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L-tryptophan metabolism is involved in the regulation of many important

physiological processes, such as, immune response, inflammation, and

neuronal function. Indoleamine 2, 3-dioxygenase 1 (IDO1) is a key enzyme

that catalyzes the first rate-limiting step of tryptophan conversion to

kynurenine. Thus, inhibiting IDO1 may have therapeutic benefits for various

diseases, such as, cancer, autoimmune disease, and depression. In the search

for potent IDO1 inhibitors, natural quinones were the first reported

IDO1 inhibitors with potent inhibitory activity. Subsequently, natural

compounds with diverse structures have been found to have anti-IDO1

inhibitory activity. In this review, we provide a summary of these natural

IDO1 inhibitors, which are classified as quinones, polyphenols, alkaloids and

others. The overview of in vitro IDO1 inhibitory activity of natural compounds

will help medicinal chemists to understand the mode of action and medical

benefits of them. The scaffolds of these natural compounds can also be used for

further optimization of potent IDO1 inhibitors.
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1 Introduction

1.1 Tryptophan metabolism and indoleamine 2, 3-
dioxygenase 1

L-Tryptophan (L-Trp) is an essential amino acid, and the normal concentration

range of L-Trp in human plasma is 50–100 μM (Wang et al., 2015; Cervenka et al., 2017;

Barreto et al., 2018; Platten et al., 2019). L-Trp is important as a protein building block

and in the synthesis of several important bioactive metabolites (Wang et al., 2015;

Cervenka et al., 2017; Barreto et al., 2018; Platten et al., 2019). However, humans cannot

produce L-Trp and must obtain it from food (Barreto et al., 2018). The metabolism of

L-Trp occurs via the serotonin pathway and kynurenine (Kyn) pathway (Figure 1)
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(Barreto et al., 2018). The Kyn pathway metabolizes 95% of

L-Trp. In this pathway, L-Trp is oxidized, breaking the 2, 3-

double bond of the indole ring to form N-formylkynurenine,

which is rapidly converted to Kyn by Kyn formamidase. Next,

Kyn is metabolized to kynurenic acid and 3-hydroxy-

o-aminobenzoic acid, and 3-hydroxy-o-aminobenzoic acid is

used to produce NAD+ (Figure 1). L-Trp consumption and Kyn

production are key to immune system regulation under both

physiological and disease conditions (Maddison and Giorgini,

2015; Barreto et al., 2018; Odunsi et al., 2022). Recent studies

have continued to highlight the importance of L-Trp

metabolism in immune regulation, neuronal function, and

ageing (Sorgdrager et al., 2019; Platten et al., 2021; Krupa

et al., 2022; Merlo et al., 2022; Ouyang et al., 2022;

Salminen, 2022).

In the Trp to Kyn metabolic pathway, the oxidation of Trp

to N-formylkynurenine is the initial and rate-limiting step,

which can be catalyzed by the tryptophan dioxygenase

isozymes indoleamine 2, 3-dioxygenase 1 (IDO1),

indoleamine 2, 3-dioxygenase 2 (IDO2), and tryptophan 2,

3-dioxygenase (TDO) (Vécsei et al., 2013; Dounay et al.,

2015; Dolšak et al., 2021). IDO1, IDO2, and TDO have

differences in structure, tissue distribution, and substrate

specificity. IDO1 is encoded by the IDO1 gene on human

chromosome eight and is widely present in the lung,

intestine, colon, kidney, spleen, pancreas, central nervous

system, macrophages, and microglia (Tone et al., 1990;

Takikawa, 2005; Lewis-Ballester et al., 2017; Santos et al.,

2022). IDO1 shows a broad substrate specificity for L-Trp

(Km = 20 μM), D-Trp, 5-hydroxy Trp, tryptamine, serotonin,

FIGURE 1
Metabolic pathway of L-Tryptophan.
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and other Trp analogues (Pantouris et al., 2014). IDO2 is

encoded by the IDO2 gene on chromosome eight and is

mainly distributed in the kidney, liver, and reproductive

organs (Ball et al., 2007; Bakmiwewa et al., 2012; Fukunaga

et al., 2012). The enzymatic activity of IDO2 is low, and the Km

of IDO2 for L-Trp is around 6.8 mM (Fukunaga et al., 2012). It

is speculated that IDO2might be more involved in cell signaling

rather than functioning as a tryptophan dioxygenase (Fukunaga

et al., 2012). TDO is encoded by the TDO2 gene on

chromosome four and is mostly distributed in the liver with

highly specific enzymatic activity for L-Trp (Km = 190 μM) (Löb

et al., 2009; Pham et al., 2019). In summary, the three

tryptophan dioxygenase enzymes show different substrate

activities. The catalytic activity order of these three enzymes

for L-Trp is IDO1 (Km = 20 μM) > TDO (Km = 190 μM) > IDO2

(Km = 6.8 mM) (Dolšak et al., 2021).

