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Osteoporosis (OP), a systemic bone disease that causes structural bone loss and
bone mass loss, is often associated with fragility fractures. Extracellular vesicles (EVs)
generated bymammalian and gut bacteria have recently been identified as important
mediators in the intercellular signaling pathway that may play a crucial role in
microbiota-host communication. EVs are tiny membrane-bound vesicles, which
range in size from 20 to 400 nm. They carry a variety of biologically active substances
across intra- and intercellular space. These EVs have developed as a promising
research area for the treatment of OP because of their nanosized architecture,
enhanced biocompatibility, reduced toxicity, drug loading capacity, ease of
customization, and industrialization. This review describes the latest development
of EVs derived from mammals and bacteria, including their internalization, isolation,
biogenesis, classifications, topologies, and compositions. Additionally,
breakthroughs in chemical sciences and the distinctive biological features of
bacterial extracellular vesicles (BEVs) allow for the customization of modified
BEVs for the therapy of OP. In conclusion, we give a thorough and in-depth
summary of the main difficulties and potential future of EVs in the treatment of
OP, as well as highlight innovative uses and choices for the treatment of
osteoarthritis (OA).
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1 Introduction

Osteoporosis (OP), a systemic bone disease that causes increased bone fragility and fracture
susceptibility, is characterized by a decrease in bone mass and the loss of bone microstructure
(Prestwood et al., 1995; Brown, 2017; Liu et al., 2022a). The two most prevalent kinds of primary OP
are postmenopausal OP, caused by an inadequate estrogen supply and senile OP brought on by aging
(Ensrud and Crandall, 2017). Around 200 million individuals worldwide have OP, and the most
prevalent problem, OP fracture, affects 20% of men and 50% of postmenopausal women during their
lifespan. This significantly reduces patients’ lifestyle quality and puts a heavy economic strain on society
(Black andRosen, 2016; Chen et al., 2022a). In recent decades, numerous efforts have beenmade in the
treatment of OP owing to its widespread occurrence and complications (Li et al., 2020). The dynamic
equilibrium between bone synthesis (osteoblasts) and bone resorption (osteoclasts) has an impact on
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bone mass the most (Cui et al., 2020). Consequently, anabolic medications
(such as synthetic parathyroid hormone) and antiresorptive therapies (such
as calcitonin, bisphosphonates, denosumab, and estrogens) are being used
to treat OP (Muraca and Cappariello, 2020; Hu et al., 2021). However, the
potential applications of these drugs have been constrained by their
bioavailability and long-term toxicity. Thus, it is an urgent requirement
to generate and develop a more reliable and efficient approach to
overcome OP.

2 Extracellular Vesicles (EVs): An
innovative strategy to reverse
osteoporosis

Pharmacological treatments for OP target to sustain homeostasis
of the bone remodeling unit. Bone anti-resorptive and bone anabolic
agents are available in clinical management.

2.1 Properties of EVs

EVs, a heterogeneous family of membrane-limited vesicles
originating from the endosome or plasma membrane, can be
divided into three types according to size (Abels and Breakefield,
2016). Apoptotic bodies, ranging from 800 to 5,000 nm, are produced
by shedding cells during apoptosis, while microvesicles with a
200–2000 diameter are produced by the plasma membrane in a
budding manner. Besides, exosomes (40–200 nm) are secreted from
intracellular multivesicular bodies fused with the cytoplasmic
membrane (He et al., 2021; Zhang et al., 2022). Among these EVs,
exosome is the most critical one because of the therapeutic potential of
exosomes from certain cell types (Lu et al., 2021a).

2.2 Epigenetic regulation and EVs

Epigenetics is the regulation of gene expression or phenotype without
altering the sequence of the structural DNA and involves histone
modifications, DNA methylation, and RNA-based mechanisms
(Tzouvelekis and Kaminski, 2015; Yang et al., 2015; Yang et al., 2020a).
Non-coding (nc) RNAs, including microRNAs (miRNAs), long non-
coding (lnc) RNAs, and circular (circ) RNAs, are reported to play a
significant role in epigenetic modifications (Muraca and Cappariello, 2020;
Li et al., 2021). And ncRNAs can affect bone metabolism by regulating cell
processes, including proliferation, differentiation, apoptosis, and
autophagy. A study revealed that 260 circRNAs, 70 lncRNAs, and
13 miRNAs were differentially expressed between patients with
postmenopausal OP and healthy controls (Jin et al., 2018). In addition,
recent studies declared that ncRNAs could play an essential role inOP after
delivering to recipient cells using EVs as a carrier (Cao et al., 2019; Tu et al.,
2019; Zhang et al., 2022).

