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Inflammatory bowel disease (IBD) is a gastrointestinal disorder, affecting about

several million people worldwide. Current treatments fail to adequately control

some clinical symptoms in IBD patients, which can adversely impact the

patient’s quality of life. Hence, the development of new treatments for IBD is

needed. Due to their unique properties such as biocompatibility and sustained

release of a drug, biomaterials-based drug delivery systems can be regarded as

promising candidates for IBD treatment. It is noteworthy that considering the

pathophysiological changes occurred in the gastrointestinal tract of IBD

patients, especially changes in pH, surface charge, the concentration of

reactive oxygen species, and the expression of some biomolecules at the

inflamed colon, can help in the rational design of biomaterials-based drug

delivery systems for efficient management of IBD. Here, we discuss about

targeting these pathophysiological changes using biomaterials-based drug

delivery systems, which can provide important clues to establish a strategic

roadmap for future studies.
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Introduction

IBD is a group of idiopathic, chronic inflammatory disorders of the gastrointestinal

tract which includes two major forms, ulcerative colitis (UC) and Crohn’s disease (CD)

(Windsor and Kaplan, 2019; Bisgaard et al., 2022; Plevris and Lees, 2022). It is renowned

that chronic inflammation in intestinal tract is an important feature of both UC and CD.

They are complex diseases and the basic pathological process looks to be a combination of

immunologic disturbances and genetic predisposition. In other words, a dysregulated
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immune reaction to a normal or altered gut microbiome in

genetically prone individuals plays an important role in

causing this disease (Cosnes et al., 2011; Khor et al., 2011;

Molodecky et al., 2012; Dal Buono et al., 2021; Jeffery et al.,

2022). It is activated by the interaction of environmental factors

with the autoantigens supposed to reside on nonpathogenic

commensal bacteria of gut microbiota (Loftus Jr, 2004; Zhang

et al., 2021; Zhuang et al., 2021).

Multiple environmental agents, involved in the development

of IBD, include factors like infectious pathogens, diet, and

autoantigens residing in the gut microbiome

(Ananthakrishnan, 2015; Kaplan, 2015; Raoul et al., 2022). It

is assumed that there is a relation between raised use of animal

meat and refined sugars and the risk of IBD development. The

mentioned dietary components seem to interact with intestinal

flora, leading to the production of pro-inflammatory factors.

Persons who use less dietary fiber, raw fruits, and vegetables are

more at risk for IBD (Asakura et al., 2008; Sasson et al., 2021;

Sugihara and Kamada, 2021).

At present, existing therapies can’t adequately control clinical

symptoms in a significant number of IBD patients. Consequently,

novel treatments for IBD is needed (Ma et al., 2019; Camba-

Gómez et al., 2021). It is worth noting that considering the

pathophysiological changes occurred in the gastrointestinal tract

of the patients with IBD can help in the rational design of new

treatments for effective management of IBD (Nakase, 2020).

Recently, the attention of researchers has been attracted to the

development of drug delivery systems as a promising strategy for

the efficient management of IBD. Until now, some review articles

were published regarding the treatment of IBD based on drug

delivery systems (Wang et al., 2022). However, there is a need for

a review focused on targeting pathophysiological changes via

biomaterials-based drug delivery systems (biomaterials-based

DDSs) that can provide key clues to establish a strategic

roadmap for future studies.

Conventional therapies for IBD and
the importance of biomaterials-
based DDSs

Currently, there is no definitive method for the medical cure of

IBD. The management of this disease engages the utilization of anti-

inflammatory drugs which can considerably decrease the symptoms

of disease and help preserve its remission. Drugs employed to treat

the signs of IBD consist of aminosalicylates (like sulfasalazine and

Mesalamine), corticosteroids, immunomodulators (such as

azathioprine and methotrexate), Tofacitinib (a Janus kinase

inhibitor), TNF-α blocking biological agents (like infliximab and

adalimumab), and anti-integrin biological factors (such as

natalizumab) (Fakhoury et al., 2014; Al-Bawardy et al., 2021;

Battat and Sandborn, 2021; Burr et al., 2021; Dudek et al., 2021;

Hanzel et al., 2022). For the patients who do not respond to less

aggressive treatment like sulfasalazine and azathioprine, biological

drugs such as infliximab, adalimumab, and natalizumab are utilized.

