
Targeting lncRNAs of colorectal
cancers with natural products

Woo Jung Sung1 and Jaewoo Hong2*
1Department of Pathology, Daegu Catholic University School of Medicine, Daegu, South Korea, 2Department
of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea

Non-coding RNA (ncRNA) is one of the functional classes of RNA that has a
regulatory role in various cellular processes, such as modulation of disease onset,
progression, and prognosis. ncRNAs, such as microRNAs (miRNAs), long non-coding
RNAs (lncRNAs), and circular RNAs (circRNAs), have been actively studied in recent
years. The change in ncRNA levels is being actively studied in numerous human
diseases, especially auto-immune disorders and cancers; however, targeting and
regulating ncRNAwith natural products to cure cancer has not been fully established.
Recently many groups reported the relationship between ncRNA and natural
products showing promising effects to serve as additional therapeutic approaches
to cure cancers. This mini-review summarizes the aspects of lncRNAs related to
cancer biology focusing on colorectal cancers that natural products can target.

KEYWORDS

ncRNA, natural products, lysosome, solid tumor, colorectal cancer, lncRNA

1 Introduction

Colorectal cancer (CRC) is the third most common cancer and the fourth most cause of
cancer deaths globally (Siddiqui et al., 2019; Hassen et al., 2022). CRC onset has a higher
tendency in developed countries than in developing countries (Hassen et al., 2022). Several
etiological factors may affect the development of CRC, such as environmental, genetic, and
epigenetic factorss (Anupriya et al., 2022). Usually, CRC is developed gradually over
1–2 decades (Siddiqui et al., 2019). The most common initiation of CRC is from
adenomatous polyps of colorectal glandular epithelial cells. Malignant CRC begins when
adenomatous polyps have mutations in the Adenomatous polyposis coli gene, tumor suppressor
genes, and/or oncogenes (El Zoghbi and Cummings, 2016). The mortality of CRC increases
significantly after metastasis and invasion initiation to other organs and tissues (Dowli et al.,
2023). So, elucidating molecular mechanisms of the development and progression of CRC and
searching for new markers and therapeutic strategies are essential in both basic and clinical
sciences (Yu et al., 2022; Zheng et al., 2022). Recent findings revealed that epigenetic alterations
are more frequent than genetic alterations in CRC (Okugawa et al., 2015). Currently, many
groups focus on epigenetic studies on CRC to discover new biomarkers for diagnosis and
develop new therapies (Ullah et al., 2022). The application of natural products such as
phytochemicals with anticancer effects can be considered as one of the approaches to target
lncRNAs to treat CRC, which may increase the sensitivity of CRC cells additionally to the
prevailing therapies. This review investigates the effect of various phytochemicals on lncRNAs
of CRC and evaluates their capacity to treat or prevent CRC.

2 LncRNAs

Non-protein coding RNAs with transcripts 200 bp or longer are called lncRNA (Costa et al.,
2022; Pagani et al., 2022; Razlansari et al., 2022), which were believed to be byproducts of RNA
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polymerase II transcription without specific biological actions
(Goodrich and Kugel, 2006; Wagner et al., 2013; Nojima and
Proudfoot, 2022). Currently, lncRNA does not have a standardized
classification. However, lncRNAs are classified by their location, such
as cytoplasmic, nuclear, and cytoplasmic nuclear lncRNAs (Kerachian
and Azghandi, 2022) and they have different regulatory functions
where they are located (Ghafouri-Fard et al., 2022). Mainly,
cytoplasmic lncRNAs act as competing endogenous RNAs
(ceRNAs) against miRNAs regulating the release of target mRNAs
of miRNAs. In the tumor microenvironment, lncRNAs are aberrantly
expressed, breaking the balance of miRNA and target mRNA resulting
in the promotion of malignant tumor progression via abnormal
expression of tumor-promoting or tumor-suppressing genes.

The other way to classify lncRNAs is by the protein-coding
gene relative location. First, the righteous lncRNAs overlap with
exon regions. The antisense lncRNAs start with the reverse
transcription process of exons. The bidirectional lncRNA begins
closely with the neighboring protein-coding genes on the antisense
strands. The basal lncRNA is from intron regions, and the
intergenic lncRNA resides between different genes on the
chromosome (Wang et al., 2021).