2.3 Different cell-derived EVs and
osteoporosis

2.3.1 MSC-derived EVs
Recently, mesenchymal stem cells (MSCs) have been regarded as

potential approaches to treat different diseases based on their capacity

for self-renewal, paracrine production, and immunomodulation.
MSCs can be isolated from bone marrow, peripheral blood, adipose
tissue, umbilical cord, dental pulp, endothelial polyps, placenta, and
Wharton’s jelly (Seshareddy et al., 2008; Can and Balci, 2011;
Abbaszadeh et al., 2020a; Abbaszadeh et al., 2020b; Huldani et al.,
2022). Ge et al. revealed the osteogenic induction and osteoporotic
effect of human umbilical cord MSC (HucMSC)-derived exosomes
and found two critical miRNA (hsa-miR-2110 and hsa-miR-328-3p)
which associated with bone differentiation (Yahao and Xinjia, 2021).
According to Qi’s study, exosomes secreted by MSCs derived from
human induced pluripotent stem cells (hiPSC-MSC-Exos) could
increase mRNA and protein expression of (Osteoblast) OB-related
genes in bone marrow MSCs derived from ovariectomized rats.
Moreover, hiPSC-MSC-Exos significantly enhanced bone
regeneration and angiogenesis in ovariectomized rats (Qi et al.,
2016). Based on RNA sequencing results, Wharton’s jelly-MSC-EVs
enriched miR-21, miR-29, miR-221, and let-7a, which were corrected
to BMP and PI3K/AKT signaling pathways for osteoporotic treatment
(Lu et al., 2021b). In addition, MSCs could regulate immune cells’
function, inflammation, and the microenvironment (Malekpour et al.,
2022).

In patients with OP, sarcopenia is often associated with (Dai et al.,
2022; da Silva et al., 2017; Yoshimura et al., 2017). Bone marrow
mesenchymal stem cells (BMSCs), as multipotent cells with self-
renewing activities, can differentiate along have osteogenic lineage
in response to stimulation by environmental factors. In addition, the
senescence and decreased osteogenic abilities of BMSCs play critical
roles in OP (Zhang et al., 2020a; Dai et al., 2022). EVs are regarded as
an intrinsic systematic delivery vehicle by transporting cargos of
ncRNAs, lipids, and proteins, especially miRNAs which are
important for various biological processes such as bone formation,
resorption, remodeling, and bone cell differentiation (Zhang et al.,
2020a; Zhang et al., 2020b; Dai et al., 2022).

According to previous studies, miR-22-3p delivered by BMSC-
derived EVs could induce inhibition of the MYC/PI3K/AKT pathway
to promote osteogenic differentiation (Zhang et al., 2020a). Peng et al.
also found that BMSC-EVs could deliver miR-196a to enhance
osteoblastic differentiation by activating the Wnt/β-catenin
pathway (Peng et al., 2021). In addition, miR-935, miR-29a, miR-
34a, miR-34c, miR-31a-5p, and miR150-3p could also alleviate OP
progression (Xu et al., 2018; Sadanand Fulzele et al., 2019; Yang et al.,
2019; Lu et al., 2020; Zhang et al., 2021a; Qiu et al., 2021).

2.3.2 OC- and OB-derived EVs
OP, as a metabolic disorder, is induced by the imbalance of bone

remodeling (Cao, 2011; Deng et al., 2015; Yuan et al., 2018). Bone
remodeling is accomplished via the precise coordination of the
activities of the two specific cells: bone-forming osteoblasts and
bone-resorbing osteoclasts (Yuan et al., 2018). The crosstalk
between (osteoclasts) OCs and (osteoblasts) OBs is critical in the
regulation of bone homeostasis (Yuan et al., 2018). Previous studies
revealed that OC could regulate OB activity either by direct cell-cell
contact or the secretion of cytokines. Thus, in recent years, many
researchers have also put focused on OB and OC derived EVs
(Holliday et al., 2017; Chen et al., 2018; Yuan et al., 2018; Zhu
et al., 2020a).