However, biological drugs have a high cost and increase the

considerable risk of developing infections. Corticosteroids are

anti-inflammatory drugs with good efficiency in some

inflammatory diseases, but long-term utilization of corticosteroids

to treat both UC and CD is not successful and can lead to severe

undesirable effects (Koda-Kimble, 2012; Danese et al., 2020; Bruscoli

et al., 2021). From a therapeutic point of view, pharmacokinetic

considerations (including absorption, distribution, metabolism, and

elimination of drugs) affect the probability of therapeutic success.

Oral, rectal, and intravenous administrations are the most common

routes of drug administration for IBD treatment. Due to higher

patient compliance than injections and lower production costs, oral

drug administration is considered one of the most convenient

routes. Nonetheless, oral administration of drugs has some

restrictions such as low absorption of hydrophobic drugs,

delivery to normal tissues, the probability of degradation during

passage via the gastrointestinal tract, and hepatic first-pass

metabolism following the intestinal absorption process. The most

important benefit of rectal administration (especially via enema and

suppository) is topical drug delivery to the injured colon. However,

maintaining the enema or suppository for long periods of time in

colon is the main limitation of rectal administration. Intravenously

administered drugs do not undergo hepatic first-pass metabolism,

which it is the main advantage of intravenous use. Despite this

benefit, intravenous administration has some challenges like

nonspecific distribution in normal tissues and short blood

circulation time (Derijks et al., 2018; Patel et al., 2020; Denesh

et al., 2021). Hence, the modulation of pharmacokinetic properties

of drugs to improve the targeted treatment and decrease undesirable

side effects could be a game-changer in the efficient treatment of

IBD. Due to their unique properties, especially active functional

groups present in biomaterials structure, modification of

biomaterials-based DDSs can help in the modulation of

pharmacokinetic properties of drugs. Among biomaterials used

in developing new targeted biomaterials-based DDSs to treat

IBD, biomaterials based on polymer (such as poly (ethylene

glycol) (PEG), poly (lactic acid) (PLA), poly (lactic-co-glycolic

acid) (PLGA), hyaluronic acid, and chitosan) and biomaterials

based on lipids (like phospholipids) have attracted the most

attention of researchers (Wang et al., 2022).

Pathophysiological changes in the
gastrointestinal tract of IBD patients

The most important pathophysiological changes in the

gastrointestinal tract of the patients with IBD include changes

in pH, surface charge, the concentration of reactive oxygen

species (ROS), and the expression of some biomolecules at the

inflamed colon. In normal physiological conditions, colonic

luminal pH is in the range of 7-8, which is affected by many
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factors especially bicarbonate and lactate production (Hall and

Hall, 2020). Colonic luminal pH is lower than normal in the

patients with IBD, mainly because of changes in bicarbonate and

lactate production (Zhang et al., 2017). Until now, some studies

were performed to evaluate accurate colonic pH value in IBD

patients, but similar results were not found. However, most

studies have confirmed that colonic pH in the patients with

IBD is relatively acidic (Cummins et al., 2019).

Another important pathophysiological factor in the colon of

IBD patients is surface charge. In normal physiological

conditions, surface charge of colon epithelium is negative

(Figure 1A). Mucosal damage and positively charged proteins

accumulation such as transferrin are among the most important

pathophysiological changes in the inflamed colon. This results in

the formation of positive charges at the injured epithelial surface

(Figure 1D) (Ramasundara et al., 2009; Tirosh et al., 2009;

Kesharwani et al., 2018). Oxidative stress plays a key role in

the pathogenesis and progression of IBD. Persistent oxidative

stress and increased production of ROS can lead to local tissue

damage and inflammation. In normal physiological conditions,

ROS concentration is low in the colon epithelium (Figure 1B). In

the patients with IBD, the ROS concentration is high in the

inflamed regions of the colon (Figure 1E) (Aviello and Knaus,

2018; Guan and Lan, 2018; Hu et al., 2019; Bertoni et al., 2020;

Dziąbowska-Grabias et al., 2021).

The expression of some biomolecules like inflammatory

biomarkers in the injured colon is increased during IBD

development compared with their basic expression level in

normal physiological conditions (Figures 1C,F). The

overexpression of glycoprotein CD98, CD44, and folate

receptor is among the most important pathophysiological

changes in the injured colon (Naserifar et al., 2020; Brazil and

Parkos, 2022; Rahiman et al., 2022). On the other hand, it is

noteworthy that expression of some biomolecules on

the surface of capillary endothelial cells raises in the

inflamed colon. The overexpression of intercellular

adhesion molecule-1 (ICAM-1), vascular cell adhesion

molecule-1 (VCAM-1), P-Selectin, and E-Selectin is among

the most important pathophysiological changes on the

surface of capillary endothelial cells in damaged regions of

the colon (Zhao et al., 2019; Bui et al., 2020; Schmid et al.,

2022).

