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Inter- and intrapatient variability of tacrolimus exposure is a vital prognostic risk

factor for the clinical outcome of liver transplantation. New factors or

biomarkers characterizing tacrolimus disposition is essential for optimal dose

prediction in recipients of liver transplant. The aim of the study was to identify

potential plasma metabolites associated with the dose-adjusted trough

concentration of tacrolimus in liver transplant recipients by using a global

metabolomic approach. A total of 693 plasma samples were collected from

137 liver transplant recipients receiving tacrolimus and regular therapeutic drug

monitoring. Untargeted metabolomic analysis was performed by

ultraperformance liquid chromatography-quadrupole time-of-flight mass

spectrometry. Univariate and multivariate analyses with a mixed linear model

were conducted, and the results showed that the dose-adjusted tacrolimus

trough concentration was associated with 31 endogenous metabolites,

including medium- and long-chain acylcarnitines such as stearoylcarnitine

(β = 0.222, p = 0.001), microbiota-derived uremic retention solutes such as

indolelactic acid (β = 0.194, p = 0.007), bile acids such as taurohyodeoxycholic

acid (β = −0.056, p = 0.002), and steroid hormones such as testosterone (β =

0.099, p = 0.001). A multiple linear mixed model including 11 metabolites and

clinical information was established with a suitable predictive performance

(correlation coefficient based on fixed effects = 0.64 and correlation

coefficient based on fixed and random effects = 0.78). These data

demonstrated that microbiota-derived uremic retention solutes, bile acids,

steroid hormones, and medium- and long-chain acylcarnitines were the

main metabolites associated with the dose-adjusted trough concentration of

tacrolimus in liver transplant recipients.

OPEN ACCESS

EDITED BY

Junmin Zhang,
Lanzhou University, China

REVIEWED BY

Xuan Qin,
Baylor College of Medicine,
United States
Evelyne Jacqz-Aigrain,
Institut National de la Santé et de la
Recherche Médicale (INSERM), France

*CORRESPONDENCE

Yizhun Zhu,
yzzhu@must.edu.mo
Weihong Ge,
geweihong.nju@gmail.com

†These authors have contributed equally
to this work and share first authorship

SPECIALTY SECTION

This article was submitted to Drug
Metabolism and Transport,
a section of the journal
Frontiers in Pharmacology

RECEIVED 16 September 2022
ACCEPTED 13 October 2022
PUBLISHED 31 October 2022

CITATION

Zhu H, Wang M, Xiong X, Du Y, Li D,
Wang Z, Ge W and Zhu Y (2022), Plasma
metabolomic profiling reveals factors
associated with dose-adjusted trough
concentration of tacrolimus in liver
transplant recipients.
Front. Pharmacol. 13:1045843.
doi: 10.3389/fphar.2022.1045843

COPYRIGHT

© 2022 Zhu, Wang, Xiong, Du, Li, Wang,
Ge and Zhu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 31 October 2022
DOI 10.3389/fphar.2022.1045843

https://www.frontiersin.org/articles/10.3389/fphar.2022.1045843/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1045843/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1045843/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1045843/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1045843/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.1045843&domain=pdf&date_stamp=2022-10-31
mailto:yzzhu@must.edu.mo
mailto:geweihong.nju@gmail.com
https://doi.org/10.3389/fphar.2022.1045843
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.1045843


KEYWORDS

liver transplantation, tacrolimus, metabolomics, therapeutic drug monitoring, trough
concentration

1 Introduction

Tacrolimus is considered the primary immunosuppressant in

solid organ transplantation and has been used in liver transplant

recipients for approximately two decades (Muduma et al., 2016).

Pharmacokinetics-guided dosing is recommended to

individualize tacrolimus treatment due to the narrow

therapeutic window and wide interindividual pharmacokinetic

variability (Brunet et al., 2019). Although the dose-interval area

under the curve (AUC) of tacrolimus would be best associated

with clinical effects, a multiple sampling strategy is not feasible in

clinical practice. A limited sampling strategy with trough

concentration (C0) is regularly adopted in most center for

therapeutic drug monitoring (TDM) (Brunet et al., 2019;

Birdwell et al., 2015). Pharmacogenomics is also essential in

pharmacokinetics of tacrolimus, with CYP3A5 genotypes used to

guide initial tacrolimus dosing (Brunet et al., 2019). Nevertheless,

limitations and challenges for tacrolimus use exist. In liver

transplantation, guidelines for CYP3A5 genotype and

tacrolimus dosing are recommended only when the donor and

recipient genotypes are identical (Birdwell et al., 2015).

Furthermore, genotypes provide less information and low

predictive value for intrapatient variability (IPV) (Shuker

et al., 2015), whereas a recent study identified IPV of

tacrolimus exposure as a crucial prognostic risk factor for the

clinical outcome in solid organ transplantation, including liver

transplantation (Del Bello et al., 2018). Although the most

important clinical cause influencing such IPV is medication

nonadherence, which is modifiable by clinical interventions,

other factors, including drug-drug interactions, food intake,

herbal or nutritional constituents and gastrointestinal

disorders, also have shown significant roles (Gonzales et al.,

2020). Pathophysiological changes such as graft function

recovery, inflammation, and altered plasma protein

concentrations may affect the tacrolimus disposition of

recipients after liver transplantation (Ganesh et al., 2017).

Thus, the identification of novel factors or biomarkers

characterizing tacrolimus disposition is essential for predicting

the optimal dose in liver transplant recipients.

Cytochrome P450 3A isoenzymes (CYP3A), mainly

CYP3A4 and CYP3A5, are involved in tacrolimus metabolism.

Several human studies have been conducted to identify

endogenous biomarkers of CYP3A activity. With the advent

of serendipity and hypothesis-driven processes, urinary and

plasma metabolites were evaluated as endogenous metrics

through the main phenotyping validation criteria (Magliocco

et al., 2019). The ability to provide insights into phenotypic

metabolite changes with wide coverage and high throughput

allows metabolomics to be a promising method for biomarker

discovery (Tolstikov et al., 2020). Mass spectrum (MS)-based

metabolomic methods involving targeted or untargeted

approaches have also been used to detect novel CYP3A

biomarkers. Urinary cortisol/6β-hydroxycortisol, cortisone/6β-
hydroxycortisone, dehydroepiandrosterone (DHEA)/(7β-OH-

DHEA plus 16α-OH-DHEA), and plasma cholesterol/4β-
hydroxycholesterol are reliable predictive markers of hepatic

CYP3A activity (Shin et al., 2013). Phapale et al. conducted a

pharmacometabolomic study on the urine of healthy volunteers

to identify a predictive metabolic phenotype of individualized

tacrolimus pharmacokinetics and identified four metabolites,

namely, cortisol, methylguanosine, acetyl-arginine, and

phosphoethanolamine, representing steroid-related, nucleotide/

purine, amino acid-related, and glycerophospholipid

metabolism, respectively, to predict the pharmacokinetic

parameters of tacrolimus (Phapale et al., 2010).

With respect to liver transplant recipients, many clinical

factors and drugs could alter the metabolomic profile (Oweira

et al., 2018). Thus, the biomarkers for tacrolimus disposition

identified in healthy controls should be applied in clinical

practice with caution, and a study performed in liver

transplant recipients may provide more insight views for

metabolomics-guided dosing. Additionally, dose-adjusted

tacrolimus trough concentration (C0/D) was commonly used

as a surrogate marker for dose response or an index of clearance

in most of the studies conducted in patient (Riva et al., 2019).

Thus, the present study attempted to identify potential plasma

endogenous metabolites associated with tacrolimus C0/D in

liver transplant recipients by using a global metabolomic

approach.