A study demonstrated that EVs isolated from OCs are paracrine
regulators of osteoclastogenesis. OCs express RANKL on their surface.
And RANKL binds with RANK on the surface of monocytes to
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stimulate the differentiation of monotype into OCs. Whereas OBs
express OPG, which binds RANKL to inhibit its binding to RANK
(Huynh et al., 2016). Deng et al. showed that RANKL enriched-EVs
are generated from OCs and stimulated OC formation by engagement
of RNAK (Deng et al., 2015). Yang et al. showed that OC-derived miR-
23a-5p-containing exosomes could efficiently suppress osteogenic
differentiation by inhibiting Runx2 and promoting YAP1-mediated
MT1DP (Yang et al., 2020b). Sun et al. reported that OCs secrete
microRNA-enriched exosomes, by which miR-214 is transferred into
OBs to inhibit their function. In addition, OC-specific miR-214
transgenic mice expressed higher circulating miR-214 and
downregulated OC activity (Sun et al., 2016). Moreover, another
study also confirmed that OC-derived exosomal miR-214-3p could
mediate osteoclast-to-osteoblast communication by inhibiting
osteoblastic bone formation (Li et al., 2016a).

For EVs from OBs, Wei et al. demonstrated that EVs released by
OBs at the mid-to-late differentiation stage markedly enhanced
osteogenesis (Wei et al., 2019). Cui et al. demonstrated that
mineralizing OB-derived exosomes could obviously influence
miRNA profile and partially cause a change in the expression of
miRNA in recipient ST2 cells (Wang et al., 2021). Importantly, Luo
et al. found that senescent OB-derived exosome-mediated miR-139-5p
regulated endothelial cell function (including upregulation of
senescence and apoptosis and inhibition of proliferation and
migration) via the exosomal pathway (Lu et al., 2021c).

2.3.3 Osteocyte-derived EVs
Except for BMSCs, OCs, and OBs, bone-derived EVs can also be

secreted by osteocytes (Lyu et al., 2020). Osteocytes, as
mechanosensitive cells, have regulatory effects on loading-induced
bone formation via the secretion of paracrine factors (Eichholz et al.,
2020). Another research showed that exosomes secreted by MLO-Y4
osteocyte cells exposed to mechanical strain (Exosome-MS)
contributed to HPDLSC proliferation and osteogenic differentiation
through PTEN/AKT and BMP2/Runx2 pathways. Moreover, these
exosomes expressed higher miR181b-5p which is closely related to cell
proliferation, apoptosis, and immune inflammation (Liu et al., 2019;
Wang et al., 2019; Lv et al., 2020). Similarly, Eichholz et al. illustrated
that osteocyte-derived EVs with pro-osteogenic potential could
enhance bone regeneration and repair in diseases such as OP
(Eichholz et al., 2020).

2.3.4 Macrophage-derived EVs
Macrophages (Mφs), as an important part of innate immunity,

depending on the environment, can be divided into two types: the
anti-inflammatory phenotype (M2) and the pro-inflammatory
phenotype (M1). As we know, chronic inflammation is one of
the direct inducers of OP (Ginaldi et al., 2005; Kong et al., 2019; Liu
et al., 2021a; Yu et al., 2021). According to one study, osteolysis
occurs in mice when Mφs become polarised toward the
M1 phenotype (Gao et al., 2021). Based on microarray analysis,
miR-98 is a candidate cargo of the M1 Mφs-EXOs and led to bone
loss and OP progression through the DUSP1/JNK pathway (Yu
et al., 2021). There is research revealed that all Mφ subtypes (M0,
M1, and M2) can promote the osteogenic differentiation of BMSCs,
and M1 Mφs may be critical to the early phases of osteo-induction
and bone regeneration, while M2 Mφs may foster continued bone
regeneration (Chen et al., 2020a; Kang et al., 2020; Liu et al., 2021a;
Song et al., 2022a).

Exosomes can be released by Mφs cells during the regulation of
inflammatory responses. Liu et al. demonstrated that both M1 and
M2 Mφ-exosomes upregulated osteogenesis of BMSCs (Liu et al.,
2021a). One miRNA sequencing analysis of the exosomes showed that
Mφs-derived exosomal miR-3473e plays a pivotal role in the
promotion of osteo-/angio-genesis via upregulation of the
Akt1 gene (Wang et al., 2022a). Interestingly, Zhang et al. found
the miR-144-5p levels were highly enriched in exosomes derived from
bone marrow-derived macrophages in type 2 diabetes, and it could be
transferred into BMSCs to regulate bone regeneration via Smad1
(Zhang et al., 2021b).

M1 Mφ-exosomes promote osteogenesis of BMSCs through
microRNA-21a-5p at the early stage of inflammation (Liu et al.,
2021a). Moreover, miR-5106, miR-26a-5p, and miR-22-3p derived
from M2 Mφ-exosomes are also reported as targets to promote
osteogenic differentiation in BMSCs and MSCs (Xiong et al., 2020;
Bin-Bin et al., 2022; Liu et al., 2022b). Besides, Mg2+-mediated Mφs
could promote the osteogenic differentiation of BMSCs via the
autophagy pathway by reducing miR-381 in macrophage-derived
exosomes (Zhu et al., 2022).