Targeting pathophysiological
changes using biomaterials-based
DDSs

Considering the pathophysiological changes which

occurred in the gastrointestinal tract due to IBD can help

FIGURE 1
A schematic illustration of targeting pathophysiological changes using biomaterials-based drug delivery system (biomaterials-based DDS) in the
colon of patients with IBD. Surface charge of epithelium (A), basic ROS level (B), and basic expression level of some biomolecules such as
inflammatory biomarkers (C) in the normal region of colon. Targeting pathophysiological changes including positive surface charge of injured
epithelium using negatively charged biomaterials-based DDS (D), high ROS level using ROS-responsive biomaterials-based DDS (E), and
overexpression of the biomolecules using ligand-functionalized biomaterials-based DDS (F) in the inflamed region of colon.
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in the rational design of biomaterials-based DDSs for efficient

management of IBD. In particular, changes in the inflamed

regions of the colon can be a good clue to specifically

targeting the inflamed area rather than the whole colon.

A summary of studies on targeting pathophysiological

changes using biomaterials-based DDSs is presented in

Table 1.

Targeting changes in pH

In IBD patients, colonic luminal pH is lower than normal. This

important pathophysiological change can be used to efficiently

deliver drugs to the injured colon by pH-responsive biomaterials-

based DDSs. For example, pH-responsive aminoclay-based

nanocomplex is one of the appropriate biomaterials-based

TABLE 1 Summary of studies on targeting pathophysiological changes using biomaterials-based drug delivery system (biomaterials-based DDS).

Targeted
changes

Biomaterials-based DDS Drug/active agent Study model References

pH Aminoclay-based nanocomplex coated with Eudragit
S100

Infliximab in vitro and in vivo, oral administration,
DSS-induced colitis mice

Lee et al. (2022)

Pectin-PEG-methacrylic acid hydrogel Sulfasalazine in vivo, oral administration, DSS-induced
colitis rat

Abbasi et al.
(2019)

Eudragit FS30D- PLGA nanoparticles Cyclosporine A in vitro and in vivo, oral administration,
DSS-induced colitis mice

Naeem et al.
(2018)

Positive surface
charge

1,2-distearoyl-sn-glycero-3-[phospho-rac-(1-glycerol)-
based liposomes

- in vivo, oral administration,
dinitrobenzensulfonic acid-induced
colitis rat

Jubeh et al.
(2004)

Cerium-metal-organic framework@poly (sodium-4-
styrenesulfonate)

5-aminosalicylic acid in vivo, rectal administration,
trinitrobenzenesulfonic acid-induced
colitis mice

Yin et al. (2021)

Heparin hydrogel Heparin, silver ex vivo and in vivo, rectal administration,
DSS-induced colitis mice

Hong et al.
(2022)

Ascorbyl palmitate hydrogel Dexamethasone in vivo, rectal administration, DSS-
induced colitis mice

Zhang et al.
(2015)

High concentration
of ROS

Poly [(N-acryloylmorpholine)-b-
(N-acryloylthiomorpholine)] micelles (ROS-responsive
bond: thioether)

- in vitro Gardey et al.
(2022)

Phenylboronic ester-carboxylmethyl chitosan micelles
(ROS-responsive bond: ester)

Berberine in vitro and in vivo, oral administration,
DSS-induced colitis mice

Zhao et al.
(2021)

4-(hydroxymethyl) phenylboronic acid pinacol ester-β-
cyclodextrin nanoparticles (ROS-responsive bond:
ester)

Genistein in vivo, oral administration, DSS-induced
colitis mice

Fan et al. (2021)

4-(hydroxymethyl) phenylboronic acid pinacol ester-β-
cyclodextrin nanoparticles (ROS-responsive bond:
ester)

Tempol in vivo, oral administration, DSS-induced
colitis mice

Zhang et al.
(2016)

Poly-(1,4-phenyleneacetone dimethylene thioketal)
nanoparticles (ROS-responsive bond: thioketal)

TNF-α-siRNA in vitro and in vivo, oral administration,
DSS-induced colitis mice

Wilson et al.
(2010)

4-(hydroxymethyl) phenylboronic acid pinacol ester-β-
cyclodextrin nanoparticles (ROS-responsive bond:
ester)

Ac2-26 peptide (derived
from annexin A1)

in vitro and in vivo, oral administration,
DSS-induced colitis mice

Li et al. (2019b)