2 Materials and method

2.1 Subjects

The present retrospective study was conducted at the

Hepatobiliary Center, the Affiliated Drum Tower Hospital of

Nanjing University Medical School. Adult patients receiving liver

transplantation between January 2018 and July 2019 were

included. All the recipients received tacrolimus-based

regimens and TDM. Subjects with incomplete electronic

medical records, and patients undergoing multivisceral

transplantation or other additional organ transplantation were

excluded. Plasma samples for metabolomics study were available

residual biosamples for TDM assay from the biobank of our

laboratory. Samples with a C0 of tacrolimus lower than the

quantitation limit or with a volume not enough for such

analysis were excluded. The enrolled subjects were randomly
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divided into the model development group and a validation

group. The model development group data were used to

identify potential metabolites associated with C0/D and to

construct the multivariate model, whereas validation group

data were used to evaluate the results (Figure 1). The study

was carried out in accordance with the principles of the Helsinki

Declaration and approved by the Institutional Review Board at

Nanjing Drum Tower Hospital (No. 2020-053-01). Informed

consent was waived due to the deidentified data provided to

researchers and residual biosamples used.

2.2 Treatment and TDM

Recipients received a tacrolimus-based immunosuppressive

regimen including mycophenolate mofetil and corticosteroids.

The initial dose of tacrolimus (Prograf®, Astellas, Killorglin,
Ireland; or Saifukai®, Huadong Medicine, Hangzhou, China)

was generally 2-3 mg orally twice daily, whereas the

posttransplantation C0 target levels were 8–12 ng/ml in the

first month, 7–10 ng/ml during the next months, and 5–7 ng/

ml after the first year. TDM was performed for patients receiving

tacrolimus at a fixed dose for about 3 days, and whole blood

samples for C0 detection were taken within 1 hour before the

morning dose. The concentration of tacrolimus was determined

by the enzyme multiplied immunoassay technique (EMIT) using

a drug testing system (Viva-E, Siemens Healthcare Diagnostics

Inc, Erlangen, Germany) and EMIT® 2000 tacrolimus assay kit

(Siemens Healthcare Diagnostics Inc, Erlangen, Germany). The

procedures were conducted according to the manufacturer’s

instructions. The calibration range of the assay was 2.0–30 ng/

ml, and samples with a C0 level lower than 2.0 ng/ml were

excluded from the study. The performance of the tacrolimus

assay in our laboratory was verified in an external quality

assessment organized by the National Center for Clinical

Laboratories. The internal quality assessment during the study

was regularly performed, while the average bias was

6.47%, −1.67% and 1.35%, and the average coefficient of

variation was 13.44%, 7.69% and 6.30% for low-, medium-

and high-quality controls, respectively. An aliquot of 500 μL

of whole blood was also centrifuged at 2,500 g for 10 min at

4°C once the sample was received in the clinical laboratory. The

plasma and blood cells were stored at −80°C for further analysis.

2.3 Data collection

Patient data around C0 sampling were collected

retrospectively from the hospital information system (HIS)

and included daily doses of tacrolimus, weight, concomitant

FIGURE 1
Flow diagram of the study. The enrolled recipients were divided into the model development group (112 recipients and 570 samples) and a
validation group (25 recipients and 123 samples). The model development group data were used to identify potential metabolites detected by
UHPLC-QTOF-MS and clinical factors associated with C0/D and to construct the multivariate model using LMM with LASSO, whereas validation
group data were used to evaluate the model. UHPLC-QTOF-MS: ultrahigh-performance liquid chromatography-quadrupole time-of-flight
mass spectrometry; C0/D: dose-adjusted tacrolimus trough concentration; LMM: linearmixedmodel; LASSO: least absolute shrinkage and selection
operator.
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TABLE 1 Demographic and medical information of liver allograft recipientsa.

Characteristics Total subjects Model development group Validation group p Value

Number of subjects (n) 137 112 25

Age (years) 49 (43–57) 49 (42–56) 50 (43–58) 0.781

Sex (n)

Female 35 (25.55%) 28 (25.00%) 7 (28.00%)

Male 102 (74.45%) 84 (75.00%) 18 (72.00%) 0.753

Weight (kg) 65 (56–73.5) 63.75 (56–72.5) 68 (55–75) 0.628

Height (cm) 169 (163–173) 169 (163–173) 169 (161–171) 0.414

BMI (kg/m2) 23.31 (20.64–25.25) 23.03 (20.69–25.01) 24.08 (20.40–25.95) 0.444

History of smoking (n) 15 (10.95%) 11 (9.82%) 4 (16.00%) 0.371

History of alcohol consumption (n) 15 (10.95%) 11 (9.82%) 4 (16.00%) 0.371

Hypertension (n) 21 (15.33%) 17 (15.18%) 3 (12.00%) 0.684

Diabetes (n) 16 (11.68%) 15 (13.51%) 1 (4.00%) 0.182

Graft type (n)

Deceased 131 (95.62%) 106 (94.64%) 25 (100.00%)

Living 6 (4.38%) 6 (5.36%) 0 (0.00%) 0.237

Primary diagnosis (n)

End-stage liver cirrhosis 78 (56.93%) 62 (55.36%) 16 (64.00%)

Malignancies 27 (19.71%) 22 (19.64%) 5 (20.00%)

Acute liver failure 19 (13.87%) 17 (15.18%) 2 (8.00%)

Cholestatic liver disease 11 (8.03%) 9 (8.04%) 2 (8.00%)

Metabolic liver disease 2 (1.46%) 2 (1.79%) 0 (0.00%) 0.905

Concomitant medication (n)

Voriconazole 8 (5.84%) 6 (5.36%) 2 (8.00%) 0.572

Fluconazole 17 (12.41%) 15 (13.39%) 2 (8.00%) 0.460

Wuzhi capsule 85 (62.04) 66 (58.93%) 19 (76%) 0.112

Omeprazole/Esomeprazole 43 (31.39%) 35 (31.25%) 8 (32.00%) 0.942

Caspofungin 41 (29.93%) 32 (28.57%) 9 (36.00%) 0.463

DHP CBB 24 (17.52%) 22 (19.64) 2 (8.00%) 0.166

Warfarin 10 (7.30%) 10 (8.93%) 0 (0.00%) 0.208

Mycophenolic acid/Mycophenolate mofetil 129 (94.16%) 104 (92.86%) 25 (100%) 0.350

Magnesium isoglycyrrhizinate 99 (72.26%) 79 (70.54%) 20 (80%) 0.339

Clinical biochemistry parameters

ALT (IU/L) 47.02 (22.55–91.03) 44.95 (22.35–89.03) 50.67 (26.28–121.08) 0.493

AST (IU/L) 34.53 (24.04–57.70) 32.85 (23.04–54.97) 41.34 (31.69–76.72) 0.077

GGT (IU/L) 61.80 (42.13–105.60) 63.87 (41.27–105.60) 60.84 (50.25–96.90) 0.787

Total bilirubin (μmol/L) 22.57 (12.92–37.43) 22.53 (12.65–37.50) 28.45 (15.87–35.05) 0.607

Direct bilirubin (μmol/L) 10.57 (5.23–23.77) 10.30 (4.93–24.70) 13.42 (7.03–23.36) 0.486

Albumin (g/L) 40.70 (38.83–42.97) 40.73 (38.87–42.97) 40.59 (38.67–42.97) 0.902

Glucose (mmol/L) 6.08 (5.34–7.64) 6.08 (5.28–7.64) 6.16 (5.55–7.06) 0.483

Creatinine (μmol/L) 67.82 (58.22–94.17) 67.00 (58.22–90.33) 71.50 (58.20–101.33) 0.444