IDO1 is a heme-containing enzyme composed of 403 amino

acids. More than 60 human IDO1 crystal structures have been

deposited in the Protein Data Bank (PDB) since the crystal

structure of IDO1 was first reported in 2006 (PDB ID: 2D0T)

(Sugimoto et al., 2006; Maddison and Giorgini, 2015). The crystal

structure of IDO1 contains hydrophobic pockets A and B in the

active site, with heme at the bottom of pocket A. The inhibitor

ligand of PI was also included in the crystal structure (Figure 2)

(Sugimoto et al., 2006). In addition, the JK loop forms the front

entrance of the active site, which allows the substrate and

inhibitors to enter (Lewis-Ballester et al., 2017). Interestingly,

studies also revealed that the phosphorylation of two tyrosine

residues of IDO1: Tyr115 and Tyr253 regulates the functions of

this enzyme (Albini et al., 2017).

2 Indoleamine 2, 3-dioxygenase 1 and
its functions

2.1 Immune tolerance in tumors

In tumor microenvironments, tumor killer cells, such as,

effector T cells, natural killer cells, are often inhibited and

induced to apoptosis to prevent the killer activity, and

immune tolerance cells, such as, Treg cells, myeloid-

derived suppressor cells, are often activated and promoted

to the proliferation (Wu and Dai, 2017; Arneth, 2019). These

combined effects create an immunosuppressive

microenvironment suitable for tumor growth and lead to

tumor immune escape. Research revealed that IDO1 is

important in creating the immunosuppressive

microenvironment (Ling et al., 2014; Munn and Mellor,

2016; Heidari et al., 2020; Gouasmi et al., 2022; Huang

et al., 2022; Zhang et al., 2022). Under physiological

conditions, IDO1 is usually expressed at a low level in

various tissues. However, IDO1 is overexpressed in many

cancers, such as, breast, colorectal, gastric, lung, and

endometrial cancers, and IDO1 overexpression is also

associated with poor survival rates (Uyttenhove et al.,

2003; Dolusić et al., 2011; Heidari et al., 2020; Odunsi

et al., 2022).

IDO1 mediates tumor immune escape via three main

downstream pathways (Figure 3) (Ling et al., 2014; Munn

and Mellor, 2016; Heidari et al., 2020). In the first,

tryptophan is depleted by the overexpression of IDO1, which

increases the degradation of Trp and the production of Kyn.

This causes the imbalance between Trp/Kyn in the tumor

microenvironment (Liu and Wang, 2009; Zhai et al., 2020).

The decrease in Trp and the increase in Kyn prevents T

lymphocytes from maturing. IDO1 downstream metabolites,

such as, Kyn, kynurenine acid (KA) and 3OH-Kyn, are toxic

and can inhibit the functions of T cells, B cells and NK cells.

Moreover, Kyn and its’ downstream metabolites can activate

aryl hydrocarbon receptor (AHR), which will result in the

creating the immunosuppressive microenvironment (Huang

et al., 2022; Zhang et al., 2022). The second is the

GCN2 pathway. General control nonderepressible 2 (GCN2)

is a serine/threonine-protein kinase (Munn et al., 2005). There

is a domain in GCN2 that binds to uncharged tRNA to sense

amino acid deficiencies. When the level of Trp in cells is low,

uncharged tRNAs accumulate in cells and activate GCN2. The

activated GCN2 eventually reduces the proliferation of T cells

and promotes the differentiation of Treg cells. The third is the

mechanistic target of rapamycin complex 1 (mTORC1)

pathway. mTORC1 regulates various cellular process (Metz

et al., 2012). The level of amino acids strongly affects

mTORC1 activity. When the Trp level is decreased,

mTORC1 is inhibited, which eventually induces T cell

autophagy.