Overexpression of
biomolecules

CD98 Fab-functionalized PLA nanoparticles (targeting
CD98)

- in vivo, oral administration, DSS-induced
colitis mice

Xiao et al. (2014)

Hyaluronic acid nanoparticles (targeting CD44) Lysine-Proline-Valine
tripeptide

in vivo, oral administration, DSS-induced
colitis mice

Xiao et al. (2017)

Folate-functionalized PLGA/PLA nanoparticles
(targeting folate receptor)

6-shogaol in vitro and in vivo, oral administration,
DSS-induced colitis mice

Zhang et al.
(2018)

Folate-functionalized poly (amidoamine) dendrimers
(targeting folate receptor)

- in vivo, intravenous injection-DSS-
induced colitis mice

Poh et al. (2017)

Sialyl-Lewisx-functionalized PLGA microspheres
(targeting P-Selectin)

- in vitro Eniola et al.
(2002)

E-Selectin antibody-functionalized PLA–PEG
microparticles (targeting E-Selectin)

- in vivo, intravenous injection, TNF-α-
treated mice

Sakhalkar et al.
(2003)

Neutrophils-simulated liposomes (targeting ICAM-1) KGF in vitro and in vivo, intravenous injection,
DSS-induced colitis mice

Zhao et al.
(2019)
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DDSs for targeting changes in colonic luminal pH. Aminoclay is a

biocompatible and water-soluble derivative of the highly

disordered talc-like 2:1 trioctahedral magnesium phyllosilicates

with covalently attached aminopropyl groups. Aminoclay has a

positive charge and is an appropriate candidate to deliver drugs

which have a positive charge at acidic pH, because electrostatic

repulsion between aminoclay and positively charged drug leads to

drug release from aminoclay in the inflamed colon. However, it is

noteworthy that there is an important challenge facing the

development of these systems. Acidic pH in stomach can result

in drug release in the upper gastrointestinal tract (Lee et al., 2019).

To overcome this challenge, an outer coating layer (insoluble in

acidic conditions) in these systems is needed. Interestingly, Lee

et al. developed pH-responsive nanocomplex based on aminoclay-

infliximab coated with Eudragit S100. Infliximab is IgG

monoclonal antibody that binds specifically to human TNF-α
and is used to treat inflammatory disorders such as IBD.

Eudragit S100 is a copolymer based on methacrylic acid and

methyl methacrylate. Eudragit S100 is a pH-sensitive polymer

that dissolves at a pH above 7.0, and therefore can minimize

premature drug release in the upper gastrointestinal tract.

Infliximab has a positive charge at pH below its isoelectric

point (about 7.6), and thus electrostatic repulsion between

aminoclay and infliximab results in drug release from the

nanocomplex in the inflamed colon. The release of infliximab

from the nanocomplex at pH 5.5 was confirmed by in vitro release

study. The oral administration of this nanocomplex showed great

accumulation of the nanocomplex as well as the release of

infliximab in the injured colon of DSS-induced colitis mice. In

addition, pro-inflammatory factors (including IL-6 and TNF-α)
were decreased after the oral use of the nanocomplex (Lee et al.,

2022).

In another study, the treatment of DSS-induced colitis rat

with pH-responsive pectin-PEG-methacrylic acid hydrogel

loaded with sulfasalazine showed excellent accumulation of

the hydrogel as well as the release of sulfasalazine in the

inflamed colon (Abbasi et al., 2019). Similarly, Naeem et al.

developed pH-responsive cyclosporine A-loaded Eudragit

FS30D- PLGA nanoparticles. Eudragit FS30D is a tripolymer

comprising poly (methyl methacrylate, methyl acrylate,

methacrylic acid), which is one of appropriate pH-sensitive

biomaterials for colon delivery. The release of cyclosporine A

from the nanoparticles at colonic pH was confirmed by in vitro

release study. Furthormore, the results of this study showed an

increase in the colon length and a reduction in Disease Activity

Index (DAI) score after the oral use of the nanoparticles in mice

with colitis induced by DSS, indicating the good functionality of

the nanoparticles in the alleviation of colitis symptoms (Naeem

et al., 2018). In general, targeting changes in pH via pH-

responsive biomaterials-based DDSs can be an appropriate

potential candidate to deliver potent drugs to the damaged

colon. However, their efficacy and safety need to be further

verified in more comprehensive studies.