LncRNAs can be categorized by their molecular functions, guide,
decoy, and backbone molecules. LncRNA is bound to DNA or
proteins; decoy molecules inhibit the transcription of downstream
genes while guide molecules enhance the transcription. Backbone
molecules are scaffold molecules for protein complexes to form nucleic

FIGURE 1
Roles of lncRNAs and natural products in cancers. (A) lncRNAs change the level of miRNAs which leads to apoptosis. miRNA inhibition can also lead to
buffing the effect ofmiRNAs. LncRNAs lead to the EMT process by interactingwith EZH2 and enhancingH3K27me3 levels. LncRNAs control the transcriptional
and translational levels by controlling DNA and mRNA directly and are involved in chromatin modification. LncRNAs bind to DNMT and suppress DNA
methylation. (B). Natural products have several biological effects on lncRNAs directly and indirectly. Natural products can directly bind to lncRNAs to
enhance or inactivate lncRNAs. Natural products can also control miRNAs and cancer signals that lead to activating or inactivating lncRNAs related to cancers.
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acid-protein complexes involved in epigenetic functions (Han et al.,
2022; Nadhan et al., 2022).

The regulatory roles of lncRNAs involve major life events and
biological processes like stem cell differentiation, gene expression,
development, cell proliferation, and metastasis, so they are closely
correlated to the onset and development of cancer and other diseases
(Figure 1) (He et al., 2022; Liu et al., 2022; Wang et al., 2022). In recent
findings, the detection of lncRNAs is available from patients’ blood to
use lncRNAs as biomarkers over tissue lncRNAs. Circulating lncRNAs
can be used as potential biomarkers to diagnose several cancers,
including CRCs (Badowski et al., 2022).

3 LncRNAs and colorectal cancers

3.1 Functions of lncRNA in CRCs

In CRC, lncRNA is involved in RNA degradation, splicing,
transcription, and translation (Xie et al., 2016). LncRNAs have
essential roles in the carcinogenesis of CRCs, such as serving as
oncogenes or tumor suppressor genes and interacting with DNAs,
RNAs, and proteins (Ragusa et al., 2015). Furthermore, numerous
studies revealed that lncRNAs function as endogenous miRNAs to
contribute to the competitive endogenous RNA network of tumor
regulation (Hashemi et al., 2022; Shen et al., 2022). Control of
gene expression in developmental processes and cell
differentiation has also been known as a role of lncRNAs (Cao,
2014). Indeed, lncRNAs work as gene expression regulators at
epigenetic, transcriptional, and post-transcriptional levels (Xie
et al., 2016). Recently, it has been revealed that lncRNAs are
involved in the chemoresistance of CRCs through multiple
mechanisms, including acting as structural RNAs in scaffolding
ribonuclear protein complexes, interacting with other miRNAs,
epigenetic modification, and regulating several gene expressions
in essential cellular processes such as cell proliferation,
differentiation, apoptosis, invasion, and metastasis (Lizarbe
et al., 2017). Another interesting point of lncRNAs is acting as
competing endogenous RNAs (ceRNAs), inhibiting targets of
miRNAs. This leads to regulating miRNAs involved in CRC
malignancies, such as migration, invasion, and proliferation (Li
et al., 2017).

LncRNAs are commonly found in the serum or plasma of
peripheral blood (Xie et al., 2016). Some blood lncRNAs are
increased, working as oncogenes in tumor status. Meanwhile,
others have tumor suppressor roles (Smolle et al., 2014). Some
lncRNAs found in CRC cells and tissues have an increased
tendency to correlate with poor prognosis and malignancy in CRC
patients (Kam et al., 2014). In recent years, advanced bioinformatics,
including microarray and next-generation sequencing, revealed many
different lncRNAs are involved in CRC progression (Wang et al., 2015;
Arun et al., 2018; Siddiqui et al., 2019). CRC shows the progression
similarly to other solid tumors. In stage 0, carcinoma in situ, no local
lymph node metastasis, and no distant metastasis are observed. In
stage I, the tumor invades the submucosa or muscle layer, without
local lymph node metastasis or distant metastasis. In stage II, the
tumor invades the serosa layer or the large intestine and surrounding
tissues through the muscular layer, without peritoneal coverage, local
lymph node metastasis or distant metastasis. In stage III, the tumor
directly invades other organs, with local lymph nodemetastasis and no

distant metastasis. In stage IV, the tumor directly invades other
organs, with local lymph node metastasis and distant metastasis
(Fabian et al., 2023). We discuss some of the CRC-related
lncRNAs, which can be good candidates to develop new
approaches to target CRC, especially using natural products.