Cholesterol (mmol/L) 3.18 (2.70–3.70) 3.19 (2.70–0.68) 3.15 (2.55–3.77) 0.670

Hematocrit (%) 34.40 (30.35–38.17) 34.40 (30.36–37.68) 33.74 (29.25–40.58) 0.834

Tacrolimus

Total number of samples (N) 693 570 123

Number of samples per patients 4 (3-6) 4 (3-6) 3 (3-5) 0.528

C0 (ng/ml) 7.50 (6.35–9.53) 7.42 (6.41–9.56) 8.03 (6.32–9.25) 0.732

Sampling time point (day after surgery) 89 (51.67–150.4) 92.81 (52.33–153.67) 78.25 (48.67–118.00) 0.311

Daily dose (mg) 3.16 (2.50–3.73) 3.15 (2.50–3.79) 3.25 (2.67–3.67) 0.776

(Continued on following page)
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drugs (voriconazole, fluconazole, Wuzhi capsule, omeprazole or

esomeprazole, caspofungin, and dihydropyridine calcium

channel blockers [DHP CCB]), and blood biochemistry

parameters. Wuzhi capsule is a Chinese patent medicine, and

its abundant active ingredients include deoxyschizandrin,

schisantherin A, schisandrol B and schisandrin (Qin et al.,

2014). This is a common drug used to increase the exposure

to tacrolimus in most transplantation centers in China.

2.4 Untargeted metabolomics

Plasma samples were thawed on ice, and a 40-μL aliquot was

mixed with 160 μL of cold acetonitrile by vortexing for 5 min.

After centrifugation at 20,000 g for 15 min at 4°C, the

supernatant was collected and centrifuged again. The new

supernatant was prepared for injection and separation using

ultrahigh-performance liquid chromatography (UHPLC)

(ExionLC AD UHPLC, ABSciex, Framingham, MA,

United States) with a Kinetex C18 (2.6 µm, 100 mm ×

2.1 mm, Phenomenex, CA, United States) column at 40°C. All

samples were analyzed using a TripleTOF 5,600 + system

(ABSciex, Framingham, MA, United States) in positive and

negative electrospray ionization modes. Untargeted

metabolomics methods and metabolomics data analysis are

shown in the Supplementary Material.

2.5 Statistical analyses

TheC0/D of tacrolimuswas calculated by dividing the trough by

the daily dose (D) normalized to actual body weight, whereas the

log-transformedC0/D (log2C0/D)was investigated as the dependent

variable in the subsequent univariate and multivariate analyses. The

enrolled subjects were randomly divided into the model

development group and a validation group using the function of

“createDataPartition” in “caret” package in R software, and

unsupervised principal component analysis (PCA) was adopted

to evaluate the assay quality and the homogeneity of the

metabolic data by using the SIMCA 14.1 (Umetrics, Uppsala,

Sweden) software package. Considering the log2C0/D variation at

two levels (between subjects and within subjects due to the repeated

measures), metabolites associated with log2C0/D were identified

using a linear mixed model, with each feature as the fixed effect and

subject as the random effect on log2C0/D. p values of the fixed effect

were adjusted by the false discovery rate (FDR) (“qvalue” package in

R software) for multiple comparisons, and power was estimated by a

simulation-based method (“simr” package in R software).

Mummichog algorithm prediction (Li et al., 2013) was

performed to identify enriched pathways.

To build a multivariate model in the model development group,

all the metabolites and other factors including demographic

information, biochemistry parameters and concomitant drug use

with statistically significance in univariate analysis were included,

and variable selection and penalization were performed by

minimizing Akaike information criteria (AIC) using the method

of least absolute shrinkage and selection operator (LASSO)

augmented with 10-fold cross-validation. The predictive accuracy

of the final model was assessed numerically in the model

development and validation group through calculation of the

correlation coefficient (R) by the fixed effects and full model, the

mean error (ME), the mean absolute error (MAE), themean relative

error (MRE), and the relative root mean squared error (RMSE).

All statistical analyses were performed using STATAMP 16.0

(StataCorp, TX, United States), RStudio 1.3.959 (R Foundation

for Statistical Computing, Vienna, Austria), and R-3.6.3 (R

Foundation for Statistical Computing, Vienna, Austria). p

values were two-sided, and values <0.05 were considered

statistically significant.

3 Results

3.1 Subjects

A total of 137 liver transplant recipients and 693 samples

were finally include in the study (Supplementary Figure S1). The

median age of the patients was 49 years [interquartile range

(IQR): 43–57 years], with a body mass index (BMI) of 23.31

(20.64–25.25) kg/m2. Most of the recipients were primarily

diagnosed with end-stage liver cirrhosis (56.9%) and

malignancies (19.7%) and underwent transplantation from a

TABLE 1 (Continued) Demographic and medical information of liver allograft recipientsa.

Characteristics Total subjects Model development group Validation group p Value

Daily dose normalized (mg/kg) 0.048 (0.036–0.060) 0.048 (0.036–0.060) 0.045 (0.039–0.060) 0.843
C0/D [(ng/ml)/(mg/kg)] 178.08 (129.85–244.58) 180.48 (128.04–244.46) 170.33 (140.83–251.21) 0.585

log2 (C0/D) {log2 [(ng/ml)/(mg/kg)]} 7.33 (6.90–7.86) 7.31 (6.90–7.86) 7.34 (6.92–7.82) 0.734

aContinuous variables are presented as median (25th–75th percentiles), whereas categorical variables are expressed as frequency and percentage. The Mann-WhitneyU test and chi-square

test (or Fisher’s exact test as appropriate) were used to compare the continuous and categorical data, respectively between the model development and validate groups. BMI: Body Mass

Index; AST: aspartate aminotransferase; ALT: alanine aminotransferase; GGT: gamma-glutamyl transpeptidase; C0: trough concentration; C0/D: trough concentration normalized by daily

dose (normalized by weight); DHP CCB: dihydropyridine calcium channel blockers.
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deceased donor (95.6%). Data regarding the concomitant

medications were retrieved from HIS. Voriconazole was

observed in 22 samples from eight patients, fluconazole in

65 samples from 17 patients, omeprazole or esomeprazole in

68 samples from 43 patients, and DHP CCB in 50 samples from

24 patients. Additionally, Wuzhi capsule was concomitantly

administered in 198 samples from 85 subjects. The differences

in the demographic information, clinical biochemistry

parameters, and tacrolimus dose and concentration between

the two groups were statistically nonsignificant (Table 1).

3.2 Associations of demographic
information and biochemistry parameters
with log2C0/D in model development
group

The linear mixed model exhibited that log2C0/D increased with

postoperative days [β = 0.002, standard error (SE) = 0.0003, p <
0.001] and height (β = 0.026, SE = 0.009, p = 0.005). Male subjects

exhibited a higher log2C0/D than females (β = 0.432, SE = 0.138, p =

0.002) (Figure 2. A). Cholinesterase, adenosine deaminase, total

protein, globulin, and hemoglobin were positively associated with

log2C0/D. Tacrolimus pharmacokinetics were negatively associated

with renal function and positively associated with parameters related

to lipids (Figures 2B–F).

3.3 Metabolites identification by
untargeted metabolomics analysis

The features were subjected to PCA after data

normalization, and the results are illustrated in

Supplementary Figures S2A,B. Quality control samples were

clustered well in both ion modes, indicating platform stability

and metabolomics data reliability. The illustration of grouping

homogeneity suggested no evident separation trends between

the model development and validation groups in either mode.