Targeting changes in surface charge

The formation of positive charges at the injured epithelial

surface supplies a molecular target and anchor for biomaterials-

based DDSs with negative surface charge (Figure 1D) (Jubeh

et al., 2006; Li W. et al., 2018). Thus, negatively charged particles

illustrate preferential attachment to the damaged areas of colon

via electrostatic interaction with these proteins. For example, due

to their unique properties (such as biocompatibility, excellent

entrapment capacity, and amphiphilic nature), liposomes as one

of biomaterials-based DDSs are promising candidates for the

encapsulation of diverse drugs including both hydrophobic and

hydrophilic compounds. Interestingly, negatively charged

liposomes showed preferential adhesion to the inflamed colon

of dinitrobenzenesulfonic acid-induced colitis rats via

electrostatic interaction. They also had a two-fold higher

cumulation in the inflamed regions compared with cationic

and neutral liposomes, therfore negatively charged liposomes

can be valuable to deliver anti-inflammatory drugs to the

inflamed colon (Jubeh et al., 2004).

Conventional enemas are usually employed in mild-to-

moderate colitis as a fundamental form of topical drug

delivery to the injured colon. Nevertheless, in classic enema-

based formulations, the patients may need to maintain the enema

for prolonged periods of time which is hard when affected by

diarrhea and fecal urgency. For this reason, enemas with the

ability of local and specific targeting of inflamed tissue can be

helpful to deliver anti-inflammatory drugs to the injured

epithelial surface (Date et al., 2017; Date et al., 2018; Zhai

et al., 2018; Ahmad et al., 2021). Metal-organic frameworks

(MOFs) as another biomaterials-based DDSs are good

candidates for drug delivery as well as cell targeting, mainly

because of low toxicity and great drug loading capacity (Beg et al.,

2017; Wang et al., 2018; Lawson et al., 2021). For example,

negatively charged cerium-MOF@poly (sodium-4-

styrenesulfonate)-based enema loaded with 5-aminosalicylic

acid exhibited preferential attachment to the injured areas of

the colon through electrostatic interaction in surgical specimens

of IBD patients and colitis mice. This enema showed excellent

therapeutic efficacy via diminishing inflammatory cytokines and

repairing intestinal barrier function in comparison with the

administration of free drug (Yin et al., 2021).

It is worth mentioning that hydrogel-based enema is one of

the most attractive biomaterials-based DDSs for local drug

delivery to the inflamed colon that not only has great

properties like biocompatibility, sustained release of a drug,

and high drug carrying capacity, but also aids in preventing

the infection of injured epithelial tissue via the formation of a

physical barrier (Garcia-del et al., 2020; Guo et al., 2021).

Recently, Hong et al. developed enema based on negatively

charged heparin-silver-bovine serum albumin hydrogel for

local targeting the injured colon ex vivo and in vivo

experiments. Heparin is a negatively charged biomaterial and
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has also anti-inflammatory activity. The hydrogel-based enema

showed excellent accumulation in the injured colon compared

with the healthy tissues as well as was effective in downregulation

of interleukin-6 (a pro-inflammatory agent) in the colon’s

inflamed regions, indicating the good functionality of this

hydrogel for local targeting the damaged areas of the colon.

Moreover, this enema exhibited the ability of accelerating

mucosal healing via boosting Syndecan-1 (Sdc-1), a tissue

repair agent, and can also help in the prophylaxis of inflamed

colon infection via physical barrier formation (Hong et al., 2022).

In a similar study, the treatment of colitic mice with enema based

on negatively charged hydrogel microfibers loaded with

dexamethasone showed preferential adhesion of these

hydrogel microfibers to the inflamed regions of the colon

compared to histologically normal tissues. These hydrogel

microfibers were prepared using ascorbyl palmitate, a

biomaterial which its safety was confirmed by the U.S. Food

and Drug Administration (as generally recognized as safe). Due

to its amphiphilic nature, ascorbyl palmitate is able to self-

assemble into a hydrogel. Moreover, this study’s results

indicated that the administration of this hydrogel-based

system leads to a considerable decrease in inflammation and

is related to lower serum concentrations of dexamethasone and

consequently, less systemic side effects (Zhang et al., 2015).

In total, biomaterials-based DDSs with negative surface

charge can adhere to the injured epithelial surface through

electrostatic interaction and provide the local targeting of the

inflamed colon. Therefore, these systems can be regarded as

promising candidates for entry into the clinical trial phase.

However, their efficacy and safety need to be further verified

in more comprehensive studies.