FIGURE 2
Crystal structure shows the active site of IDO1 with the
binding of the ligand of PI.
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2.2 Inflammation

Inflammation is a normal response to injury or infection

and is initiated by the innate immune system to clear away

damaged cells (Medzhitov, 2008; Sorgdrager et al., 2019;

Esmaeili and Hajavi, 2022). The hallmark of inflammation is

the accumulation of various primary inflammatory cells in

tissues, which overexpress various cytokines, growth factors,

and enzymes. Thus, inflammation is crucial in maintaining

health. However, if the tissue remains inflamed for a long time,

inflammation can also damage healthy tissue and induce

secondary repair, including fibrosis. Proinflammatory

cytokines, such as interferon gamma, and other

inflammatory signaling molecules, including the lipid

mediator prostaglandin E2 and lipopolysaccharide pathogen

particles, induce the overexpression of IDO1 (Baumgartner

et al., 2019; Alves de Souza et al., 2022). The activation of

IDO1 in response to these inflammatory factors induces

immune tolerance and eventually controls

hyperinflammation (Zhai et al., 2020). The mechanism of

IDO1 involvement in inflammation regulation occurs via

two main pathways (Heidari et al., 2020; Ogbechi et al.,

2020; Gargaro et al., 2022). In the first, the overexpression of

IDO1 consumes and depletes the intracellular Trp, thereby

mediating immune tolerance. Several metabolites of

IDO1 are known to toxic to immune cells and inhibit the

regular functions of various immune cells (Huang et al.,

2022; Zhang et al., 2022). In the second, the overexpression

of IDO1 causes the accumulation of Kyn, which activates the

aryl hydrocarbon receptor. This IDO1/Kyn/aryl hydrocarbon

receptor signaling pathway regulates T cell activation, induces

the differentiation of Treg cells, and changes the

immunogenicity of antigen-presenting cells, which eventually

has an anti-inflammatory effect (Romani et al., 2008;

Sorgdrager et al., 2019). Interestingly, an imbalance in the

Kyn/Trp ratio is often observed in inflammation-related

disease, including infections and autoimmune disorders

(Schröcksnadel et al., 2006; Huang et al., 2020). In summary,

IDO1 is overexpressed in response to inflammation and

suppresses the immune system to control inflammation.

2.3 Depression

Depression is a mental disorder that has a complicated

mechanism (Barreto et al., 2018). Although different

hypotheses have been proposed to explain the

pathophysiology of depression, the monoaminergic hypothesis,

which proposes that depression stems from low levels of the

monoamine serotonin (5-hydroxytryptamine) in the brain, has

become the basis for developing antidepressant drugs (Healy and

Leonard, 1987; Badawy and Morgan, 1991). Serotonin is

produced from the metabolism of L-Trp. Less than 5% of

L-Trp is processed to synthesize serotonin, and the other 95%

of L-Trp in the plasma is consumed by IDO1 to produce Kyn.

Trp levels are much lower in the brains of depressed patients than

in non-depressed people, and the levels of Trp are clearly

associated with the symptoms of depression (Badawy and

Morgan, 1991; Platten et al., 2021). Furthermore, depressed

patients have high plasma levels of pro-inflammatory

cytokines, such as interferon gamma. In an animal model of

depression, the activation of IDO1 and increased levels of Kyn

have also been measured. Because IDO1 activity is closely related

to Trp levels, the activation of IDO1 and the involvement of the

immune system and inflammation in depression suggest that the

inhibition of IDO1 could be a target for discovering

antidepressant drugs (Romani et al., 2008; Huang et al., 2020).

3 Natural indoleamine 2, 3-
dioxygenase 1 inhibitors

Because IDO1 is an important immune checkpoint

modulator, it is important in tumor immune escape, and thus

FIGURE 3
Mechanism of IDO1-mediated tumor immune escape.

Frontiers in Pharmacology frontiersin.org04

Tan et al. 10.3389/fphar.2022.1046818

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1046818


is an important therapeutic target in cancer therapy. Over the

past decade, there has been intense interest in developing

IDO1 inhibitors in both academic institutes and the

pharmaceutical industry. A variety of IDO1 inhibitors have

been found via methods including high-throughput screening,

rational design, and natural compound screening (John et al.,

2010). Natural compounds are an important source of

pharmacological agents. In the early stages of IDO1 inhibitor

discovery before 2010, natural compounds contributed much

important structural information for the rational design of

IDO1 inhibitors (Delfourne, 2012). Next, we summarize and

analyze natural compounds derived IDO1 inhibitors.