3.2 LncRNAs related to CRC

More than 80 different lncRNAs have been reported to be directly
or indirectly associated with colorectal cancer. The functions and
mechanisms are still studied actively to utilize them as prognostic
markers or therapeutic targets. Among them, we discuss ten
representative lncRNAs, which have been actively studied with
obvious evidence affecting both positively and negatively in CRCs
in different aspects (Table 1).

3.2.1 Cancer susceptibility candidate 11 (CASC11)
CASC11 is located on chromosome 8q24. CASC11 lncRNA has

been reported to be increased in CRC cells and tissues. Furthermore,
the tumor size correlates with the expression level of CASC11 (Zhang
et al., 2016). When CASC11 is inhibited in CRC, proliferation and
metastasis are suppressed in tumor cells by interacting with
heterogeneous ribonucleoprotein. This leads to the protection of β-
catenin degradation and increases the transcription activity (Shen
et al., 2017). CASC11 has been reported to suppress Wnt signaling in
colorectal cancer (Javed et al., 2020).

3.2.2 Colon cancer-associated transcript 1 (CCAT1)
CCAT1 has been recently identified as a lncRNA correlated

with colorectal adenomas and adenocarcinomas at any stage (Ye
et al., 2015). CCAT1 is a good target for real-time in vivo imaging
techniques (Kam et al., 2014). CCAT1 has an oncogenic role in
activating Myc, the target of miR-155, and promotes cell
proliferation and invasion through direct interaction with the
promoter region (Wang et al., 2015). A study reported that
CCAT1 is increased in gallbladder cancer tissues, and this is
through knocking-down miRNA that is related to tumor cell
invasion and proliferation (Ma et al., 2015).

3.2.3 CCAT2
CCAT2 interacts with TCF7L2 and leads to the enhanced

expression of Myc. Then, Myc regulates miR-17p and miR-20a
functions. The output of this process is genomic instability and the
promotion of cancer malignancy (Wu et al., 2016). Since CCAT2 has
shown the modification of clinical outcomes, CCAT2 is considered an
excellent target for lncRNA therapies and a diagnostic marker of CRC
(Catana et al., 2017). Moreover, CCAT2 is critical in the loop
formation between genomic DNA locus rs6983267 and Myc
promoter, which turns on the oncogenic activity of Myc (Xu et al.,
2014).

3.2.4 Colorectal neoplasia differentially expressed
(CRNDE)

CRNDE is differently upregulated in CRC tissues in 90%. Insulin
and IGFs induce the Warburg effect in cancer cells by metabolic
changes that regulate CRNDE (Ye et al., 2015). In a recent finding,
CRNDE-h (transcript variant one of CRNDE) was highly upregulated
in CRC tissues. The overexpression levels were positively correlated
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with the degree of malignancy, such as tumor size, lymph node
metastasis, distant metastasis, and survival rate (Liu et al., 2016;
Ding et al., 2017). The knockdown study of CRNDE showed the
apoptosis of CRC cells in vitro and in vivo (Ding et al., 2017).
Furthermore, the knockdown of CRNDE with miR-181a-5p
showed the inhibition of cell proliferation and the reduction of
chemoresistance via the downregulation of Wnt/β-catenin signaling
(Han et al., 2017).

3.2.5 Growth arrest-specific transcript 5 (GAS5)
GAS5 is a lncRNA with tumor suppressor function.

GAS5 interacts with the intracellular glucocorticoid receptor and
regulates cellular metabolism and survival (Kino et al., 2010).
Recent findings revealed that GAS5 is suppressed in several
different cancers, and the downregulation of GAS5 was
accompanied by the advanced TNM stage and large tumor size in
CRC (Saus et al., 2016).