Targeting changes in the concentration
of ROS

In IBD patients, the ROS concentration is high in the

damaged areas of the colon. This important

pathophysiological change can be used to efficiently deliver

drugs to the injured colon by biomaterials-based DDSs

(Figure 1E). For example, polymer micelles functionalized

with ROS-responsive groups are one of the appropriate

biomaterials-based DDSs for targeting changes in the

concentration of ROS in inflamed regions of the colon.

Gardey et al. developed ROS-sensitive polymer micelles based

on amphiphilic block copolymers poly [(N-acryloylmorpholine)-

b-(N-acryloylthiomorpholine)] through polymerization induced

self-assembly. These micelles contain thioether groups in the

hydrophobic core, which are susceptible to oxidation in the

presence of ROS. The oxidation of thioether groups leads to

the formation of hydrophilic sulfoxide groups and the

degradation of micelles. Furthermore, the micelles were loaded

with fluorescent dye Nile red to monitor the micelles

degradation. When the micelles were incubated with

monocytes isolated from patients with IBD, which had

increased ROS production, the degradation of micelles was

successfully occurred in comparison with the micelles

incubated with monocytes isolated from healthy individuals

(Gardey et al., 2022). In a similar research, the ROS-triggered

release of berberine (anti-inflammatory agent) from ROS-

responsive micelles based on phenylboronic esters-modified

carboxylmethyl chitosan conjugated with berberine was

confirmed by in vitro release study. Carboxymethyl chitosan is

an interesting biomaterial for drug delivery because of their

excellent properties such as the availability of functional

groups for drug conjugation and biocompatibility.

Furthermore, the results of this study demonstrated a

reduction in Disease Activity Index (DAI) score and an

increase in the colon length in mice with colitis induced by

DSS, showing the great functionality of the micelles in the

alleviation of colitis symptoms (Zhao et al., 2021).

Owing to their ROS-responsive properties, 4-

(hydroxymethyl) phenylboronic acid pinacol ester and tempol

moieties are valuable candidates for the conjugation to

biomaterials for the preparation of ROS-responsive

biomaterials-based DDSs (Li L. et al., 2018). In one study, the

oral administration of ROS-responsive nanoparticles based on

tempol-conjugated β-cyclodextrin loaded with genistein-4-

(hydroxymethyl)phenylboronic acid pinacol ester showed

great accumulation of the nanoparticles as well as the release

of genistein in the inflamed colon of DSS-induced colitis mice. In

addition, pro-inflammatory factors (including IL-1β and TNF-α)
were decreased after the oral use of the nanoparticles. Genistein is

a strong antioxidant factor that suppresses oxidative stress (Fan

et al., 2021). Similarly, Zhang et al. synthesized ROS-responsive

nanoparticles based on 4-(hydroxymethyl) phenylboronic acid

pinacol ester-conjugated β-cyclodextrin loaded with tempol (as a

superoxide dismutase-mimetic). Hydrogen peroxide results in

hydrolysis of the nanoparticles and then this occurrence causes

tempol release. The nanoparticles effectively accumulated in the

injured regions of the colon in mice with DSS-induced colitis,

thus noticeably decreasing the nonselective distribution after oral

use. Moreover, the nanoparticles remarkably diminished

symptoms related to colitis and considerably inhibited the

expression of proinflammatory factors (including TNF-α, IL-
1β, and INF-γ), with the effective performance compared with

free tempol and a control drug carrier based on PLGA (Zhang

et al., 2016).

In general, targeting changes in the concentration of ROS via

biomaterials-based DDSs functionalized with ROS-sensitive

groups can be a good potential candidate to deliver potent

drugs to the inflamed colon. However, the following points

should be considered before the clinical application of such

ROS-sensitive systems. Until now, just the cytotoxicity phase

of these ROS-responsive systems was investigated. Therefore, a

comprehensive evaluation of the safety of these systems should
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be performed in several animal models because biocompatibility

is an essential factor in the entry of new therapeutic systems into

the clinical trial phase. Moreover, in normal concentrations of

ROS, these systems should be inactive (Xu et al., 2016).