3.1 Quinones

Natural quinones are classified by structure as

benzoquinones, naphthoquinones, anthraquinones, and

phenanthraquinones. According to the position of the

carbonyl group, quinones can also be divided into 1, 2-

quinones and 1,4-quinones (Zhang et al., 2021). Natural

quinones were one of the first types of IDO inhibitors

discovered (Figure 4) (Pereira et al., 2006), and most natural

quinones have some IDO1 inhibitory activity. The quinone

moiety usually occupies binding pocket A of the IDO1 active

center, and can bind to the heme iron at the bottom of the pocket.

In this part, we summarize the reported natural quinones with

substantial IDO1 inhibitory activity, the structure of these

quinones were shown in Figure 4.

Coenzyme Q (CoQ), also called ubiquinone, is a coenzyme

family, that is, ubiquitous in cells and membranes in animals and

bacteria and has important functions in cell metabolism,

including in the mitochondrial respiratory chain (Turunen

et al., 2004). CoQ1 is a member of the CoQ family and

contains the core 1, 4-benzoquinone scaffold. CoQ1 is a

moderate IDO1 inhibitor with an IC50 of 1.3 μM. Because

CoQ1 is a simple quinone, it has been modified to improve

the IDO1 inhibition activity (Ding et al., 2019). Another

FIGURE 4
Structures of natural 1, 2- and 1, 4-quinones with their IDO1 inhibitory activity.
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important natural quinone, vitamin K3, also called menadione,

contains the naphthoquinone scaffold. Menadione has some

important pharmacological functions, including the regulation

of cell proliferation and cell growth, and has moderate

IDO1 inhibitory activity with an IC50 of 1.0 μM (Kumar et al.,

2008). However, substituting the methyl side chain in menadione

with a long lipid chain to form vitamin K1 abrogates the

IDO1 inhibitory activity. Due to their structure simplicity and

activity, CoQ1 and menadione are suitable as lead compounds

for further structural optimization to improve the

IDO1 inhibitory activity.

Screening of natural compound libraries has revealed several

natural compounds with interesting IDO1 inhibitory activity.

Shikonin A, which is usually isolated from Radix Arnebiae and

has anti-inflammatory activity attributed to the inhibition of

caspase 1. Shikonin A inhibits IDO1 activity in a dose-dependent

manner with an IC50 of 0.98 μM. Given the potency of

IDO1 inhibition, it is likely that the anti-inflammatory activity

of shikonin A also partially arises from IDO1 inhibition (Guo

et al., 2020). The 1, 4-quinone antibiotic nanaomycin has been

report to have the activity to inhibit DNA methyltransferase 3B

(IC50 = 500 nM). Nanaomycin also found with the

IDO1 inhibitory activity (Ki ~ 950 nM) (Pantouris and

Mowat, 2014). Lastly, the 1, 4-quinone mitomycin C also has

moderate IDO1 inhibitory activity (Ki = 24.2 μM).

In 2006, the Andersen group found that the MeOH extract of

the northeastern Pacific marine hydroid, Garveia annulata had

IDO1 inhibitory activity. Further separation of the crude yielded

a series of quinones with potent IDO1 inhibitory activity, of

which annulin B was the most potent (Ki = 0.12 μM) (Pereira

et al., 2006). This was the first reported natural IDO1 inhibitor.

The Andersen group also collected the marine sponge

Neopetrosia exigua in Papua New Guinea and found that the

methanol extract had IDO1 inhibitory activity. The alkaloid

exiguanine A isolated from the MeOH extract is one of the

most potent natural IDO inhibitors (Ki = 41 nM) (Carr et al.,

2008), and thus was selected to be optimized further (Dong et al.,

2021). The Mowat group screened about 2800 natural

compounds from the National Cancer Institute for IDO and

TDO inhibitors and found several other natural compounds with

potent IDO1 inhibitory activity. NSC255109 (17-

aminodemethoxygeldanamycin) inhibits IDO1 with Ki of

around 1.4 μM (Pantouris and Mowat, 2014), and this

compound contains the 1, 4-benzoquinone scaffold as part of

a cyclized structure.

Next, we describe IDO1 inhibitors with a 1, 2-quinone

scaffold. β-Lapachone, which was first extracted from the

lapacho tree (Tabebuia avellanedae), has anticancer activity,

and the proposed mechanism is the activation of a non-

caspase proteolytic pathway. However, β-lapachone is also a

potent IDO1 inhibitor with an IC50 of around 97 nM

(Medzhitov, 2008), and thus β-lapachone is also likely to alter

the tumor immune environment, contributing to the clearance of

tumor cells. Saprorthoquinone, which was isolated from the

traditional Chinese medicine, Salvia prionitis Hance, is

cytotoxic and inhibits IDO1 with an IC50 of 1.76 μM (Lin

et al., 2020). Similarly, dihydrotanshinone I, which was

isolated from the traditional Chinese medicine Radix Salviae

Miltiorrhizae, is cytotoxic against many types of cancer cells and

inhibits IDO1 with an IC50 of 2.8 µM (Guo et al., 2020).

