. (2007) showed

that Akt1 is a key regulator of OBs and OCs, maintaining

bone mass and bone transformation by promoting osteoblast

and osteoclast differentiation and survival. PI3K/Akt

signaling plays an essential role in the survival of OCs.

However, its specific mechanism of action still needs to be

further explored.

Ca2+/calcineurin/NFATc1 signaling
pathway

The Ca2+ signal is important in osteoclastogenesis for various

functions, including cell proliferation, differentiation, gene

transcription, bone resorption and so on (Kang et al., 2020).

RANKL-induced calcium oscillations are closely related to

osteoclast differentiation, bone matrix resorption and

apoptosis of OCs (Okada et al., 2020). Ca2+ is released from

the endoplasmic reticulum or enters the cell through plasma

membrane ion channels to generate Ca2+ oscillations, which

stimulate calcium-regulated phosphatase and cause

dephosphorylation of intracellular NFATc1 and translocation

into the nucleus, promoting differentiation of OCs (Crabtree and

Schreiber, 2009; Hinz and Jücker, 2021). RANKL-mediated

signaling is the first step in osteoclast differentiation. In the

early stages of osteoclast formation, RANKL stimulates

phospholipase Cγ (PLCγ), and activated PLCγ produces 1,4,5-

trisphosphatidylinositol (IP3) in the cytoplasm (Lorenzo, 2017).

IP3 directly increases the level of Ca2+ in cells by inducing the

release of calcium from endoplasmic reticulum stores and Ca2+

influx through store-operated Ca2+ entry (SOCE) and transient

receptor potential (TRP) channels, sustained calcium signaling

upregulates target gene and expression of protein by inducing

NFATc1 dephosphorylation and NFATc1 translocation to the

nucleus, promoting osteoblast differentiation and formation

(Kajiya, 2012; Erkhembaatar et al., 2017; Liu et al., 2020).

Thus, long-term and stable Ca2+ oscillations are necessary to

maintain NFATc1 concentration in the nucleus, ensure long-

term transcriptional activation of NFATc1, and promote the

formation of OCs.

ROS-mediated effects

It has been shown that normal body metabolism can

produce reactive oxygen species (ROS), either endogenously

by nicotinamide adenine dinucleotide phosphate oxidase

(NOX) or as a by-product of the mitochondrial electron

transport chain (Ren et al., 2021; Zhu et al., 2022). ROS

contains superoxide anion radicals (O2−), hydrogen peroxide

(H2O2), hydroxyl radicals (-OH) and nitric oxide (NO)

(Madreiter-Sokolowski et al., 2020). During aerobic

respiration, these molecules, produced by the electron

transport chain, can affect biological functions such as cell

signaling and homeostasis (Cornelius et al., 2014). ROS are

essential for the regulation of cell proliferation, survival,

metabolism, apoptosis, differentiation and migration

(Bacevic et al., 2017). It has been indicated that ROS is an

important secondary messenger in cells, and under

physiological conditions, ROS could regulate intracellular

environmental homeostasis, signal transduction, proliferation

and differentiation, apoptosis and other physiological activities,

and was in dynamic balance with antioxidants (Agidigbi and

Kim, 2019; Ni et al., 2020). ROS are molecules with dual roles.

They are beneficial by acting as intracellular signaling factors

and detrimental as increasing with age, inflammatory state or

age-related diseases (Go and Jones, 2017). Excess ROS destroy

bone by reducing the level of antioxidant enzymes and

preventing the differentiation of OBs and the formation of

OCs (Chen et al., 2021). During the differentiation in

osteoclasts, RANKL binds to the receptor RANK, which

activates TRAF6 to drive multiple downstream targets.