3.2.6 H19
H19 is a lncRNA enhanced in the early stages of embryogenesis

and suppressed after birth (Ariel et al., 1998). H19 was first identified
from the transcript of a gene cluster, H19/insulin-like growth factor 2
(IGF2), more from the maternal allele than the paternal (Chen et al.,
2017). H19 regulates several cancer-associated proteins, including
ubiquitin E3 ligase family, a retinoblastoma tumor suppressor, and
calneuron 1 (Schwarzenbach, 2016). Furthermore, the methylated
region of H19 and the upstream of IGF2 exon three were
hypomethylated (Cui et al., 2002). The upregulation of H19 is

correlated with the high TNM stage and poor prognosis (Chen
et al., 2017).

3.2.7 HOX transcript antisense intergenic RNA
(HOTAIR)

HOTAIR binds with polycomb repressive complex 2 (PRC2) in
trans and changes cellular gene expression and epigenetics (Dou et al.,
2016; Xie et al., 2016). HOTAIR is upregulated in epithelial cancer
cells, inducing histone methylation and cancer cell invasion (Svoboda
et al., 2014). Furthermore, HOTAIR upregulation is closely related to
the proteins associated with the malignancy of CRCs, such as
angiogenesis, invasion, metastasis, and high tumor stage,
i.e., E-cadherin, vimentin, and matrix metalloproteinase (Luo et al.,
2017). The correlation of HOTAIR with cancer malignancy and poor
prognosis is related to CRC and several cancers like pancreatic cancer,
epithelial ovarian cancer, mammary cancer, and hepatocellular
carcinoma (Deng et al., 2017). A study showed the correlation
between HOTAIR and poor prognosis using CRC blood, and tissue
samples suggested this lncRNA as a prognostic marker for sporadic
CRC (Svoboda et al., 2014).

3.2.8 Metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1)

MALAT1 regulates alternative splicing through pre-mRNA
binding to localize transcriptionally active genes in chromatin with
serine/arginine splicing factor (Schmitt and Chang, 2016).
MALAT1 activates AKAP-9, which leads to the malignancy of
several cancers, such as melanoma, breast cancer, thyroid cancer,

TABLE 1 lncRNAs associated with colorectal cancers.

lncRNA Characters Level Mechanisms in CRC References

CASC11 Metastasis, proliferation ↑ c-Myc binding to the promoter region of CAS11 to
increase histone of promoter; Interaction with
hnRNP-K to activate WNT/β-catenin

Fabian et al. (2023)

CCAT1 Cancer development, invasion, metastasis,
carcinogenesis

↓ Superenhancer cMyc transcribes CCAT1 Kam et al. (2014); Ye et al. (2015); Abedini et al.
(2019); Xue et al. (2021)

CCAT2 Pathogenesis ↑ Regulation of miR-17-5p, miR-20a, MYC;
Modification of WNT signaling

Ma et al. (2015)

CRNDE Prognostic marker ↑ Correlation with IRX5 mRNA expression Xu et al. (2014); Liu et al. (2016); Ding et al.
(2017)

GAS5 Prognostic marker ↓ GAS5 is regulated by p53 Han et al. (2017)

H19 Prognostic marker ↑ Regulation of CDK8-β-catenin, essential Rb-E2F
signaling pathway; Recruitment of eIF4A3;
Mediating MTX resistance through WNT/β-
catenin signal activation; Modification of EMT;
Functioning as a ceRNA for miR138, miR200a

Saus et al. (2016); Schwarzenbach. (2016); Chen
et al. (2017)

HOTAIR Carcinogenesis, prognostic marker ↑ Association with PRC2 function; Modification
of EMT

Cui et al. (2002); Meeran et al. (2010); Dou et al.
(2016); Luo et al. (2017); Song et al. (2020); Deng
et al. (2021)

MALAT1 Metastasis, proliferation ↑ Interaction with CC chemokine ligand 5;
Promotion of SFSF1 phosphorylation to enhance
AKAP-9

Yang et al. (2015); Schmitt and Chang (2016)

PCAT-1 Prognostic marker, proliferation ↑ Promotion of PRC2 Ge et al. (2013); Zhao et al. (2015); Zhao et al.
(2016)