Pearson’s correlation analysis exhibited good agreement of

creatinine, urea, and uric acid levels between the levels

FIGURE 2
(A) Different distributions of log2C0/D of tacrolimus between female and male subjects. (B–F) Median spline plots of Z score of biochemical
parameters versus log2C0/D of tacrolimus. All the plotted parameters were identified to be significantly associated with the log2C0/D of tacrolimus
by a linear mixed model.
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obtained in the clinical laboratory and intensity in the

metabolomics data (creatinine: R = 0.95, p < 0.001; urea:

R = 0.94, p < 0.001; uric acid: R = 0.90, p < 0.001;

Supplementary Figure S2C). Obvious differences were also

observed for voriconazole, fluconazole, and omeprazole at the

metabolomics level between samples with and without drug

use, indicating high reliability of the metabolomics data

(Supplementary Figure S2D).

Considering the inherent limitation of chemical

identification in metabolomics, only features with

MS2 information were included in the subsequent analysis.

The linear mixed model with the subjects as the random

effect was performed in the model development group to

evaluate the fixed effect of each feature. The

Mummichog algorithm using the m/z and p value indicated

that the metabolic pathways were significantly enriched in

Vitamin D3 (cholecalciferol) metabolism, squalene and

cholesterol biosynthesis, bile acid biosynthesis, C21-steroid

hormone biosynthesis and metabolism, aminosugars

metabolism and so on (Figure 3). The results from the

linear mixed model are illustrated as a volcano plot in

Figure 4, exhibiting 633 features with significance, of which

112 were identified by accurate m/z and MS2 spectra

matching. The power for each identified significant

metabolite was evaluated, and the metabolite with a value

of power ≥0.80 was retained. Finally, 31 endogenous

metabolites were revealed as potential markers of

tacrolimus pharmacokinetics (Table 2).

3.4 Association between concomitant
drug use and log2C0/D and metabolites

The mixed model analysis exhibited higher log2C0/D in the

samples taken after voriconazole or Wuzhi capsule use than the

samples not related to drug use (voriconazole: β = 1.878, SE =

0.203, p < 0.001; Wuzhi capsule: β = 0.485, SE = 0.085, p < 0.001)

(Figure 5A), confirming significant pharmacokinetic interactions

of voriconazole and Wuzhi capsule with tacrolimus. Conversely,

DHP CCB and caspofungin exhibited an inhibitory effect on

log2C0/D (DHP CCB: β = -0.611, SE = 0.130, p < 0.001;

caspofungin: β = -0.309, SE = 0.130, p = 0.017). The

31 endogenous metabolites with significance were compared

between the samples with and without the four drug uses.

The Venn diagram demonstrated two overlapping metabolites,

namely, carnitine and testosterone, among all the comparisons

and five metabolites, phenylalanine, uric acid, 17alpha-

hydroxyprogesterone, monoolein, and taurohyodeoxycholic

acid, among the comparisons of Wuzhi capsule, DHP CCB,

and caspofungin (Figures 5B,C).

3.5 Multiple regression model analysis

The multivariate model included 11 endogenous metabolites

and 12 clinical characteristics as fixed effects (Table 3). A visual

inspection of the residual distribution exhibited no obvious

deviation from homoscedasticity or normality (Supplementary

FIGURE 3
Enriched metabolic pathways predicted by the mummichog algorithm with a p value ≤0.05. Colors with gradients of the bars represent
relatively high to low values of the enrichment factor.
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Figures S3A,B). Figure 6 illustrates the correlations between

log2C0/D and predictions based on the estimated fixed and

fixed plus random effects in the model-developed group

(Rfixed = 0.64 and Rtotal = 0.78) and predictions based on the

estimated fixed effects in the validation group (Rfixed = 0.57). The

predictive performance of the multiple regression model in the

model development and validation groups is presented in

Table 4. No significant difference of prediction error (%)

between the two groups was found (β = 0.871, SE = 1.894,

p = 0.645) (Supplementary Figure S4).

4 Discussion

The present study applied the method of plasma

metabolomics in biomarker finding of tacrolimus

pharmacokinetics in liver transplantation recipients. Results of

metabolomics identified steady state C0/D of tacrolimus was

associated with several endogenous metabolites mainly including

medium long chain acylcarnitines, microbiota-derived uremic

retention solutes, bile acids, and steroid hormones. Furthermore,

levels of several metabolites were obviously altered according to

inhibitor or inducer use. A multiple linear mixed model was

established and factors including 11 metabolites and clinical

information presented a suitable predictive performance for

log2C0/D.

Our study suggested that biochemistry parameters and

metabolites related to renal function, such as creatinine, uric

acid, pseudouridine, and eGFR, were associated with tacrolimus

log2C0/D. Studies have reported creatinine as a factor influencing

tacrolimus pharmacokinetics. Fukudo et al. treated serum

creatinine as a categorical covariate in adult liver transplant

recipients, and tacrolimus clearance was decreased by 19% in

subjects with creatinine greater than 1 mg/dl (Fukudo et al.,

2003). A linear relation described the serum creatinine effect on

clearance, with a coefficient of 0.0801 in adult and pediatric liver

transplant recipients (Sam et al., 2006). Pseudouridine and uric

acid were also in the list of biomarkers for chronic kidney disease

progression using a metabonomic approach (Ye and Mao, 2016;

Niewczas et al., 2017).

The observed association between tacrolimus disposition

and renal function remains to be explained because tacrolimus

undergoes almost no renal elimination (Yu et al., 2018). Studies

have demonstrated a twofold higher peak tacrolimus

concentration after intraintestinal administration in rats with

experimental renal dysfunction than in normal controls (Okabe

et al., 2000). The absorption rate of tacrolimus in the intestine

might be elevated due to the enhanced nonspecific permeability

during renal failure. P-glycoprotein (Pgp) function was

suppressed in the liver as opposed to that in the kidney in

rats with glycerol-induced acute renal failure, resulting in an

increase in tacrolimus bioavailability (Okabe et al., 2002; Huang

et al., 2000). Interactions of microbiota-derived uremic

retention solutes with drug metabolizing enzymes and

transporters were considered to account for that

(Prokopienko and Nolin, 2018). Endogenous metabolites

associated with tacrolimus log2C0/D in the present study

also comprised microbiota-derived uremic retention solutes

such as hippuric acid, 3-indoxylsulfate, indolelactic acid, and

substances involved in the metabolism of such solutes,

including indole-3-carboxaldehyde, tryptophan, and

phenylalanine. These results confirmed the significance of

tryptophan metabolism by intestinal microorganisms into

indole and its derivatives, some of which are ligands of the

aryl hydrocarbon receptor (AhR) regulating the expression of

genes encoding drug metabolizing enzymes and transporters

involved in tacrolimus pharmacokinetics (Agus et al., 2018).

Although indoxylsulfate is also considered a ligand to AhR, an

inhibitory effect on CYP3A was reported in studies by Hubbard

et al. and Prokopienko et al. (Hubbard et al., 2015; Prokopienko

and Nolin, 2018). These findings are partially concurrent with

the findings of the present study. Additionally, indole-3-

carbinol, a dietary indole from cruciferous vegetables, has

FIGURE 4
Volcano plot of the association of 2,110 features with
MS2 information and log2C0/D evaluated by linear mixed model
with the fixed effect of each feature and the subjects as the
random effect. Horizontal dotted line represents -log10 (p
value) of 1.823 controlling FDR at 0.05. Black and white dots
represent unidentified metabolites with q value >0.05 and ≤0.05,
respectively. Blue dots below the horizontal dotted line represent
identifiedmetabolites with q value >0.05, whereas blue dots above
the dotted line represent identified metabolites with q
value ≤0.05 but power <0.8. Red and yellow dots represent
endogenous metabolites and drugs or drug metabolites with q
value ≤0.05 and power ≥0.8, respectively. Labels on dots represent
the number of metabolites in Table 2.
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been reported to reverse multidrug resistance to vinblastine and

doxorubicin mediated by Pgp (Arora and Shukla, 2003). The

inhibitory effect of indole-3-carbinol on Pgp may account for

the positive association between indole-3-carbinol and

tacrolimus C0/D in the present study.