NADPH oxidase 1 (NOX1) transfers electrons from NADPH

to molecular oxygen to form ROS (Li et al., 2021b). ROS can

also promote osteoblast differentiation and maturation by

indirectly activating MAPK, PI3K and NF-κB activation and

driving the expression of genes such as CTSK, MMP9, c-Fos,

NFATc1 and so on (Morgan and Liu, 2011; Zhang et al., 2016;

Bang et al., 2021). In addition, the Kelch-like ECH-associated

protein1 (Keap1)/nuclear factor E2-related factor 2 (Nrf2)/

antioxidant response element (ARE) signaling pathway is

closely related to oxidative stress and is one of the

antioxidant stress mechanisms in cells (Han et al., 2022). It

is one of the intracellular antioxidant stress mechanisms, which

can increase the levels of the antioxidant enzymes heme

oxygenase-1 (HO-1), catalase (CAT), cysteine synthetase

catalytic subunit (GCLC) and decreases intracellular ROS

expression to inhibit osteoclast differentiation and resorption

(DeNicola et al., 2011; Tu et al., 2019; Sánchez-De-Diego et al.,

2021). Antioxidant therapy has been shown to be effective in

rescuing bone loss induced by oxidative stress.
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TABLE 1 The source, molecular structure, dose, cell lines and mechanism of 20 natural compounds on modulating osteoclat differentiation.

Compound name Molecular
structure

Source Dose In vitro
studies cell
lines

Mechanisms Reference

Galangin The rhizomes of
Alpinia
officinarum

0, 3,
6, 12 µM

BMMs ↓NF-κB and MAPKs signaling
pathway;

Li et al. (2021a)

↓(NFATc1, c-Jun and c-Fos)

Biochanin A Trifolium pratense 0, 2, 4,
8, 16 µM

BMMs ↓NF-κB和/MAPKs signaling
pathway;

Liao et al.
(2021)

↓(NFATc1, c-Fos ,IL-1αand
IL-1β)

Vinpocetine The alkaloid
vincamine

0, 2.5, 5,
10, 20 µM

BMMs ↓NF-κB and MAPKs signaling
pathway;

Zhu et al.
(2020)

↓(NFATc1, c-Fos ,TRAP and
MMP-9)

Robinin Vinca erecta Regel
and Schmalh or
Robinia
pseudoacacia L

0, 0.25, 0.5,
1,
2,10, 20 µM

BMMs ↓NF-κB and MAPKs signaling
pathway;

Hong et al.
(2021)

↓(Acp5, Cathepsin K,
Atp6v0d2, Nfact1, c-Fos and
Mmp9)

Urolithin B One of gut
microbial
metabolites of
ellagitannins

0, 10, 30, 50,
100 µM

RAW264.7 cells ↓NF-κB and MAPKs signaling
pathway;

Qu et al. (2022)

↓(c-Fos, NFATc1, Cathepsin K,
TRAP, OC-STAMP and
Mmp9)

Cinchonine Cinchona bark 0, 10,
20, 30 µM

BMMs ↓AKT signaling pathway; Jo et al. (2021)

↓(NFATc1,AP-1, Dcstamp and
Ctsk)

Cnidium lactone Cnidium
monnieri

10–6, 10–5,
10–4 mol/L

RAW264.7 cells ↓PI3K-Akt signaling pathway; Liang et al.
(2019), Wang
et al. (2020)

↓(p38,Acp5,CtsK,
Atp6v0d2,Tm7sf4,Oscar and
Nfatc1)

Anethole Active agent of
more than
20 plants

0, 1.25, 2.5,
7.25, 10 µM

BMMs ↓PI3K-Akt signaling pathway; Qu et al. (2021)

↓(TRAP, NFATc1, V-ATPase
d2, c-Fos, MMP-9, CTR, DC-
STAMP, cathepsin K,)

(Continued on following page)
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TABLE 1 (Continued) The source, molecular structure, dose, cell lines and mechanism of 20 natural compounds on modulating osteoclat
differentiation.