UCA1 Carcinogenesis; chemoresistance; prognostic
marker

↑ Inhibition of miR-204-5p; Regulation of glucose
metabolism

Han et al. (2014); Bian et al. (2016); Qiao et al.
(2017)

Frontiers in Pharmacology frontiersin.org04

Sung and Hong 10.3389/fphar.2022.1050032

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1050032


oral cancer, lung cancer, and colorectal cancer, through enhanced cell
proliferation, migration, invasion, and metastasis (Yang et al., 2015).
In CRC cells, MALAT1 promotes SPRK1 expression and
SRSF1 phosphorylation, which leads to the upregulation of AKAP-
9 expression (Hu et al., 2016).

3.2.9 Prostate cancer-associated ncRNA transcript 1
(PCAT-1)

As the terminology, PCAT-1 was first identified in prostate
cancer, but this lncRNA has also been reported to be related to
CRCs’ metastasis (Zhao et al., 2016). PCAT-1 promotes the
expression of PRC2, which induces cell proliferation in cancer
cells in vitro (Smolle et al., 2014). Additionally, PCAT-1 is
involved in non-small cell lung cancer to upregulate cancer cell
proliferation, invasion, and migration (Zhao et al., 2015). In CRC,
PCAT-1 expression is highly correlated with distant metastasis,
patient survival, and prognosis (Ge et al., 2013). In a recent study,
PCAT upregulation in CRC enhanced c-myc signaling. At the
same time, CRC deficiency decreased proliferation and blockage
of the cell cycle via the suppression of c-myc and cyclins (Qiao
et al., 2017).

3.2.10 Urothelial carcinoma-associated 1 (UCA1)
UCA1 is a lncRNA with the character of oncofetal genes that are

involved in embryonic development (Han et al., 2014). However,
bladder cancer is where UCA1 is highly expressed; UCA1 has been
reported to be upregulated in CRC cells to inhibit apoptosis and
develop tumorigenesis (Bian et al., 2016). UCA1 has a critical role in
cancer biologies, such as cell transformation, proliferation, invasion,
mortality, and chemoresistance (Wang et al., 2008). Furthermore,
the UCA1 expression level is correlated with the tumor size.
Meanwhile, CRC tumor size is reduced when UCA1 is deficient
(Han et al., 2014).

4 Targeting lncRNAs with natural
products for potential CRC treatment

Natural products and their derivatives have been widely studied
and applied as anticancer agents for several decades (da Rocha et al.,
2001). Natural products and their derivatives have various potent
biological activities such as anticancer, anti-inflammatory, pro-
apoptotic, and antioxidant characteristics, with the potential for
chemotherapies and chemo-preventions for several cancers. They
show anticancer effects primarily through epigenetic change,
regulation of signaling pathways, and miRNA regulation in cancer
cells or tissues (Homayoonfal et al., 2021). Below we introduce several
practical natural products employed in cancer treatment targeting
lncRNAs introduced previously (Table 2).

4.1 Berberine

Berberine is a pentacyclic isoquinoline alkaloid compound isolated
from Berberis genus plants. The broad pharmacological application of
berberine includes anticancer, antidiabetic, anti-obesity, and
cardioprotective effects (Zhong et al., 2022). This compound
interacts with specific receptors, ligands, and biological enzymes
leading to anti-inflammatory and antioxidant activities (Song et al.,
2020). Like other natural products, berberine modulates lncRNAs to
inhibit cancer progression. In a recent study, the combination
treatment of berberine with gefitinib downregulated HOTAIR
function to enhance miR-34a-5p. The upregulation of miR-34a-
5pupregulatess E-cadherin, to the arrest of EMT, invasion, and
migration by SNAIL-mediated E-cadherin increase in lung cancer
cells (Zheng et al., 2020). As the effect of miR-34a-5p is involved in
colorectal cancer, berberine can be a supportive candidate to treat
colorectal cancer.

TABLE 2 Regulation of lncRNA by natural products in CRC.