Targeting changes in the expression of
biomolecules

The expression of some biomolecules such as inflammatory

biomarkers in the inflamed colon is increased during IBD

development compared with their basic expression level in

normal physiological conditions. Targeting these changes can

be used to efficiently deliver drugs to the damaged areas of colon

via biomaterials-based DDSs functionalized with a specific ligand

in a way that, this ligand conjugated to biomaterials-based DDSs

can recognize and bind to its specific complement biomolecule

after reaching the intended tissue (Figure 1F). Consequently, it

can lead to an increase in the accumulation of the drug in the

inflamed areas of the colon. In the period of inflammation, the

overexpression of inflammatory biomarkers is an important

pathophysiological change (Liu et al., 2019; Busch et al., 2020;

Yin et al., 2020). For example, the overexpression of glycoprotein

CD98 is occurred in the inflamed colon (Guo et al., 2016;

Rahiman et al., 2022). In a study, it was shown that the

uptake of PLA-based nanoparticles conjugated to CD98 Fab is

occurred by Colon-26 and RAW 264.7 cells via CD98-mediated

endocytosis. In addition, these nanoparticles remarkably

accumulated in the injured colon of mice with colitis induced

by DSS compared to PEG-based nanoparticles (Xiao et al., 2014).

Another example of changes in the expression of

biomolecules is the overexpression of CD44 in the inflamed

colon (Lee et al., 2021; Lima et al., 2021; Brazil and Parkos,

2022; Kotla et al., 2022). CD44 is a principal cell surface receptor

for hyaluronic acid, a main component present in the

extracellular matrix. Hyaluronic acid is an anionic

glycosaminoglycan distributed broadly in epithelial,

connective, and neural tissues. It is considered a polymer

composed of alternating monosaccharide units of

N-acetylglucosamine and glucuronic acid. Moreover, it is

worth mentioning that the negative surface charge of

hyaluronic acid can help in improving its attachment to the

injured colon. Therefore, drug deivery systems based on

hyaluronic acid can bind to the inflamed areas of the colon

(Liu et al., 2016; Vafaei et al., 2016; Kotla et al., 2019; Lee et al.,

2020; Pan et al., 2020). Xiao et al. developed hyaluronic acid-

functionalized nanoparticles loaded with Lysine-Proline-Valine

tripeptide, an anti-inflammatory factor. Oral administration of

the nanoparticles exhibited excellent accumulation of them in the

damaged colon of DSS-induced colitis mice. Furthermore, the

nanoparticles decreased signs related to colitis and facilitated

mucosa healing (Xiao et al., 2017). One of the other attractive

features of hyaluronic acid is that after breakdown,

N-acetylglucosamine and Glucuronic acid act as building

blocks for glycosaminoglycan synthesis and so accelerate

bowel regeneration (Salvatore et al., 2000; Lee et al., 2020).

Besides, targeting the folate receptor can be regarded as an

appropriate option for drug delivery to the injured colon because

it was indicated that this receptor is overexpressed in the

inflamed tissue (Naserifar et al., 2020). In one study, folate-

functionalized PLGA/PLA nanoparticles loaded with 6-shogaol

promoted the capacity of cellular uptake by Colon-26 cells

through folate receptor-mediated endocytosis. 6-shogaol is a

main component of dried ginger and has anti-inflammatory

and antioxidative features. Oral administration of the

nanoparticles considerably soothed colitis symptoms and

facilitated bowel regeneration in DSS-treated mice via

modulating the expression of anti-inflammatory (HO-1 and

Nrf-2) and pro-inflammatory (TNF-α, IL-6, IL-1β, and iNOS)

agents (Zhang et al., 2018). In a similar study, poly (amidoamine)

dendrimers functionalized with folate accumulated in the

inflamed colon of DSS-treated mice. These dendrimers are

able to load drugs with high entrapment efficacy (Poh et al.,

2017). Furthermore, some studies showed that folic acid

supplements have a protective function in IBD-related colon

cancer (Lashner et al., 1997; Chowers et al., 2000). From a

mechanistic point of view, an inadequate supply of methyl

group donors such as folate is associated with changed

methylation of colonic DNA and the raise of colorectal

carcinogenesis in rats, mice, and humans (Kim, 2005;

Guruswamy et al., 2008).

On the other hand, the expression of some biomolecules on

the surface of capillary endothelial cells raises in the inflamed

colon. Consequently, targeting these changes via biomaterials-

based DDSs functionalized with specific ligands of these

biomolecules can be a promising option for delivery of drugs

to the injured colon (Figure 2). For example, Sialyl-Lewisx (a

tetrasaccharide) is one of specific ligands of P-Selectin (Li C.

et al., 2019). Eniola et al. developed PLGA microspheres

functionalized with Sialyl-Lewisx. The results of adhesion assay

demonstrated the great attachment of these microspheres to a

slide coated with P-selectin (Eniola et al., 2002). In a similar

research, IV injection of PLA–PEG microparticles conjugated to

E-Selectin antibody showed excellent adhesion of them to

inflamed endothelium in an in vivo model (Sakhalkar et al.,

2003). It is important to point out that lymphocyte function-

associated antigen 1 (LFA-1) is one of specific ligands of ICAM-1.