Compound name Molecular
structure

Source Dose In vitro
studies cell
lines

Mechanisms Reference

9,9′-O-di-(E)-fer-uloyl-meso-5,5′-
55dimethoxysecoisolariciresinol

Litsea cubeba 0, 0.75, 1.5,
3, 15, 30 µM

BMMs ↓Akt signaling pathway ; Yu et al. (2020)

↓(NFATc1, c-Fos, MMP9)

Acacetin Damiana,
Saussurea
involucrata plant,
and black locust
plants

0, 1, 5, 10,
20,
50,100 µM

BMMs ↓Akt/GSK3βsignaling pathway; Lin et al. (2022)

↓Ctsk, MMP9, , DC-STAMP,
OSCAR, c-Fos, NFATc1 NFκB
and Atp6v0d2)

Artesunate Artemisinin 0, 1.56,
3.125, 6.25,
12.5 µM

RAW264.7 cells ↓PLCγ1-Ca2+-
NFATc1 signaling pathway;

Zeng et al.
(2020)

↓(Fra-2,TRAP, Cathepsin K, β3-
integrin, DC-STAMP, and
Atp6v0d2)

Oleanolic acid acetate Vigna angularis
(azuki bean)

0, 5,
10, 20 µM

BMMs, ↓PLCγ1-Ca2+-
NFATc1 signaling pathway;

Kim et al.
(2014)

BMCs ↓(TRAP and OSCAR)

Kirenol Herba
Siegesbeckiae

0, 1.25, 2.5,
5, 10 µM

BMMs ↓Ca2+-NFATc1 signaling
pathway;

Zou et al.
(2021)

↓(NF-κB p65、 p-p38、p-ERK
and c-Fos)

Asperpyrone A Aspergillus niger 0, 0.5, 1, 2.5,
5, 10 µM

BMMs ↓Ca2+ oscillation; Chen et al.
(2019)

↓(TRAP, NFATc1, c-Fos, Ctsk
and Atp6v0d2)

Betulinic acid The bark of the
birch tree, D. kaki
leaf and so on

0, 1,
5, 10 µM

BMMs ↓PLCγ1-Ca2+-
NFATc1 signaling pathway;

Jeong et al.
(2020)

↓(TRAP, OSCAR, NFATc1,
c-Fos, MMP9,β3-integrin, Ctsk,
Mafb, Bcl6, Blimp1 and
Atp6v0d2)

Loureirin B Sanguis draxonis 0, 1, 2.5,
5, 10 µM

BMMs ↓ROS activity,MAPK-NFAT
signaling pathway;

Liu et al. (2019)

↓(Acp5, Atp6v0d2, Ctsk,
MMP9 and c-Fos)

(Continued on following page)
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Natural plant derivatives and natural
compounds

Although many pharmacological products are available for

the treatment of osteolytic diseases, in recent years it has been

found that long-term use was often accompanied with serious

adverse effects. Natural plant derivatives and compounds have

anti-inflammatory and antioxidant properties that optimize

bone, prompting researchers to focus on natural compounds

to find effective drugs to inhibit OCs. As shown in Table 1,

natural compounds inhibit OCs differentiation by regulating

RANKL-mediated related pathways.

Natural plant derivatives and compounds
modulate the NF-κB and/or MAPKs
pathway

Galangin, a natural bioflavonoid extracted from a traditional

Chinese herb, has a variety of biological activities, including anti-

inflammatory and antioxidant properties. (Li et al. (2021a) showed

that during the differentiation of bone marrow macrophages

(BMMs) to OCs, galangin inhibited the phosphorylation of

p38 and ERK in the MAPK signaling pathway, as well as

downstream factors such as NFATc1, c-Jun and c-Fos. It also

inhibits bone resorption by inhibiting lipopolysaccharide (LPS)-

induced differentiation of OCs. Their findings demonstrated that

galangin can be a promising natural compound for the treatment of

osteoporosis by inhibiting MAPK and NF-κB signaling pathways.