Natural compound Target lncRNA Effect Targeting mechanisms References

Berberine HOTAIR ↓ Inhibition of EMT Song et al. (2020); Zhong et al. (2022)

Calycosin HOTAIR ↓ Induction of apoptosis Wu et al. (2019); Deng et al. (2021)

Curcumin H19 ↓ Inhibition of EMT, transcriptional regulation Ashrafizadeh et al. (2020)

GAS5 ↑ Transcriptional regulation Grynkiewicz and Slifirski, (2012)

HOTAIR ↓ Inhibition of migration Ashrafizadeh et al. (2020)

DIM HOTAIR ↓ Inhibition of autophagy Zhang et al. (2014)

Gambogic acid GAS5 ↑ Transcriptional regulation Lee et al. (2015); Che Hassan et al. (2018); Gao et al. (2021)

Genistein HOTAIR ↓ Transcriptional regulation, chromatin remodeling Meeran et al. (2010); Ravishankar et al. (2013)

Ginsenoside HOTAIR ↓ Inhibition of proliferation and invasion Abedini et al. (2019); Xue et al. (2021)

H19 ↓ Inhibition of proliferation and invasion Li and Qi, (2019)

Quercetin MALAT1 ↓ Transcriptional regulation Reyes-Farias and Carrasco-Pozo (2019); Zhang et al. (2019)

Resveratrol HOTAIR ↓ Transcriptional regulation, chromatin remodeling Cimino et al. (2012)

MALAT1 ↓ Induction of apoptosis Vallino et al. (2020)

GAS5 ↓ Inhibition of proliferation and invasion Cimino et al. (2012)

UCA1 ↓ Transcriptional regulation Cimino et al. (2012)
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4.2 Calycosin

Calycosin (C16H12O5) is an isoflavone phytoestrogen isolated
from the dried roots of Radix astragali with several biological
effects (Wu et al., 2019). The anticancer effect of calycosin has
been vigorously studied in several different cancers, such as breast
cancer, liver cancer, colorectal cancer, and osteosarcoma (Deng et al.,
2021). In breast cancer, calycosin downregulated phosphorylation of
Akt and its downstream lncRNA, HOTAIR. This effect strongly
decreased cancer development (Chen et al., 2015). This result was
from breast cancer cell line MCF-7 downregulating EGFR and ERK1/
2 with suppressed proliferation and enhanced apoptosis. Although
MCF-7 is not a colorectal cancer cell line, the onset of colorectal cancer
shares the effect of the EGFR signaling pathway, and calycosin can be
an excellent synergetic candidate for current therapies.

4.3 Curcumin

The chemical formulation of curcumin (diferuloylmethane) is
C21H20O6. This is a polyphenol compound with bright yellow color
isolated from Curcuma longa (the rhizome of turmeric) (Ashrafizadeh
et al., 2020). This compound has been utilized as a traditional herbal
medicine in Eastern society for a long time. The unique structure of
curcumin enables suppression of ROS generation and several different
pharmacological properties such as anticancer, neuroprotective,
cardioprotective, hepatoprotective, anti-analgesic, and anti-
inflammatory effects. Since it has been reported that curcumin
targets lncRNAs, many groups have focused on this compound and
are being actively studied (Grynkiewicz and Slifirski, 2012). In a recent
study, As mentioned previously, the curcumin-pretreated cancer cells
showed the activation of GAS5 promotors, while GAS5 is
downregulated in CRC (Zheng et al., 2021). Further studies
regarding the effect of curcumin targeting GAS5 have not been
studied rigorously, but this can be an extraordinary therapeutic
approach when more preclinical and clinical studies are fulfilled.

4.4 3,3′-diinodolymethane (DIM)

DIM (C17H14N2) is a phytochemical in several cruciferous vegetables
like cabbage, broccoli, lettuce, and kale (Licznerska and Baer-Dubowska,
2016). DIM modulates various signaling pathways to induce proliferation,
cell survival, apoptosis, and angiogenesis (Zhang et al., 2014). DIM, directly
and indirectly, downregulates Akt/FOXM1 signaling pathway and
suppresses cancer progression and metastasis (Cai et al., 2015). The
downregulation of Akt/FOXM1 leads to the decreased expression of
lncRNAs, such as HOTAIR and CCAT1-L, that are highly involved in
colorectal cancers, and cancer malignancy has been regulated through this
pathway (Zinovieva et al., 2017). More vigorous studies about DIM are
required to develop CRCs, but this is a very hopeful candidate for future
therapeutics.