Glycocholic acid and taurohyodeoxycholic acid are the

primary and secondary conjugated bile acids, respectively.

Zhang et al. proposed taurohyodeoxycholic acid as a tertiary

bile acid because it is derived from redox modification by the

host on the steroid skeleton of secondary bile acid, which is

produced by microbial enzymes (Zhang et al., 2019). CYP3A4 is

the predominant enzyme involved in the transformation (Chen

et al., 2014). However, the apparent Km for hydroxylation by

human liver microsomes was high, resulting in limited levels of

taurohyodeoxycholic acid. These levels increased when bile

acids accumulated in cholestatic liver disease. Thus,

taurohyodeoxycholic acid may be an indicator of

CYP3A4 activity and biomarker of tacrolimus

pharmacokinetics in liver transplant recipients, as the

incidence of biliary complications after liver transplantation

was up to 50% (Watt and McCashland, 2008). Collectively, the

complex relationships among microbiota-derived uremic

retention solutes, metabolites involved in tryptophan

metabolism, bile acid metabolism influencing the effects of

TABLE 2 Identified endogenous metabolites with significance using generalized linear mixed modela.

Metabolites RT (min) Mass (m/z) Database Estimate (β) SE q value SLC

1 Creatinineb 0.57 114.0660 HMDB0000562 0.421 0.060 2.482 × 10-9 1

2 Indole-3-carbinolc 2.06 130.0637 HMDB0005785 0.147 0.042 0.003 1

3 Indole-3-carboxaldehyded 1.2 146.0589 HMDB0029737 −0.270 0.086 0.009 1

4 Carnitined 0.56 162.1126 HMDB0000062 −0.225 0.058 0.001 1

5 Phenylalanined 0.64 166.0855 HMDB0000159 −0.248 0.088 0.021 1

6 Uric acidb 0.6 169.0360 HMDB0000289 0.302 0.071 <0.001 1

7 Hippuric acidc 1.66 180.0654 HMDB0000714 0.057 0.018 0.008 1

8 Tryptophanc 1.2 205.0969 HMDB0000929 −0.326 0.098 0.005 1

9 Indolelactic acidd 2.07 206.0798 HMDB0000671 0.194 0.061 0.007 1

10 3-Indoxylsulfateb 1.74 212.0029 HMDB0000682 0.048 0.015 0.006 2

11 Pseudouridined 0.6 243.0611 HMDB0000767 0.307 0.089 0.004 1

12 Car 8:0d 2.57 288.2178 HMDB0000791 0.106 0.036 0.014 2

13 Testosteroneb 5.13 289.2155 HMDB0000234 0.099 0.026 0.001 2

14 Car 9:1d 2.59 300.2173 CID138309474 0.168 0.042 0.001 2

15 Car 9:0d 3.18 302.2317 HMDB0013288 0.146 0.046 0.007 2

16 Car 10:2d 2.95 312.2166 CID138251486 0.111 0.028 0.001 2

17 Car 10:1d 3.29 314.2335 HMDB0240585 0.104 0.037 0.019 2

18 Car 10:0c 3.94 316.248 HMDB0000651 0.099 0.034 0.016 2

19 17 alpha-hydroxyprogesteronec 2.43 331.2255 HMDB0000374 0.168 0.035 1.822 × 10-5 2

20 Car 12:2d 4.23 340.2463 CID138257751 0.130 0.042 0.010 2

21 Car 12:1d 4.67 342.2631 CID138234473 0.111 0.028 0.001 2

22 Monooleinc 14.5 357.2992 HMDB0011567 −0.152 0.028 1.700 × 10-6 2

23 Car 14:2d 5.53 368.28 CID138240173 0.143 0.033 <0.001 2

24 Car 14:0d 7.29 372.3104 HMDB0005066 0.166 0.054 0.010 2

25 Car 16:2d 6.92 396.3098 CID138145981 0.152 0.038 0.001 2

26 Car 18:3d 7.53 422.3235 CID138158433 0.154 0.042 0.002 2

27 Car 18:0d 10.42 428.3743 HMDB0000848 0.222 0.058 0.001 2

28 Car 20:1d 10.72 454.3878 CID138158433 0.158 0.048 0.006 2

29 Taurohyodeoxycholic acidc 3.55 464.2837 CID119046 −0.056 0.015 0.002 1

30 Glycocholic acidc 4.05 466.3155 HMDB0000138 −0.049 0.015 0.006 1

31 LPC 16:1d 8.08 538.3124 HMDB0010383 −0.149 0.050 0.014 2

aEstiamtes (β) and standard error (SE) were obtained by linear mixed effects model with each feature as the fixed effect and subject as the random effect on log2C0/D.
bMetabolites with expected effect on dose-adjusted tacrolimus trough concentration (C0/D) supported by clinical study.
cMetabolites with effects on or as the substrates of cytochrome P450 (CYP450) enzymes or transporters involving in tacrolimus pharmacokinetics, supported by animal or cell experiments.
dMetabolites not yet explained. q value was calculated by adjusting p value using the Benjamini–Hochberg procedure for multiple comparisons. Car, acylcarnitine; LPC,

lysophosphatidylcholine; RT, retention time; SLC, Schymanski level of confidence.
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gut bacteria, and tacrolimus log2C0/D indicate the significance

of the microbiome on the liver and interorgan communication

through the gut-liver-kidney axis proposed in other studies

(Patel and Shawcross, 2018; Nigam and Bush, 2019).

Univariate analysis also revealed a positive association

between several medium- and long chain acylcarnitines and

tacrolimus C0/D. Kim et al. identified five ω- or (ω-1)-
hydroxylated medium-chain acylcarnitines as novel urinary

biomarkers for CYP3A activity in healthy subjects (Kim et al.,

2018). The previous study demonstrated that hydroxylated

medium-chain acylcarnitine levels in urine correlated

positively with tacrolimus clearance. However, a negative

correlation was observed in our study. Recently, negative

effects of a high-fat diet on intestinal permeability were

summarized, and such effects were related to modulation of

the expression and distribution of tight junctions, stimulations of

a shift to barrier-disrupting hydrophobic bile acids, and

induction of oxidative stress and apoptosis in intestinal

epithelial cells (Rohr et al., 2020). Tomita et al. evaluated the

effects of acylcarnitines on the transporting system in Caco-2 cell

monolayers and observed that lauroylcarnitine (acylcarnitine 12:

0, Car 12:0) and palmitoylcarnitine (acylcarnitine 16:0, Car 16:0)

increased influx and decreased efflux in a manner dependent on

their concentration and acyl chain lengths (Tomita et al., 2010).

The association of the acylcarnitine profile with tacrolimus C0/D

may be attributed to the hydroxylation of medium-chain

acylcarnitines by CYP3A4, detergent effects on membranes

disrupting membrane barriers, and increasing membrane

FIGURE 5
Associations of drug use with log2C0/D of tacrolimus and the significant metabolites. (A) Wuzhi capsule and voriconazole use exhibited an
increased log2C0/D, whereas dihydropyridine calcium channel blockers and caspofungin indicated a decreased effect by mixed model analysis. n:
number of subjects; N: number of samples; *: p < 0.05; ***: p < 0.001. (B)Comparisons of 31 endogenousmetabolites between the samples with and
without use of Wuzhi capsule (black), dihydropyridine calcium channel blockers (blue), caspofungin (red), and voriconazole (ochre) by linear
mixedmodel. Each dot represents the estimated coefficient of themetabolites, and the vertical lines with caps represent the 95% confidence interval
of estimates. (C) Venn diagram of significant metabolites from the comparisons. Wuzhi: Wuzhi capsule; DHP CCB: dihydropyridine calcium channel
blockers; VRZ: voriconazole; CAS: caspofungin.
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TABLE 3 Parameter estimates of the multiple regression model using LASSOa.