Biochanin A (BCA) is one of the flavonoid compounds with a

phenolic structure. Liao et al. (2021) demonstrated that BCA can

effectively inhibit the production of OCs and the bone resorption of

hydroxyapatite, and can downregulate the expression of

NFATc1 and c-Fos by inhibiting MAPK and NF-κB pathways

and inhibit the differentiation of OCs by reducing the expression

of OCs-related genes. Vinpocetine (Vinp) is a derivative of the

alkaloid vincristine. In vitro studies, Vinp significantly inhibited

RANKL-induced differentiation of OCs and formation of F-actin, as

well as reduced osteoclastic bone resorption function. In addition,

Vinp reduced the activation of NF-κB, MAPK and AKT signaling

pathways during osteoclast formation, blocked the production of

ROS and inhibited the expression of the osteoclast-specific genes

such as NFATc1, c-Fos, TRAP, MMP-9 and CTSK. The

ovariectomized (OVX) rats model is a classic animal model for

TABLE 1 (Continued) The source, molecular structure, dose, cell lines and mechanism of 20 natural compounds on modulating osteoclat
differentiation.

Compound name Molecular
structure

Source Dose In vitro
studies cell
lines

Mechanisms Reference

Schisandrin A Schisandra
chinensis

1, 50, 100,
200 µM

BMMs, ↓ROS activity;↑Nrf2 activity; Ni et al. (2020)

BMCs ↓(NFATc1,c-
Fos,MMP9,TRAP)

Oroxylin A The root of
Scutellaria
baicalensis Georgi

0, 1, 2.5,
5, 10 µM

BMMs ↓ROS activity;↑Nrf2 activity; Xian et al.
(2021)

↓(c-Fos,NFATc1, Ctsk,
Atp6v0d2)

Rhaponticin Rheum
undulatum L

0, 6.25, 12.5,
25, 50 µM

BMMs ↓ROS activity; ↑CAT, SOD-2
and HO-1 activity

He et al. (2021)

↓(c-Fos,NFATc1, Ctsk,
Atp6v0d2,Hprt)

Alpinetin Alpinia Journal
Pre-proof
katsumadai
Hayata

0, 5, 10, 15,
20, 30 µM

BMMs ↓ROS activity; ↑CAT, HO-1 and
Nrf2 activity;

Wei et al.
(2022)

↓(c-Fos, Nfatc1, Ctsk, Tracp,
Mmp9 and Dc-stamp)
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studying osteoporosis, which has the characteristics of single

modeling factor, great repeatability, high reliability of

experimental results, and can successfully simulate

postmenopausal osteoporosis in vivo. In vivo studies have shown

that Vinp significantly reduces the number of osteoclasts and

attenuates ovariectomy-induced bone loss. Vinp could be a

potential drug for the prevention and treatment of osteoporosis

(Zhu et al., 2020). Robinin (Rob) is a flavonoid glycoside with anti-

inflammatory and antioxidant effects. Hong et al. (2021)

demonstrated that Rob could downregulate the expression and

nuclear translocation of NFATc1 by inhibiting MAPK and NF-

κB pathways during the differentiation of BMMs to osteoclasts and

in vivo experiments demonstrated that Rob could prevent estrogen

deficiency-induced bone loss. Urolithin B (UB), a polyphenolic

compound, has been reported to possess various biological

activities such as antioxidant and anti-inflammatory. Our

previous study demonstrated for the first time that in RANKL-

induced RAW264.7 cell differentiation, UB could inhibit NF-κB,
MAPK and Akt pathways to reduce the expression of major

transcription factors c-Fos and NFATc1, which could potentially

prevent osteoclast-related bone disease (Qu et al., 2022).