4.5 Gambogic acid (GA)

GA is a brownish resin and the most potent compound of
gambose, isolated from Garcinia hanburyi (Che Hassan et al.,
2018). GA has been used as a traditional medicine with various

biological activities such as anticancer, anti-inflammatory, and
antiviral effects with extremely minimal toxicity (Lee et al., 2015;
Gao et al., 2021; Xu et al., 2022). When cancer cells are treated with
GA, GAS5 expression is increased, which leads to the downregulation
of EZH2 by binding E2F4. The downregulation of EZH2 enhances
miR-101. miR-101 has a pro-apoptotic property that consequently
suppresses cancer cell invasion and progression in preclinical stages.

4.6 Genistein

Genistein (C15H10O5) is a phytoestrogen-originated isoflavone
derived from soy. Phytoestrogens are non-steroidal herbal
components with structures like estrogen functioning estrogen-like
or anti-estrogenically (Ravishankar et al., 2013). The biological
activities of genistein include tyrosine kinase inhibition, anticancer,
and antioxidants. The anticancer function of genistein affects various
cellular processes such as angiogenesis, apoptosis, and cell cycle
(Meeran et al., 2010). One of the targets of genistein to have an
anticancer effect is epigenetic changes affecting cancer-associated
genes, including lncRNAs (Imai-Sumida et al., 2020). Genistein
downregulates EED levels in PRC2, followed by the inhibition of
the interaction between HOTAIR and PRC2. The suppression of
HOTAIR/PRC2 recruitment to the promoter region of ZO-1 leads
to the increased transcription of ZO-1. The other effect of genistein is
the inhibition of SNAIL transcription by suppressing the interaction
between HOTAIR and SMARCB1. The reduced HOTAIR interaction
with chromatin remodeling factors leads to the repression of
HOTAIR/chromatin remodeling pathways, followed by the
downregulation of cancer malignancy (Imai-Sumida et al., 2020).

4.7 Ginsenoside

Ginsenoside is one of the steroid glycoside fractions, triterpene saponin
from ginseng roots (Nakhjavani et al., 2019). Ginsenoside is not a single
compound, butmore than tenmolecules have been identified. According to
the number of hydroxyl groups in its chemical structure, ginsenoside is
subcategorized into two major classes. The first group is protopanaxatriol
(PPT), with six positions occupied by hydroxyl groups, and the next group
is protopanaxadiol (PPD), with six positions not occupied by hydroxyl
groups. Themembers of PPT areRe,G1, Rg2, andRh1 andof PPDareRb1,
Rb2, Rb3, Rc, Rd, Rg3, and Rh2. Ginsenoside molecules have various
biological activities showing slight differences between each molecule (Xue
et al., 2021). It has been studied that CCAT1 is highly expressed in several
CRCs affecting cell proliferation, invasion, and migration (Abedini et al.,
2019). Especially CCAT1 suppression by ginsenoside-Rg3 reduced the
signaling of the PI3K/Akt pathway, followed by suppression of CRC
development (Li and Qi, 2019). In addition, ginsenoside Rg3 suppressed
cancer development by suppressingHOTAIR in hepatoma (Pu et al., 2021).

4.8 Quercetin

Quercetin (3,5,7,30,40-pentahydroxyflavone) is a natural flavanol
ubiquitously found in fruits and vegetables, which can be found as one
of the easiest in the western diet (Hertog and Hollman, 1996; Boots
et al., 2008). Various biological activities of quercetin include
anticancer, antidiabetic, anti-inflammatory, and antioxidant effects
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(Carullo et al., 2017). Arresting cell cycle, anti-proliferation, and
apoptosis functions are remarkable anticancer effects of quercetin.
Furthermore, it has been reported that various lncRNAs are affected
by quercetin in cancer cells and tissues (Reyes-Farias and Carrasco-
Pozo, 2019). A study reported quercetin could alter the expression of
240 lncRNAs along with 1,415 mRNAs, 83 miRNAs, and
131 circRNAs through the analysis of HCT-116 colorectal cancer
cell line with MTS assay and flow cytometry (Zhang et al., 2019).
Additionally, quercetin suppresses the expression of MALAT1 and
MIAT, followed by decreased cell survival (Esteghlal et al., 2021). So,
in experimental studies, quercetin may be applied to CRCs to
inactivate PI3K/Akt signaling pathway by reducing the expression
of lncRNAs, MALAT1, and MIAT.