2.3.5 Endothelial cell-derived EVs
Research show abnormal angiogenesis and excessive osteoclastic

activity would encourage aberrant bone resorption that is connected to
OP (Kusumbe et al., 2014; Ramasamy et al., 2014; Fan et al., 2017; Farr
et al., 2017; Song et al., 2019). It was reported that there is a positive
correlation between blood vessel density and osteogenesis adversely
associated with bone resorption (Sivaraj and Adams, 2016; Huang
et al., 2018). Endothelial cells (ECs) are located in the inner layer of the
vascular vessel and are frequently secreting substances due to their
active properties (Seton-Rogers, 2014). Studies have further shown
that EC-exos contain a variety of chemicals relevant to cell migration,
proliferation, and vascular formation. EC-exos could suppress OP
progression via delivering miR-155 (Todorova et al., 2017; Song et al.,
2019). Wilner et al. showed that EVs containing miR-31 were secreted
from senescent ECs and presented an inhibitory effect on osteogenic
differentiation by counteracting the Frizzled-3 gene (Weilner et al.,
2016). In addition, EC-Exos delayed the progression of glucocorticoid-
induced OP by inhibiting apoptosis and ferroptosis in
dexamethasone-stimulated OBs (Yang et al., 2021).

As reported, endothelial progenitor cells (EPCs) can also influence
osteoclastogenesis via EVs. Evs derived from EPCs could prevent
glucocorticoid-induced OP in mice by suppressing the ferroptosis
pathway in OBs (Cui et al., 2019; Lu et al., 2019). Besides, Cui et al.
illustrated that EPC-exos promoted osteoclastogenesis by the Lnc-
MALAT-1/miR-124 pathway (Cui et al., 2019).

3 Gut microbiota

In recent years, the study of microbial EVs has also begun to
receive attention. The skin and mucosal surfaces of the human body
are colonized by a large number of microorganisms, which is
particularly important in the gut. Our understanding of the
connection between gut microbiota (GM) and human health has
considerably increased because of the National Institutes of Health-
funded Human Microbiome Project (Lloyd-Price et al., 2017). Along
the length of the gastrointestinal tract, a complex, dynamic microbial
community, including bacteria, viruses, archaea, and eukaryotes,
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reaches its highest density in the colon (Lozupone et al., 2012). In the
human stomach, 1,150 different bacterial species have been found,
with 160 different species on average for each person (Lozupone et al.,
2012). More than 70% of the gut bacteria belong to the two phyla
Bacteroidetes and Firmicutes, other phyla such as Proteobacteria,
Verrucomicrobia, Fusobacteria, and Actinobacteria are only present
in small amounts (Eckburg et al., 2005; Sultan et al., 2021).

The gut flora has a substantial impact on human health. They play
a crucial part in the growth of the immune system (Lee and
Mazmanian, 2010). Additionally, they break down indigestible
plant fibers to produce vital metabolites like short-chain fatty acids
(SCFAs) (Tremaroli and Backhed, 2012). Clostridial clusters IV and
X1Va, Bacteroides, and Bifidobacterium, dominate the SCFA
production (Martens et al., 2011; Sultan et al., 2021). The three
main SCFAs produced by the microbiota are propionate, acetate,
and butyrate. In colonocytes, butyrate serves as the predominant
energy source, while acetate and propionate are substrates for
lipogenesis and gluconeogenesis in peripheral tissues (Wolever
et al., 1991; Mottawea et al., 2016). SCFAs also regulate how well
the gut barrier is functioning. For instance, butyrate increases the
production of proteins linked to tight junctions (Bordin et al., 2004).
In addition to the colonic fermentation of dietary fibers, the control of
the metabolism of choline, bile acid metabolism, and insulin resistance
are a few other host metabolic pathways that the GM interacts with
(Tremaroli and Backhed, 2012).

The host senses bacterial metabolites as part of the microbiota-
host interaction. Importantly, studies demonstrate that human
commensal EV mediates immunological control and disease
prevention (Shen et al., 2012). We highlight what is currently
known about the roles of bacterial extracellular vesicles (BEVs) on
the health of the host as a vehicle for moving bioactive payload (such

as miRNA, DNA, mRNA, proteins, lipids, and carbohydrates), as well
as their potential function as molecular pathways in Figure 1.