Parameters Estimate SE z p Value 95% CI

Endogenous metabolites (a.u.)

Creatinine 0.328 0.146 2.238 0.025 0.042–0.614

Indole-3-carbinol −0.108 0.076 −1.422 0.155 −0.257–0.041

Uric acid 0.061 0.126 0.480 0.631 −0.186–0.308

17alpha-Hydroxyprogesterone −0.080 0.067 −1.198 0.231 −0.211–0.051

Car 12:1 −0.001 0.107 −0.005 0.996 −0.211–0.209

Monoolein −0.060 0.048 −1.248 0.212 −0.154–0.034

Car 14:2 −0.316 0.179 −1.765 0.078 −0.667–0.035

Car 16:2 0.445 0.190 2.339 0.019 0.073–0.817

Car 18:3 0.123 0.084 1.462 0.144 −0.042–0.288

Car 18:0 −0.058 0.115 −0.506 0.613 −0.283–0.167

Taurohyodeoxycholic acid 0.019 0.028 0.692 0.489 −0.036–0.074

Clinical and basic information

Days after transplantation (days) 0.001 0.001 1.597 0.110 −0.001–0.003

Cholinesterase (KU/L) −0.015 0.050 −0.300 0.764 −0.113–0.083

Total protein (g/L) −0.014 0.010 −1.393 0.164 −0.034–0.006

Globulin (g/L) 0.038 0.016 2.399 0.016 0.007–0.069

Potassium (mM/L) 0.184 0.102 1.792 0.073 −0.016–0.384

Cholesterol (mM/L) −0.042 0.085 −0.490 0.624 −0.209–0.125

High-density lipoprotein (mM/L) −0.339 0.206 −1.642 0.101 −0.743–0.065

eGFR (MDRD) 0.0002 0.002 −0.096 0.924 −0.004–0.004

Hemoglobin 0.009 0.003 2.570 0.010 0.003–0.015

Wuzhi capsule use 0.288 0.150 1.918 0.055 −0.006–0.582

Voriconazole use 1.669 0.314 5.323 <0.001 1.054–2.284

DHP CCB use −0.548 0.203 −2.697 0.007 −0.946–0.15

Intercept 5.959 0.064 92.649 <0.001 5.834–6.084

aEstimates and standard error (SE) were obtained by multiple linear mixed effects model with subject as the random effect on log2C0/D using the method of least absolute shrinkage and

selection operator (LASSO) augmented with 10-fold cross-validation. Wuzhi capsule, voriconazole, and DHP CCB, use: 0: no use, 1: use. Car, acylcarnitine; DHP CCB: dihydropyridine

calcium channel blockers; eGFR: estimated glomerular filtration rate (MDRD).

FIGURE 6
Correlations of observed log2C0/Dwith predictions based on the estimated fixed (blue dots and fitted line) and fixed + random effects (red dots
and line) in the model development group. (A) Predictions based on the estimated fixed effects (blue dots and fitted line) in the validation group. (B)
Black lines are the reference line (y = x).
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solubility of long chain acylcarnitines. The exact mechanism of

these actions must be further investigated.

Significantly, our results indicated that tacrolimus C0/D

increased with days after transplantation in univariate and

multivariate regression analysis. Tacrolimus is largely bound

to erythrocytes (Woillard et al., 2018), and the increased

tacrolimus C0/D with postoperative days in our study may be

related to the increase of hematocrit over time after liver

transplantation. Additionally, increased bioavailability and the

variation of drug-drug interaction could also attribute to that

(Riva et al., 2019). In fact, the frequency of comedication with

Wuzhi capsule was increased when the graft function was stable

in our study.

Multiple regression model established in the study included

11 factors of metabolites, nine factors of clinical biochemistry,

and three comedications. There is no significant difference of

prediction error (%) between the model development and

validation group, indicating a successful application of the

model to validation dataset. Inter- and intra-individual

variability of tacrolimus pharmacokinetics are relatively large,

andmost published models performed inadequately in adult liver

transplant recipients (Cai et al., 2020). The prediction

performance for C0/D (or trough) of the multiple regression

model in validation group are relative superior among the

published models (Cai et al., 2020). Our findings will also

provide an insight into candidate covariates for further model

development.

The present study has certain limitations. Firstly, some

metabolites exhibiting significance in metabolomics data

were not confirmed using authentic standards, which limited

the confidence levels of the identification. The identification

confidence level is at least two according to the method

proposed by Schymanski et al. (Schymanski et al., 2014).

The high correlations of typical metabolites between levels

obtained in the clinical laboratory and intensity in

metabolomics data have confirmed the acceptable

identification confidence of these approaches. Secondly, we

did not incorporate the genotypic information in recipients

and donors, which was suggested to play important roles in

tacrolimus pharmacokinetics. The primary objective of the

present study is to identify potential plasma metabolomic

factors, and metabolomics reflects the comprehensive effects

of genetic, environmental, and physiological impacts (Pang

et al., 2019). Further studies taking genotypes into account

may provide more insights about the interactions between gene

and metabolites. Thirdly, the present study is repeated cross-

sectional designed, and the limitations inherent to this type of

descriptive study do not allow it to establish a causal

relationship between metabolic factors and tacrolimus C0/D.

Therefore, the ability of the metabolites level prior to the drug

administration for predicting of tacrolimus C0/D and guiding

tacrolimus dosing should be verified in a cohort study with

longitudinal design.

5 Conclusion

Thus, the present study focused on metabolomics in liver

transplant recipients to identify potential factors associated

with tacrolimus dose-adjusted concentration. Microbiota-

derived uremic retention solutes, bile acids, steroid

hormones, and medium- and long-chain acylcarnitines

were the main metabolites identified with significance.

Although a multiple regression model incorporating such

metabolites was established, further investigation in a

larger, more balanced panel is required with additional

information on both donor and recipient genotypes and the

integration of innovative strategies such as machine learning.

Our findings provide valuable insight into metabolomics on

individual dosing and guide research on transporters and

metabolizing enzymes.
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TABLE 4 Predictive performance of the multiple regression model in model development group and validation group.

log2C0/D Model development group Validation group

Fixed effects Fixed
+ random effects

Fixed effects

ME −0.010 <0.001 0.148

MAE 0.563 0.450 0.611

MRE 0.077 0.062 0.081

RMSE 0.704 0.575 0.788

ME: mean error; MAE: mean absolute error; MRE: mean relative error; RMSE: root-mean-square error.

Frontiers in Pharmacology frontiersin.org12

Zhu et al. 10.3389/fphar.2022.1045843

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1045843


Ethics statement

The studies involving human participants were reviewed and

approved by Institutional Review Board at Nanjing Drum Tower

Hospital. Written informed consent for participation was not

required for this study in accordance with the national legislation

and the institutional requirements.

Author contributions

All authors participated in the interpretation of the study

results and in the drafting, critical revision, and approval of the

final version of the manuscript. HZ, WG and YZ were involved in

the study design, writing-original draft and writing-review and

editing. HZ, MW and ZW were involved in the data curation and

data analyses. XX, YD and DL were involved in sample and data

collection. HZ, MW and XX were responsible for sample

processing and methodology.

Funding

This work was supported by the grants from the Jiangsu

Provincial Medical Youth Talent Project (No. QNRC2016013),

National Natural Science Foundation of China (No.

NSFC81803634 and No. NSFC81302849) and Nanjing

Medical Science and Technique Development Foundation

(No. YKK17075).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fphar.