Natural plant derivatives and compounds
modulate the Akt signaling pathway

Cinchonine (CN) is an alkaloid with anti-malarial, anti-

platelet and anti-obesity effects. Jo et al. (2021) showed that

CN inhibited RANKL-induced osteoclast differentiation and

bone resorption. CN can inhibit the differentiation of OCs by

suppressing TRAF6-mediated expression of TAK1 and AKT

activity, resulting in downregulation of the key transcription

factor NFATc1. In addition, CN attenuated LPS and

ovariectomy-induced osteolysis in a mouse model of

osteoporosis. This suggests that CN has therapeutic potential

for the treatment of inflammation-induced bone disease and

postmenopausal osteoporosis. Cnidium lactone is a potent herbal

remedy that can prevent bone loss in a model of ovariectomy-

induced bone loss in rats (Wang et al., 2020). Liang et al. (2019)

found in a study of RANKL-induced differentiation of

RAW264.7 cells that Cnidium lactone could inhibit the

differentiation of TRAP-positive multinucleated osteoclasts

and reduce the bone resorption of osteoclasts. In molecular

mechanism, Cnidium lactone is able to inhibit the expression

of c-Fos and NFATc1, the main transcription factors of osteoclast

differentiation, by inhibiting the levels of phosphorylation of

p38 and AKT and reducing the expression of p38 MAPK and

PI3K-Akt signaling pathways. The results of the in vitro study

suggest that cnidium lactone has the potential to be used as a new

drug for the treatment of osteoporosis. Anethole, the main active

ingredient in more than 20 plants, has anti-inflammatory,

antioxidant, antibacterial, antifungal, anticancer and anesthetic

properties. In addition, it has a potential function in protecting

the kidneys and nerves. Qu et al. (2021) revealed anethole

inhibited osteoclast differentiation and bone resorption by

blocking ERK and AKT signaling pathways and reducing the

expression of genes specific for osteoclast differentiation through

in vitro and in vivo experiments. In an osteolysis model in

ovariectomy-induced mice, anethole prevented bone loss and

osteoclast activity induced by estrogen deficiency, suggesting that

anethole has bone protection against osteoporosis. 9,9′-O-di-(E)-
feruloyl-meso-5,5′-dimethoxysecoisolariciresinol (LCA) is an

extract of Litsea cubeba with anti-inflammatory biological

activity. Yu et al. (2020) showed that LCA could inhibit

RANKL-induced AKT phosphorylation and the

phosphorylation of JNK, ERK and p38 in the MAPK signaling

pathway to downregulate the expression of NFATc1 and c-Fos,

thereby inhibiting osteoblast differentiation. Acacetin is a natural

flavonoid. Lin et al. (2022) found that acacetin inhibits osteoclast

formation and activity by inhibiting Akt/GSK3β signaling

pathway and phosphorylation of IκBα in NF-κB signaling

pathway, and also induces H-type angiogenesis in OVX mice,

which is important for maintaining normal bone structure.

Natural plant derivatives and compounds
modulate the Ca2+ signaling pathway

Artesunate, a semi-synthetic derivative of artemisinin, is

widely used in the clinical treatment of falciparum malaria.

Artesunate has anti-inflammatory and immunosuppressive

properties and is indicated for the treatment of osteomyelitis,

septic arthritis and periodontitis caused by gram-negative

bacterial infections. In RAW264.7 cell culture and

differentiation, Zeng et al. (2020) found that artesunate dose-

dependently inhibited LPS-induced OCs formation and

suppressed the expression of OCs differentiation related genes

TRAP, Integrinβ3, MMP-9 and CTSK. Furthermore, artesunate

significantly attenuated the expression of upstream TLR4/

TRAF6 and downstream PLCγ1-Ca2+-NFATc1 signaling

pathways in LPS-induced osteoclast differentiation, which

reduced pathological activation of OCs and had potential

therapeutic effects on bone erosion. Oleanolic acid acetate

(OAA) is a triterpenoid compound isolated from Vigna

angularis. LPS-induced inflammatory bone loss can serve as

an animal model for in vivo osteolysis. LPS promotes the

release of proinflammatory cytokines and ultimately induces

osteoclastic bone erosion. Kim et al. (2014) indicated that

OAA attenuated RANKL-induced osteoclastogenesis in vitro

and suppressed LPS-induced bone loss in vivo. OAA

significantly inhibited PLCγ2 phosphorylation, Ca2+ oscillation

and NFATc1 expression in RANKL-stimulated bone marrow

macrophages, however, did not affect RANKL-induced MAPKs

expression. The results suggested that OAA inhibited RANKL-

mediated osteoclastogenesis via the PLCγ2-Ca2+-
NFATc1 signaling pathway and suppressed inflammatory
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bone loss in vivo. Therefore, OAA could be a potential drug for