4 Bacterial EVs (BEVs)

In the intestinal ecosystem, the two-way communication between
microbiota and host does not involve direct cellular contact. Both
microbiota and host-derived EVs are key players in this interkingdom
crosstalk. There is now growing evidence that bacterially secreted
vesicles mediate microbiota function by translocating and delivering
effector molecules that regulate host signaling pathways and cellular
processes into host cells. Emerging evidence suggests that GM is
essential for maintaining bone homeostasis and preventing the
onset of OP (Xu et al., 2017). According to their contribution to
preserving human health, gut microorganisms can be classified as
harmful bacteria (probiotics), beneficial bacteria, and neutral bacteria
(Gentile and Weir, 2018). Probiotics are recognized as live
microorganisms by the Food and Agriculture Organization of the
United Nations (FAO) and the World Health Organization (WHO).
They are beneficial for the host when supplied in sufficient numbers.
For example, probiotics have been demonstrated to reduce OP (Song
et al., 2022b). Notably, direct cell interactions are not necessary for
probiotics and hosts to communicate. There is mounting evidence that
these probiotic EVs modify host signaling pathways and deliver
bioactive materials to host cells to control the function of distant
organs (Liu et al., 2022a; Chen et al., 2022b; Liu et al., 2022c; Liu et al.,
2022d).

BEVs are non-reproducible phospholipid bilayer nanocarriers that
are released by most bacteria. They provide communication between
bacteria and their hosts by providing various compounds involving

FIGURE 1
The roles of bacterial extracellular vesicles (BEVs) on the health of the host as a vehicle for moving bioactive payload (such as miRNA, DNA, mRNA,
proteins, lipids, and carbohydrates) and their potential function.
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metabolites, proteins, lipids, and nucleic acids. As a result, they have a
significant impact on the regulation of physiological and pathological
processes (Zihao Ou et al., 2022). Owing to their nanosized
dimensions, drug loading capacity, cell-free systems, low toxicity,
and superior biocompatibility, BEVs, particularly probiotic EVs,
have developed into an effective platform for biological applications
(Witwer et al., 2021). The advantages of rapid bacterial growth and
maturation in high-density cultures (fed-batch fermentation) allow for
large-scale manufacture of BEVs, compared to the low extraction rates
of mammalian EVs (MEVs), which are very low (Liu et al., 2018; Liu
et al., 2020a; Liu et al., 2020b). Additionally, breakthroughs in
synthetic biology and the distinctive biological pathways of BEVs
allow for the customization of modified BEVs for the therapy of OP
(Service, 2014; Toyofuku et al., 2019). Thus, the gut-bone axis system
may be significantly impacted by the use of both natural and
engineered BEVs, which would effectively manage the onset and
progression of OP. At the same time, there are some difficulties
with the clinical application of EVs, mainly in terms of yield and
targeting. It is difficult to obtain pure exosomes from natural sources,
and there is a wide range of exosome sources. Whether all exosomes
from various sources can be obtained by a continuous extrusion of
cells to obtain exosome-mimicking nanovesicles and whether their
structural integrity and physiological activities are the same as those of
natural exosomes still need to be further investigated. Although
progress has been made in targeting modifications, the in vivo
environment is complex, and it is uncertain whether the modified
exosomes will still have the desired targeting properties once they
enter the body. Therefore, targeting modifications of exosomes is still a
major focus of research.

BEVs are lipid nanostructures (about 25–300 nm) derived from
parental bacterial cells and are found not only in prokaryotes but
also in all living domains, such as fungi, protozoa, and plant cells.
We illustrate the biogenesis and composition of EVs derived from
eukaryotic host cells (host EVs), gram-negative bacteria (outer
membrane vesicles, OMVs), and gram-positive bacteria
(membrane vesicles). Generation of EVs by host cells can occur
via outward budding of the plasma membrane, resulting in
microvesicles. Alternatively, inward budding of the endosomal
membrane results in multivesicular endosomes (MVEs) with
intraluminal vesicles (Jung et al., 2021). They contain a variety
of molecular components such as nucleic acids (DNA, RNA),
proteins, lipids, and other organic substances. More recent
studies have shown that the production of BEVs can be

achieved by different biogenetic mechanisms, with some EVs
possibly originating from blistering cells and others being
secreted during cell lysis. Each of these groups of EVs contains
a “cargo” from the cell’s source: a membrane-rich cargo in the
blistering form and a membrane- or cytoplasm-rich cargo in the
lysed form. In this way, the primary mechanism for the biogenesis
of BEVs is regulated by the cellular response to the environment
and therefore affects the composition of BEVs. Table 1 summarizes
the overlapping and distinguishing characteristics of these EV
populations.