4.9 Resveratrol

Resveratrol (C14H12O3, trans-3,5,4′-trihydroxystilbene) is a
natural polyphenolic phytoalexin isolated from various foods,
including red wine, berries, grapes, nuts, and else (Bishayee, 2009).
Resveratrol shows anticancer effects targeting multiple signaling
molecules leading to the suppression of cancer cell viability and
growth with minimal toxicity (Cimino et al., 2012). Resveratrol
increases tumor suppressive lncRNAs such as GAS5, HULC,
UCA1, and PVT1 in several cancers (Vallino et al., 2020).
Furthermore, resveratrol decreased MALAT1 expression, followed
by the Wnt/β-catenin signaling pathway reducing tumor
progression in CRC, showing a reduced transformation, invasion,
and metastasis, and further studies may lead to the development of a
new therapeutic candidate (Ji et al., 2013).

5 Conclusion and future perspectives

Discovery and studying novel therapeutic reagents are extremely
difficult and time-consuming. Many methodologies and strategies have
been applied in cancer biology for a long time, which will continue forever
as long as humans exist on earth. These difficulties are from various
cancer types, locations, oncogenic mechanisms, and others. People have
already developed various effective chemo-reagents to treat and prevent
cancers, but most are partially effective. Furthermore, the mediocre effect
and inappropriate potential of chemotherapies could be the reason for
cancer recurrence. The paradigm shift from sole chemotherapy to
chemoprevention with chemotherapy was first elected in breast cancer.
Further desperate trials of chemoprevention and chemotherapies have
been made to understand detailed signaling molecules and pathways as
the target of effective natural products.

LncRNAs are one of the non-protein coding RNA classes that affect
several cancer-related cellular processes such as proliferation,
differentiation, and apoptosis. After many lncRNAs have been known
as tumor suppressive or oncogenic, many groups started focusing on small
molecules such as phytochemicals and natural compounds to treat cancer
targeting those lncRNAs. We discussed several lncRNAs related to CRC
and possible natural products to regulate those lncRNAs. The biggest
hurdles to applying these natural compounds for chemotherapy are
experiments’ challenging time and effort to confirm their activity and
clinical challenges. Neither laboratory experiment nor clinical exam is
enough to develop a new chemotherapeutic natural compound. Proper
animal experiments should follow up for in vivo analysis to prove and

support the preliminary in vitro data for establishment. Many of the
lncRNAs and natural products discussed in this review have not been
clearly studied in CRC; however, considering the many sharing
mechanisms of CRC with other cancers, the lncRNAs and natural
products have a high chance of being one of the critical factors in onset
and progression in CRCs.

Additionally, low bioactivity, short availability, poor solubility,
and a delivery methodmust be considered not to restrict the efficacy of
natural products in clinical studies and in vivo experiments. Successful
collaborative studies by nanotechnologists, chemists, biologists, and
physicians will promise to overcome the hurdles to developing natural
products for applicable chemotherapeutics. Another recommended
method to optimize the stated approaches is electing the combination
method. Various mixture therapies have been studied and tried in
current cancer biology to treat cancer, and the combination of various
natural products or with other anticancer agents as well as adjuvants
with proved to have low toxicity. Since most of the studies were carried
out experimentally and they show discrepancies in results by groups, it
is important to study more about lncRNAs and natural products to
standardize as a diagnostic marker and therapeutic purpose.

The concept of transitioning chemotherapy to chemoprevention
has been first suggested in treating breast cancer to prevent recurrent
cancers. Afterward, several studies have been made for a while to
detect proper signaling molecules as a target of functional natural
compounds. More detailed biochemical studies should be conducted
to reveal the correct mechanisms to prevent unwanted actions of
natural products in the future.

Natural products are highly available, inexpensive, and low toxic,
with minimal side effects. These phytochemicals can be regarded as an
innovative and promising field for developing new therapeutic
strategies to overcome colorectal cancer and other cancers with
minimal recurrence after treatment.
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