FIGURE 5
Structures of natural polyphenols with their IDO1 inhibitory activity.
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In summary, from the structure-activity relationship of the

quinones and IDO1, we found that 1, 2- and 1, 4-quinone core

moieties bind well to the heme in the active center of IDO1. Due to

the structural priority and potent IDO1 inhibitory activity, many

efforts have been dedicated to optimize quinones derived inhibitors,

and any further substitutions to the quinone moiety need to be

careful evaluated so that they improve rather than disrupt the

binding activity (Austin et al., 2014; Carvalho et al., 2014; Centko

et al., 2014; Blunt et al., 2015; Shiokawa et al., 2016; Feng et al., 2018;

Pan et al., 2018; Yang et al., 2018; Zhang et al., 2018; Zhao et al., 2019;

Kong et al., 2020). Considering the IDO1 inhibitory potency of these

quinones, their pharmacological benefits, such as anti-inflammatory

and anticancer activities, may arise partially from their interaction

with IDO1.

3.2 Polyphenols

Polyphenols are a large family of natural compounds with

various interesting biological activities. Some polyphenols were

also found with potential anti-IDO1 activities. The plant Sophora

flavescens, which contains many flavonoids, is used in traditional

Chinese medicine to treat cancers. Screening for IDO1 inhibitors

identified three flavonoids isolated from S. flavescens with

moderate inhibition activity. Kushenol E has the most potent

IDO1 inhibitory activity with an IC50 of 4.4 μM, followed by (2S)-

2′-methoxy kurarinone (IC50 = 23.8 μM) and kushnol F (IC50 =

28.3 μM) (Kwon et al., 2019) (Figure 5). In addition, a Korean

group also reported the polyphenols from the Hawaiian volcanic

associated fungus Penicillium herquei FT729. Among them,

FIGURE 6
Structures of natural alkaloids with their IDO1 inhibitory activity.
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herqueinone has an IC50 of 19.1 μM against IDO1,

peniciherquinone inhibits IDO1 with IC50 of 24.2 μM, and

ent-12-methoxyisoherqueinone has an IC50 of 32.6 μM against

IDO1 (Yu et al., 2022). So far, the polyphenols only reported with

moderate IDO1 inhibitory activities.

3.3 Alkaloids

Alkaloids are a structurally diverse class of naturally

occurring bases containing at least one nitrogen atom. In this

section, we list the alkaloids in the order of their structural

simplicity (Figure 6). First, we describe two alkaloids that have

some structural similarity to 1, 4-quinones. Tryptanthrin (indolo

[2,1-b]quinazolin-6,12-dione) has been extracted from the

Chinese medicinal plants Polygonum tinctorium and Isatis

tinctoria, and it has various pharmacological activities,

including cytotoxicity against several parasites and

microorganisms, and it inhibits IDO1 with an IC50 of 7.15 μM

(Yang et al., 2013). Tryptanthrin also has two carbonyl groups

that point in opposite directions, which is structurally similar to

1, 4-quinones. In addition, NSC111041 was one of several natural

compounds with interesting IDO1 inhibitory activity identified

by the Mowat group among about 2800 compounds from the

National Cancer Institute during a screening campaign for IDO

and TDO inhibitors. NSC111041 inhibits IDO1 withKi of 4.3 μM

(Delfourne, 2012; Pantouris et al., 2014). In NSC111041, one of

the quinone carbonyl groups is replaced with an imino group

(Dolušić et al., 2013), and thus NSC111041 is structurally similar

to 1, 4-quinones.

A library of indole analogues were screened for

IDO1 inhibitors. Brassinin is an indole-based natural product

with reported antifungal and anticancer activity, Brassinin has

moderate to low IDO1 inhibitory activity (Ki = 97.7 µM)

(Gaspari et al., 2006). Another indole-derived alkaloid is

PQA26, which was isolated from the medicinal deciduous

tree, Picrasma quassioides (D. Don) Benn, that is, widely

grown in south China. The dry branches are used in

traditional Chinese medicine for heat clearing, detoxification,

and eliminating dampness. A virtual screening method suggested

that PQA26 had IDO1 inhibition activity, and moderate

IDO1 inhibitory activity (IC50 = 32 μM) was confirmed

experimentally (Wang et al., 2019). 3-Deazaguanine was also

identified as having IDO1 inhibitory activity in the micromolar

range (Ki = 21.4 μM) (Pantouris and Mowat, 2014).