5 BEVs and immune homeostasis

The gut microbiota is considered a “hidden organ” because the
products encoded by the microbiota actively contribute to many
essential host functions. In addition to its role in nutrition,
metabolism and energy production, the gut microbiota also
regulates immune homeostasis. EVs (especially BEVs) generated
from GM are crucial for preserving gut immunological
homeostasis. A cascade of immune signaling is triggered by the
interaction of BEVs with pattern recognition receptors like NOD1,
NOD2, and TLR on immune cells. BEVs contain various copies of
microorganism-related molecular patterns, such as LPS, RNA, DNA,
periplasmic proteins, and peptidoglycan (Kaparakis et al., 2010; Soult
et al., 2013; Bielaszewska et al., 2018; Meganathan et al., 2020).
Notably, the interaction between immune cells and EVs cargo is
related to virulence and the parent stain. Proteomic research has
shown that the TLR 2 lipoprotein agonist is only present in EVs from
virulent mycobacterium strains (Prados-Rosales et al., 2011).
Additionally, the TLR-EV interaction is receptor-specific. For
instance, the cellular responses of TLR 2/1 and TLR 4 were
upregulated, but those of TLR 2/6 were suppressed, while TLR
5 was unaffected by the EVs generated by the Lactobacillus and
Bifidobacterium genera (van Bergenhenegouwen et al., 2014).
Besides, EVs’ sRNA and miRNA content have the potential to
suppress the immune system; in the instance of sRNA from the
fungus Botrytis cinerea, which silences genes to reduce plant
immunity (Weiberg et al., 2013). Additionally, anopheline
mosquito-produced microRNA (miRNA) may interfere with host
miRNA and modulate some immune responses (Arca et al., 2019),
suggesting that EVs would be used as a strategy by pathogens to
suppress the host immune system (Lee, 2019).

TABLE 1 Overlapping and distinguishing characteristics of EV populations (Jung et al., 2021).

Features Host EVs OMVs Membrane vesicles

Cellular source All eukaryotic cell types Gram-negative bacteria Gram-positive bacteria

Subcellular source Plasma membrane or multivesicular endosomes Outer membrane Plasma membrane

Size (diameter) 30–1,000 nm 20–250 nm 20–250 nm

Structure Spherical nanostructures enclosed by membrane

Release Homeostasis and during infections

Composition Adjusts upon environmental terms

Role Intra- and inter-organism/species interactions

Route of isolation For example, size exclusion chromatography or ultracentrifugation
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6 The use of natural BEVs in OP
treatment

Over the past 10 years, the interaction between GM and OP has
drawn a lot of attention (Zhang et al., 2021c; Wang et al., 2022b). The
GM, in particular probiotics, has been identified as a potential target
for the treatment of OP, such as Lactobacillus rhamnosus GG,
Lactobacillus reuteri, Lactobacillus paracasei, Bifidobacterium
longum, and Akkermansia muciniphila (AKK) (Thomas et al.,
2012; Ohlsson et al., 2014; Parvaneh et al., 2015; Li et al., 2016b;
Liu et al., 2021b). Given the importance of GM in maintaining bone
homeostasis, examining the ways in which it interacts with bone can
serve as a therapeutic platform for translational medicine. Recently, it
has been demonstrated that the secretion of BEVs, which may safely
carry numerous bioactive chemicals to distant tissues/cells, is essential
for the communication of signals between bacterial and mammalian
cells (Chen et al., 2019; Chen et al., 2020b; Chen et al., 2022b). As a
result, researchers have focused more on determining if BEV made
from GM is an important mechanism for the GM-induced regulation
of OP.

Excitingly, a novel treatment approach called Fecal Microbiota
Transplantation (FMT) delays the progression of degenerative and
chronic disorders (Hanssen et al., 2021). According to Xie et al.,
replacing aged GM (EGM) with young GM (CGM) prevented the loss
of bone strength and bone mass in ovariectomy (OVX)-induced OP
mice (Liu et al., 2021b). Transplanting CGM dramatically enhanced
the amount of AKK in OP mice, according to 16S rRNA sequencing.
Additionally, AKK given directly to OVX-induced mice dramatically
increased OP. Further investigation revealed that administration of
GW4869, a neutral sphingomyelinase inhibitor, interferes with the
secretion of BEVs, and the anti-osteoporotic effects of AKK were
dramatically reduced.