osteoclast-related diseases such as osteoporosis. Kirenol (Kir) is a

bioactive diterpenoid with anti-rheumatic Chinese herbal

medicine that promotes osteoblast differentiation in vivo for

the treatment of arthritis. Zou et al. (2021) found that Kir

significantly suppressed osteoclastogenesis and bone

resorption in vitro. In mechanism, Kir remarkably inhibited

the formation of actin rings, RANKL-induced activation of

NF-κB p65, the expression of p-p38, p-ERK and c-Fos, while

Kir also inhibited the expression of NFATc1 and nuclear

translocation. Kir was found to reduce Ca2+ oscillations and

caveolin-1(Cav-1) during osteoclast formation in vitro. In

addition, Kir attenuated ovariectomy -induced osteoporosis by

decreasing the number of osteoclasts in vivo studies by reducing

the expression of Cav-1 and NFATc1. Asperpyrone A, a natural

compound isolated from Aspergillus niger, has anti-tumor,

antibacterial and antioxidant biological activities. Chen et al.

(2019) found that Asperpyrone A inhibited RANKL-induced

intracellular calcium oscillations and elevated ROS levels and

suppressed MAPK and NF-κB signaling pathway activation,

thereby downregulating the expression of NFATc1, c-fos to

inhibit osteoclast formation and differentiation. Betulinic acid

(BA) is a pentacyclic triterpene compound that is derived from

natural plants and is known to possess many pharmacological

and biochemical properties, including anti-inflammatory and

anti-cancer activities. Jeong et al. (2020) found that BA

inhibited RANKL-mediated intracellular levels of Ca2+

through inhibition of PLCγ2 phosphorylation and reduced

OCs production and bone resorption through the combined

effect of Akt and NF-κB phosphorylation, and meanwhile BA

reversed inflammatory bone loss induced by LPS injection

in mice.

Natural compounds modulate ROS-
mediated effects

Loureirin B (LrB) is the active ingredient isolated from

Sanguis draxonis and is widely used in the treatment of stasis,

oxidative stress, cancer, inflammation and immune disorders.

Sanguis draxonis known as Dragon’s Blood, is a traditional

Chinese herb containing more than 12 active compounds and

has been used to treat diabetes and AIDS-related diarrhoea. Liu

et al. (Liu et al., 2019) showed that LrB could inhibit osteoclast

differentiation, bone resorption, actin ring formation and reduce

osteoclast-specific gene expression, ROS activity and calcium

oscillations by affecting NFATc1 translocation, expression and

MAPK-NFAT signaling pathway in vitro. In vivo studies have

shown that LrB may prevent ovariectomy-induced osteoporosis

by inhibiting the activity and function of osteoclasts. Therefore,

LrB is a potential drug for the treatment of osteoporosis.

Schisanin A (Sch) is a dibenzocyclooctene lignan extracted

from Schisan. It has been demonstrated to have anti-

inflammatory, anti-coagulant, anti-depressant, anti-cancer,

FIGURE 2
RANKL-mediated osteoclast differentiation signaling pathway and 20 natural compounds.
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hepatoprotective and renal protective effects. Shuo et al. (Ni et al.,