LFA-1 is found on the surface of neutrophils and helps the

specific adhesion of neutrophils to the surface of capillary

endothelial cells in inflamed tissues via interaction with

ICAM-1. Hence, inspired by interaction between neutrophils

and capillary endothelial cells, the rational design of

biomaterials-based DDSs through mimicking neutrophil

membrane can be regarded as an promising candidate to

deliver drugs to the inflamed colon. Interestingly, Zhao et al.

developed neutrophils-simulated liposomes loaded with
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keratinocyte growth factor (KGF), which can help bowel

regeneration and has a protective role against IBD. The

uptake of these particles was successfully occurred by the

inflamed human umbilical vein endothelial cells. Furthermore,

the intravenous injection of these liposomes showed high

accumulation of them in the inflamed colon of DSS-treated

mice, leading to reduction of inflammation (Zhao et al., 2019).

In summary, targeting changes in the expression of

biomolecules using biomaterials-based DDSs can be

considered an appropriate option for drug delivery to the

damaged colon provided that further studies on in vivo

models are performed for the complete and accurate

assessment of safety and efficiency.

Challenges and future perspectives

Until now, numerous and interesting studies were performed

to specifically target pathophysiological changes in IBD patients

using biomaterials-based DDSs. However, there are still many

challenges facing the development of these systems. For example,

although pure pharmaceutical grade biomaterials are generally

considered safe and non-cytotoxic, but when these biomaterials

are used together with other reagents to form drug delivery

systems, their pharmacokinetic properties may change, therefore,

their biocompatibility level can alter. For this reason, a

comprehensive evaluation regarding the safety of these

systems should be taken into consideration in future studies

(Su et al., 2019; Zhang et al., 2020).

On the other hand, from a pathophysiological point of view,

UC and CD are multifactorial diseases with a combination of

immunologic disturbances and genetic predisposition (Khor et al.,

2011). For this reason, the designing and development of

biomaterials-based DDSs via single targets may not be effective

in the targeted treatment of both UC and CD in practice. Hence,

development of versatile biomaterials-based DDSs with ability in

the simultaneous targeting of multiple factors of UC and CD can

be a promising option for more efficient treatment of IBD in future

research (Cheng et al., 2021; Luo et al., 2021; Wang et al., 2021).

Furthormore, it is important to point out that the patients with

IBD are susceptible to infection, especially Clostridium difficile

infection. Clostridium difficile (a Gram-positive spore-forming

bacterium) is considered one of the most important causes of

healthcare-associated infections (Issa et al., 2007; Rodríguez et al.,

2020; Boeriu et al., 2022; Sweeney et al., 2022). If there is a physical

barrier that prevents the adhesion of some intestinal pathogens

FIGURE 2
A schematic illustration of targeting expression changes of biomolecules on the surface of capillary endothelial cells in the colon of IBD patients
using biomaterials-based drug delivery system (biomaterials-based DDS). The basic expression level of some biomolecules especially ICAM-1,
VCAM-1, P-Selectin, and E-Selectin on the surface of capillary endothelial cells in the normal region of colon (A). Targeting overexpression of these
biomolecules using ligand-functionalized biomaterials-based DDS on the surface of capillary endothelial cells in the inflamed region of
colon (B).
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such as Clostridium difficile to inflamed colon epithelium, it can be

a prophylaxis strategy for inflamed colon infection. Hydrogel-

based enema as one of the most attractive biomaterials-based

DDSs for local drug delivery can fulfill this aim because it adheres

to the inflamed colon epithelium and forms a physical barrier

(Hong et al., 2022). Hence, developing these enemas can help in

the prophylaxis of inflamed colon infection.

Conclusion

The most important pathophysiological changes at the

inflamed colon include changes in pH, surface charge, the

concentration of reactive oxygen species, and the expression

of some biomolecules. Targeting pathophysiological changes

in IBD patients using biomaterials-based DDSs is a promising

option for the effective delivery of drugs to the injured colon.

However, IBD is a multifactorial disease, so developing

biomaterials-based DDSs through single targets may not be

effective in the treatment of IBD. For this reason, the

development of versatile biomaterials-based DDSs with ability

in the simultaneous targeting of multiple agents of IBD may be

regarded as a valuable and potential candidate for more efficient

management of IBD in future studies.
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