2022.1045843/full#supplementary-material

References

Agus, A., Planchais, J., and Sokol, H. (2018). Gut microbiota regulation of
tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724.
doi:10.1016/j.chom.2018.05.003

Arora, A., and Shukla, Y. (2003). Modulation of vinca-alkaloid induced
P-glycoprotein expression by indole-3-carbinol. Cancer Lett. 189, 167–173.
doi:10.1016/S0304-3835(02)00550-5

Birdwell, K. A., Decker, B., Barbarino, J. M., Peterson, J. F., Stein, C. M., Sadee, W.,
et al. (2015). Clinical Pharmacogenetics Implementation Consortium (CPIC)
guidelines for CYP3A5 genotype and tacrolimus dosing. Clin. Pharmacol. Ther.
98, 19–24. doi:10.1002/cpt.113

Brunet, M., Van Gelder, T., Åsberg, A., Haufroid, V., Hesselink, D. A., Langman,
L., et al. (2019). Therapeutic drug monitoring of tacrolimus-personalized therapy:
Second consensus report. Ther. Drug Monit. 41, 261–307. doi:10.1097/FTD.
0000000000000640

Cai, X., Li, R., Sheng, C., Tao, Y., Zhang, Q., Zhang, X., et al. (2020). Systematic
external evaluation of published population pharmacokinetic models for tacrolimus
in adult liver transplant recipients. Eur. J. Pharm. Sci. 145, 105237. doi:10.1016/j.
ejps.2020.105237

Chen, J., Zhao, K. N., and Chen, C. (2014). The role of CYP3A4 in the
biotransformation of bile acids and therapeutic implication for cholestasis. Ann.
Transl. Med. 2, 7. doi:10.3978/j.issn.2305-5839.2013.03.02

Del Bello, A., Congy-Jolivet, N., Danjoux, M., Muscari, F., Lavayssière, L.,
Esposito, L., et al. (2018). High tacrolimus intra-patient variability is associated
with graft rejection, and de novo donor-specific antibodies occurrence after liver
transplantation. World J. Gastroenterol. 24, 1795–1802. doi:10.3748/wjg.v24.i16.
1795

Fukudo, M., Yano, I., Fukatsu, S., Saito, H., Uemoto, S., Kiuchi, T., et al. (2003).
Forecasting of blood tacrolimus concentrations based on the bayesian method in
adult patients receiving living-donor liver transplantation. Clin. Pharmacokinet. 42,
1161–1178. doi:10.2165/00003088-200342130-00006

Ganesh, S., Almazroo, O. A., Tevar, A., Humar, A., and Venkataramanan, R.
(2017). Drug metabolism, drug interactions, and drug-induced liver injury in living

donor liver transplant patients. Clin. Liver Dis. 21, 181–196. doi:10.1016/j.cld.2016.
08.011

Gonzales, H. M., Chandler, J. L., Mcgillicuddy, J. W., Rohan, V., Nadig, S. N.,
Dubay, D. A., et al. (2020). A comprehensive review of the impact of tacrolimus
intrapatient variability on clinical outcomes in kidney transplantation. Am.
J. Transpl. 20, 1969–1983. doi:10.1111/ajt.16002

Huang, Z. H., Murakami, T., Okochi, A., Yumoto, R., Nagai, J., and Takano, M.
(2000). Expression and function of P-glycoprotein in rats with glycerol-induced
acute renal failure. Eur. J. Pharmacol. 406, 453–460. doi:10.1016/S0014-2999(00)
00699-3

Hubbard, T. D., Murray, I. A., and Perdew, G. H. (2015). Indole and tryptophan
metabolism: Endogenous and dietary routes to ah receptor activation. Drug Metab.
Dispos. 43, 1522–1535. doi:10.1124/dmd.115.064246

Kim, B., Lee, J., Shin, K. H., Lee, S. H., Yu, K. S., Jang, I. J., et al. (2018).
Identification of ω- or (ω-1)-hydroxylated medium-chain acylcarnitines as novel
urinary biomarkers for CYP3A activity. Clin. Pharmacol. Ther. 103, 879–887.
doi:10.1002/cpt.856

Li, S., Park, Y., Duraisingham, S., Strobel, F. H., Khan, N., Soltow, Q. A., et al.
(2013). Predicting network activity from high throughput metabolomics. PLoS
Comput. Biol. 9, e1003123. doi:10.1371/journal.pcbi.1003123

Magliocco, G., Thomas, A., Desmeules, J., and Daali, Y. (2019). Phenotyping of
human CYP450 enzymes by endobiotics: Current knowledge and methodological
approaches. Clin. Pharmacokinet. 58, 1373–1391. doi:10.1007/s40262-019-
00783-z

Muduma, G., Saunders, R., Odeyemi, I., and Pollock, R. F. (2016). Systematic
review and meta-analysis of tacrolimus versus ciclosporin as primary
immunosuppression after liver transplant. PLoS One 11, e0160421. doi:10.1371/
journal.pone.0160421

Niewczas, M. A., Mathew, A. V., Croall, S., Byun, J., Major, M., Sabisetti, V. S.,
et al. (2017). Circulating modified metabolites and a risk of ESRD in patients with
type 1 diabetes and chronic kidney disease. Diabetes Care 40, 383–390. doi:10.2337/
dc16-0173

Frontiers in Pharmacology frontiersin.org13

Zhu et al. 10.3389/fphar.2022.1045843

https://www.frontiersin.org/articles/10.3389/fphar.2022.1045843/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2022.1045843/full#supplementary-material
https://doi.org/10.1016/j.chom.2018.05.003
https://doi.org/10.1016/S0304-3835(02)00550-5
https://doi.org/10.1002/cpt.113
https://doi.org/10.1097/FTD.0000000000000640
https://doi.org/10.1097/FTD.0000000000000640
https://doi.org/10.1016/j.ejps.2020.105237
https://doi.org/10.1016/j.ejps.2020.105237
https://doi.org/10.3978/j.issn.2305-5839.2013.03.02
https://doi.org/10.3748/wjg.v24.i16.1795
https://doi.org/10.3748/wjg.v24.i16.1795
https://doi.org/10.2165/00003088-200342130-00006
https://doi.org/10.1016/j.cld.2016.08.011
https://doi.org/10.1016/j.cld.2016.08.011
https://doi.org/10.1111/ajt.16002
https://doi.org/10.1016/S0014-2999(00)00699-3
https://doi.org/10.1016/S0014-2999(00)00699-3
https://doi.org/10.1124/dmd.115.064246
https://doi.org/10.1002/cpt.856
https://doi.org/10.1371/journal.pcbi.1003123
https://doi.org/10.1007/s40262-019-00783-z
https://doi.org/10.1007/s40262-019-00783-z
https://doi.org/10.1371/journal.pone.0160421
https://doi.org/10.1371/journal.pone.0160421
https://doi.org/10.2337/dc16-0173
https://doi.org/10.2337/dc16-0173
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1045843


Nigam, S. K., and Bush, K. T. (2019). Uraemic syndrome of chronic kidney
disease: Altered remote sensing and signalling. Nat. Rev. Nephrol. 15, 301–316.
doi:10.1038/s41581-019-0111-1

Okabe, H., Hashimoto, Y., and Inui, K. I. (2000). Pharmacokinetics and
bioavailability of tacrolimus in rats with experimental renal dysfunction.
J. Pharm. Pharmacol. 52, 1467–1472. doi:10.1211/0022357001777676

Okabe, H., Yano, I., Hashimoto, Y., Saito, H., and Inui, K. (2002). Evaluation of
increased bioavailability of tacrolimus in rats with experimental renal dysfunction.
J. Pharm. Pharmacol. 54, 65–70. doi:10.1211/0022357021771931

Oweira, H., Lahdou, I., Opelz, G., Daniel, V., Terness, P., Schmidt, J., et al. (2018).
Association of pre- and early post-transplant serum amino acids and metabolites of
amino acids and liver transplant outcome. Transpl. Immunol. 46, 42–48. doi:10.
1016/j.trim.2017.12.003