2020) showed that Sch could inhibit the differentiation of OCs

and reduce the production of actin rings in OCs, thereby

inhibiting their bone resorption function. In the mechanism,

Sch further reduces ROS production during RANKL-induced

osteoclastogenesis by downregulating the TRAF6/Nox1 signaling

pathway and enhancing the expression of Nrf2. Sch attenuated

ovariectomy-induced bone loss by acting on Nrf2 to inhibit

in vitro production of ROS, as demonstrated in the vivo

studies. In vitro and in vivo studies, it has been indicated that

Sch is an antioxidant compound with anti-osteoporotic effects

and that the Nrf2 signaling pathway could be a new target for the

treatment of osteoclast-related diseases. Oroxylin A (OA) is an

active flavonoid extracted from the roots of Scutellaria baicalensis

Georgi, with a variety of biological activities including

antioxidant, anti-apoptotic, anti-inflammatory and anti-tumor.

Xian et al. (2021) showed that OA inhibited RANKL-induced

osteoclast differentiation and reduced the bone resorption of

hydroxyapatite by osteoclasts in vitro study. OA inhibited

RANKL-induced ROS production by regulating the expression

of various antioxidant enzymes such as CAT, HO-1 and GCLC,

mediated by the transcription factor Nrf2. In addition, OA

inhibited intracellular Ca2+ inward flow and downregulated

the expression of the major transcription factor NFATc1 and

its downstream proteins, thereby inhibiting osteoclast formation

and function. In vivo studies, OA could protect against both the

ovariectomy-induced bone loss model and the LPS-mediated

osteolysis model. OA could be used as a potential drug against

osteoporosis and osteolysis. Rhaponticin (Rh) is a natural

compound isolated from the Chinese herb rhubarb. He et al.

(2021) found that Rh could reduce ROS-induced oxidative stress

by enhancing the activities of antioxidant enzymes such as CAT,

SOD-2, and HO-1, and that RH significantly inhibited MAPK,

NF-κB, and intracellular Ca2+ oscillation to suppress

osteoclastogenesis. Alpinetin (Alp), a natural flavonoid, is the

main active ingredient of Alpinia katsumadai Hayat, with

significant anti-inflammatory, anti-tumor and antioxidant

properties. Wei et al. (2022) found that Alp inhibited

intracellular ROS levels by regulating transcription factor

Nrf2-mediated antioxidant enzymes and downregulating

NADPH oxidase expression, ultimately reducing the cellular

activity of OCs, and also demonstrated the therapeutic effect

of Alp on inflammatory bone loss through in vitro and in vivo

studies.

Conclusion

Abnormal osteoclast differentiation is the main pathological

cause of osteoporosis. RANKL-induced downstream multiple

signaling pathways are key steps in osteoclast differentiation,

and abnormal function of these downstream signaling molecules

can lead to disorders in osteoclast differentiation and function.

This paper reviews the recent research progress in the study of

signaling pathways related to RANKL-induced OCs

differentiation, but the specific pathways and molecular

mechanisms of OCs differentiation are currently poorly

understood and require further investigation. A number of

anti-osteoporosis drugs have been used in clinical practice, but

their long-term use has frequently caused some adverse effects.

Therefore, there is a need to increase our exploration of natural

plant derivatives and natural compounds against osteoporosis.

As shown in Figure 2, the biological effects of natural compounds

on osteoclast differentiation and their mechanism of action on

downstream signaling. Natural drugs are extremely

advantageous and unique in the treatment of osteoporosis.

These natural active compounds from plants show anti-bone

destructive activity in vitro and in vivo by modulating multiple

signaling pathways and show excellent results. This review

focuses on highlighting the importance of natural drugs in the

treatment of osteoclast-mediated bone destructive diseases.

Natural products with osteoclasts as therapeutic targets will

have great potential in the prevention and treatment of

osteolytic diseases. However, current research relies on

in vitro and in vivo animal studies, and no validated in vivo

human experiments have been found. In the future, we need

advanced techniques to isolate more optimized active

compounds from herbal medicines for the prevention and

treatment of osteolytic diseases and to further explore their

exact molecular mechanisms. This will help to provide new

therapeutic ideas and approaches for osteolytic diseases

associated with osteoclasts.
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