Accordingly, the intervention of OVX mice with BEVs derived
from AKK can have effects on OBs that are similar to those of their
parent bacteria, promoting OB growth and inhibiting OC activity,
suppressing the loss of bonemass, strength and the deterioration of the

bone microarchitecture (Figure 2). Although Xie et al. did not examine
the precise essential mechanisms by which BEVs produced from AKK
enhance OP, multi-omics sequencing of BEVs could help to solve this
problem and modifying the development of future modified BEVs.

Nandakumar et al. recently showed that BEVs produced from the
intestinal strain Proteus mirabilis (PM) suppress osteoclastogenesis
and bone resorption (Wang et al., 2022c). In particular, miRNA and
mRNA sequencing showed that BEV from PM significantly affected
apoptotic signaling pathways andmitochondrial function. Specifically,
the expression of Bax, B-cell lymphoma-2, cytochrome C, and
caspase-3 was upregulated, and miR-96-5p was downregulated,
while intracellular ROS levels and mitochondrial membrane
potential were increased. Moreover, OVX-induced bone loss in OP
mice was reduced by PM-derived BEVs (Figure 3). The molecular
mechanism of novel BEVs with GM osteoprotective activity was
demonstrated by histological sequencing and applied to the clinical
treatment of OP patients.

These findings revealed a novel way of gut-bone axis mediation by
intestinal bacteria, providing the potential for the use of transgenes
(particularly probiotics) and their functional BEVs for the treatment of
OP and OP fractures. In addition, the usage of naturally occurring
BEVs created by genetic engineering will grow in popularity as a field
of study. Further enhancing the treatment efficacy of these BEVs for
OP by the application of genetic engineering approaches.

6.1 BEVs future perspectives

The possibility of treating OP through natural BEVs was
mentioned above, and the benefit of BEVs in the treatment of
systemic skeletal disorders like OP has shown tremendous promise.
BEV-based therapies are a more favorable strategy for OP than
parental bacteria, and probiotics, in particular, have been shown to
control the onset and disease progression. This is because of the
nanosized structures, great biocompatibility, unique cell-free system,
and non-reproducible properties of BEVs. By controlling the

FIGURE 2
OP is treated with natural BEVs. The direct intervening OVX animals shown in the schematic diagram may operate similarly to their parent bacteria in
promoting osteoblast growth and suppressing osteoclast activity, suppressing the loss of bone mass and strength, and the degeneration of the bone
microarchitecture. Inhibitors of neutral sphingomyelinases, such as GW4896, are used to treat the gut microbiota of youngsters and the elderly (Liu et al.,
2021b).
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endocrine, immunological, and intestinal metabolites, the gut-bone
axis has been identified as a possible target for the therapy of OP
(Tyagi et al., 2012; Sharon et al., 2014; Zhang et al., 2021c). For the gut-
bone axis, BEVs have steadily evolved into a very important
communication tool. In light of this, probiotics such as AKK,
Bifidobacterium spp., and Lactobacillus spp. have been
demonstrated to work well against OP and release BEVs that may
be more suitable for OP treatment.

Both organic and synthetic BEVs are possibilities for OP treatment.
BEVs have developed gradually into a critical communication tool for the
gut-bone axis. As a result, using naturally occurring BEVs made from
these bacteria is a favored method for treating OP in addition to the
documented microorganisms, particularly probiotics. Furthermore, two
engineering techniques can be used to create therapeutic BEVs: parental
engineering strains and engineering natural BEVs. The improved features
of these modified BEVs, such as low toxicity, high yield, bone targeting
capability, and bone healing capacity, enable a wider range of treatment
options for OP.

These organic BEVs offer a great foundation for the management
of OP. However, BEVs have several drawbacks, such as limited
therapeutic efficiency and poor targeting capacity, which may
necessitate substantial dosages in order to ensure efficacy. Thanks
to developments in synthetic biology, it is now possible to adapt
multifunctional strains to produce extremely effective BEVs for OP
treatment. In addition to engineering the parental strains, BEV-based
engineering approaches also provide a wide range of functionalities for
BEVs. It is possible to create BEVs with a variety of capabilities (high
productivity, low toxicity, bone-targeting ability, and bone-therapeutic
ability), which is a viable platform for OP treatment, according to the

engineering approaches for parental strains and BEVs. Currently,
intravenous injection is the major method used to treat systemic
disorders caused by BEVs (Chen et al., 2020c; Chen et al., 2022b; Li
et al., 2022), and the only route of administration is rare (Liu et al.,
2021b). Oral delivery is typically a safer therapeutic option than an
intravenous injection, with higher patient compliance and reduced
medical expenses (Taddio et al., 2012; Vela Ramirez et al., 2017). The
complicated gastric environment limits the oral delivery of BEVs.
Dopamine polymerization-mediated decoration was created by Liu
et al. (Pan et al., 2021) to shield probiotics from bile salts and stomach
acid. Similar decorating platforms can be created to guarantee BEVs’
oral effectiveness and increase their effectiveness in treating OP.