Berberine is a bitter, yellow natural compound, which is

isolated from plants in the berberis genus and is an important

ingredient in the traditional Chinese medicine, Oren-gedoku-to.

Berberine can help tomaintain a normal body weight and normal

blood sugar levels. Furthermore, berberine has IDO1 inhibitory

activity with an IC50 of 9.3 µM. Medicinal chemists have

optimized the IDO1 inhibition activity of berberine further

(Yu et al., 2010; Wang et al., 2018). Lately, a research group

from China reported their isolation of fourteen novel and known

alkaloids from the rhizomes of Sinomenium acutum. Among

these alkaloids, lysicamine show an IDO1 inhibitory activity with

IC50 values of 6.22 ± 0.26 μM (Bi et al., 2022).

Aminophenoxazinones are a group of natural dyes that

includes actinomycines, which have antibiotic activity. Some

aminophenoxazinones have IDO1 inhibitory activity. For

example, cinnabarinic acid is a potent IDO1 inhibitor with an

IC50 of 0.46 μM (Pasceri et al., 2013). Several alkaloids contain

the cinnabarinic acid moiety. For example, plectosphaeroic acids

A–C were isolated from the fungus Plectosphaerella cucumerina,

which was cultured from marine sediment from Barkley Sound,

British Columbia. These three alkaloids also contained the

cinnabarinic acid moiety in their structures, and they are

IDO1 inhibitors with an IC50 of 2 μM (Carr et al., 2009). The

alkaloid stereoisomers albogrisin D and albogrisin D′ were

isolated from Streptomyces albogriseolus MGR072 collected

from a mangrove reserve in Fujian Province, China. These

compounds have similar IDO1 inhibitory activities with IC50

values of around 10 μM (Gao et al., 2019).

3.4 Others

NSC401366 (N-methyl-N″-9-phenanthrylimidodicarbonimidic

diamide) is a natural anthracene compound with potent

IDO1 inhibition activity, which has a different structure from

other IDO1 inhibitors (Figure 7). NSC401366 was discovered by

screening themethanol extracts of marine organisms and has potent

IDO1 inhibitory activity with a Ki of 1.5 μM (Vottero et al., 2006).

4 Conclusion

The balance in the levels of Trp and Kyn in plasma regulates

several important physiological process, such as immune

FIGURE 7
Structure of NSC401366.
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activation and immune tolerance. IDO1 is a key metabolic enzyme

responsible for the metabolism of Trp to Kyn. The activation of

IDO1 changes the concentration ratio between Trp and Kyn, and

thus IDO1 is closely related to several important physiological

disorders, including cancer, inflammation, and depression. Due to

the importance of IDO1, IDO1 inhibitors have been the focus of

intense interest in the pharmaceutical industry (Chen et al., 2021).

Several candidate IDO1 inhibitors (Platten et al., 2019; Chen et al.,

2021), including indoximod, navoximod, epacadostat, and

linrodostat, have entered the clinical research stage for cancer

immunotherapy.

Nature is an important source from which many therapeutic

agents are obtained. Traditional medicine exploits the unique

mode of actions of natural compounds to mitigate functional

disorders. Modern medicine is exploring the mechanisms of

many traditional medicines to optimize the pharmacological

activity of these traditional medicines and mitigate the side

effects. This kind of research is difficult because of the

complexity of the mechanisms and unknown combined

effects. However, it is helpful to begin by demonstrating the

modes of action of individual natural compounds. Based on the

structure-activity information, scientists can understand and

analyze the pharmacological benefits of traditional medicine.

Thus, in this review we have summarized the interactions

between IDO1, an important metabolic enzyme, and a group of

natural compounds that have IDO1 inhibition activity. We have

listed all the natural compounds reported so far to have moderate

to strong IDO1 inhibitory activity, and the quinones are the most

promising of these compounds. This finding provides structure-

activity information that will help medicinal chemists to

understand the pharmaceutical benefits of natural compounds

(Ianni et al., 2022) and to design potent IDO1 inhibitors.
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