Pang, H., Jia, W., and Hu, Z. (2019). Emerging applications of metabolomics in
clinical Pharmacology. Clin. Pharmacol. Ther. 106, 544–556. doi:10.1002/cpt.1538

Patel, C. A. W. V. C., Shawcross, A. S. D. L., SingAnAyAgAm, A., and Shawcross,
D. L. (2018). Review article : The gut microbiome as a therapeutic target in the
pathogenesis and treatment of chronic liver disease. Aliment. Pharmacol. Ther. 47,
192–202. doi:10.1111/apt.14397

Phapale, P. B., Kim, S. D., Lee, H.W., Lim, M., Kale, D. D., Kim, Y. L., et al. (2010).
An integrative approach for identifying a metabolic phenotype predictive of
individualized pharmacokinetics of tacrolimus. Clin. Pharmacol. Ther. 87,
426–436. doi:10.1038/clpt.2009.296

Prokopienko, A. J., and Nolin, T. D. (2018). Microbiota-derived uremic retention
solutes: Perpetrators of altered nonrenal drug clearance in kidney disease. Expert
Rev. Clin. Pharmacol. 11, 71–82. doi:10.1080/17512433.2018.1378095

Qin, X. L., Chen, X.,Wang, Y., Xue, X. P., Wang, Y., Li, J. L., et al. (2014). In vivo to
in vitro effects of six bioactive lignans of wuzhi tablet (schisandra sphenanthera
extract) on the CYP3A/pglycoprotein-mediated absorption and metabolism of
tacrolimus. Drug Metab. Dispos. 42, 193–199. doi:10.1124/dmd.113.053892

Riva, N., Woillard, J. B., Distefano, M., Moragas, M., Dip, M., Halac, E., et al. (2019).
Identification of factors affecting tacrolimus trough levels in Latin American pediatric
liver transplant patients. Liver Transpl. 25, 1397–1407. doi:10.1002/lt.25495

Rohr, M. W., Narasimhulu, C. A., Rudeski-Rohr, T. A., and Parthasarathy, S.
(2020). Negative effects of a high-fat diet on intestinal permeability: A review. Adv.
Nutr. 11, 77–91. doi:10.1093/advances/nmz061

Sam, W. J., Lai, S. T., Holmes, M. J., Aw, M., Seng, H. Q., Kang, H. L., et al. (2006).
Population pharmacokinetics of tacrolimus in whole blood and plasma in Asian

liver transplant patients. Clin. Pharmacokinet. 45, 59–75. doi:10.2165/00003088-
200645010-00004

Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., et al.
(2014). Identifying small molecules via high resolution mass spectrometry:
Communicating confidence. Environ. Sci. Technol. 48, 2097–2098. doi:10.1021/
es5002105

Shin, K. H., Choi, M. H., Lim, K. S., Yu, K. S., Jang, I. J., and Cho, J. Y. (2013).
Evaluation of endogenous metabolic markers of hepatic CYP3A activity using
metabolic profiling and midazolam clearance. Clin. Pharmacol. Ther. 94, 601–609.
doi:10.1038/clpt.2013.128

Shuker, N., Van Gelder, T., and Hesselink, D. A. (2015). Intra-patient variability
in tacrolimus exposure: Causes, consequences for clinical management. Transpl.
Rev. 29, 78–84. doi:10.1016/j.trre.2015.01.002

Tolstikov, V., James Moser, A., Sarangarajan, R., Narain, N. R., and Kiebish, M.
A. (2020). Current status of metabolomic biomarker discovery: Impact of study
design and demographic characteristics. Metabolites 10, 224. doi:10.3390/
metabo10060224

Tomita, M., Doi, N., and Hayashi, M. (2010). Effects of acylcarnitines on efflux
transporting system in Caco-2 cell monolayers. Eur. J. Drug Metab. Pharmacokinet.
35, 1–7. doi:10.1007/s13318-010-0001-1

Watt, K. D. S., and McCashland, T. M. (2008). “Cholestasis post liver
transplantation,” in Cholestatic liver disease. Editors K. D. Lindor and
J. A. Talwalkar (Totowa, NJ: Humana Press), 171–181. doi:10.1007/978-1-
59745-118-5_10

Woillard, J. B., Saint-Marcoux, F., Debord, J., and Åsberg, A. (2018).
Pharmacokinetic models to assist the prescriber in choosing the
best tacrolimus dose. Pharmacol. Res. 130, 316–321. doi:10.1016/j.phrs.
2018.02.016

Ye, L., and Mao, W. (2016). Metabonomic biomarkers for risk factors of chronic
kidney disease. Int. Urol. Nephrol. 48, 547–552. doi:10.1007/s11255-016-1239-6

Yu, M., Liu, M., Zhang, W., and Ming, Y. (2018). Pharmacokinetics,
pharmacodynamics and pharmacogenetics of tacrolimus in kidney
transplantation. Curr. Drug Metab. 19, 513–522. doi:10.2174/
1389200219666180129151948

Zhang, J., Gao, L. Z., Chen, Y. J., Zhu, P. P., Yin, S. S., Su, M. M., et al. (2019).
Continuum of host-gut microbial co-metabolism: Host cyp3a4/3a7 are responsible
for tertiary oxidations of deoxycholate species. Drug Metab. Dispos. 47, 283–294.
doi:10.1124/dmd.118.085670

Frontiers in Pharmacology frontiersin.org14

Zhu et al. 10.3389/fphar.2022.1045843

https://doi.org/10.1038/s41581-019-0111-1
https://doi.org/10.1211/0022357001777676
https://doi.org/10.1211/0022357021771931
https://doi.org/10.1016/j.trim.2017.12.003
https://doi.org/10.1016/j.trim.2017.12.003
https://doi.org/10.1002/cpt.1538
https://doi.org/10.1111/apt.14397
https://doi.org/10.1038/clpt.2009.296
https://doi.org/10.1080/17512433.2018.1378095
https://doi.org/10.1124/dmd.113.053892
https://doi.org/10.1002/lt.25495
https://doi.org/10.1093/advances/nmz061
https://doi.org/10.2165/00003088-200645010-00004
https://doi.org/10.2165/00003088-200645010-00004
https://doi.org/10.1021/es5002105
https://doi.org/10.1021/es5002105
https://doi.org/10.1038/clpt.2013.128
https://doi.org/10.1016/j.trre.2015.01.002
https://doi.org/10.3390/metabo10060224
https://doi.org/10.3390/metabo10060224
https://doi.org/10.1007/s13318-010-0001-1
https://doi.org/10.1007/978-1-59745-118-5_10
https://doi.org/10.1007/978-1-59745-118-5_10
https://doi.org/10.1016/j.phrs.2018.02.016
https://doi.org/10.1016/j.phrs.2018.02.016
https://doi.org/10.1007/s11255-016-1239-6
https://doi.org/10.2174/1389200219666180129151948
https://doi.org/10.2174/1389200219666180129151948
https://doi.org/10.1124/dmd.118.085670
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1045843

	Plasma metabolomic profiling reveals factors associated with dose-adjusted trough concentration of tacrolimus in liver tran ...
	1 Introduction
	2 Materials and method
	2.1 Subjects
	2.2 Treatment and TDM
	2.3 Data collection
	2.4 Untargeted metabolomics
	2.5 Statistical analyses

	3 Results
	3.1 Subjects
	3.2 Associations of demographic information and biochemistry parameters with log2C0/D in model development group
	3.3 Metabolites identification by untargeted metabolomics analysis
	3.4 Association between concomitant drug use and log2C0/D and metabolites
	3.5 Multiple regression model analysis

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