Interestingly, a team of researchers demonstrated an oral symbiotic
bacterial approach based on BEVs (Yue et al., 2022). They found that by
interacting with immune cells in the lamina propria, BEVs produced from
intestinal bacteria can cross the intestinal epithelial barrier and result in
immunomodulation. After oral treatment of intestinal commensal
bacteria (with araBAD promoter) and arabinose, the bacteria in the
intestine controlled the synthesis of BEVs with target antigens (araBAD
promoter inducer). These modified BEVs distributed the stimulant
chemicals after crossing the gut epithelial barrier. Similar research also
showed that OPmice had significantly lower levels of immune cells called
Treg, which have been shown to can improve bone mass and prevent OC
development by downregulating the creation of RANKL (Zhu et al.,
2020b; Ren et al., 2021), an important target in the development and
activation of OCs (Wan et al., 2018; Chen et al., 2020d). Therefore, the
administration of oral commensal bacteria approaches based on BEVs to
give stimulatory compounds to increase Treg proliferation is an effective
way for OP treatments (Campbell et al., 2020; Fu et al., 2022).

FIGURE 3
BEVs produced from Proteus mirabilis alleviate bone loss in OP. Administration of PM-derived BEVs reduced bone loss in OVX-induced OP mice via the
regulation of miR-96-5p/Abca1 pathways.
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Notably, BEVs will be an effective tool for controlling OP
fracture. Based on clinical findings, the research team proposed
a “three-in-one” therapy strategy consisting of active anti-OP
nanocarriers to optimize bone healing and improve bone
implantation (Chen et al., 2022c). In addition to serving as anti-
OP nanocarriers, BEVs can work in conjunction with various
biomaterials to hasten the healing of OP fractured bones,
including metal scaffolds, hydrogels, and mesoporous inorganic
biomaterials (Mora-Raimundo et al., 2019; Mao et al., 2021; Zou
et al., 2021). Despite ongoing difficulties, more studies into BEV-
based treatments will likely result in cutting-edge treatments for
OP and its side effects, speeding up their clinical translation use.

6.2 The use of exosomes in OA treatment

In the same way as the OP, Osteoarthritis (OA) is also a prevalent
orthopaedic disease associated with aging. Recent studies have shown
that they share similarities in pathological features and pathogenesis.
Subchondral bone loss is a feature of OP and is also present in the early
stages of OA, which suggests that OA can be attempted in the same
way as OP to suppress the course of the disease (Bultink and Lems,
2013; Lafeber and van Laar, 2013). Therefore, as with OP, treatments
for OA mediated by EVs show great potential. In the last few years,
there has been increasing evidence that miRNA can also regulate genes
in a non-cell-autonomous manner. Exosomes are in vivo-derived EVs

that contain intact, mature 21 nt-miRNAs that act in intercellular
communication. Exosome biogenesis is upregulated by various signals,
and their secretion results from the passive activation of different
mechanisms. Several parallel pathways can activate exosome
biogenesis which releases from the passive activation of various
signaling pathways. OCs secrete miR-214-rich exosomes for
delivery to OBs in bone. Importantly, in human OA, miRNA is an
important regulator of molecular pathophysiological processes in
synovium and cartilage.

A new study by Liu et al. shows that OC-derived miRNA is
upregulated during surgically induced OA formation in mice in
vivo (Liu et al., 2021c). They used an OC-targeted delivery system
that disrupted miRNA biogenesis and exosome production in OC
by eliminating Rab27a and the Dicer enzyme that controls miRNA
production, significantly delaying OA progression (Figure 4).
Nevertheless, questions remain about the mechanism of how
OC exosomes affect chondrocytes. The authors showed that the
expression level of miR-214 in OC was negatively correlated with
the expression of metalloproteinase inhibitors in chondrocytes.
Mechanistically, exosomal transfer of OC-miRNAs into
chondrocytes reduces cartilage resistance to matrix
degeneration, osteochondral angiogenesis, and sensory nerves
during OA progression by inhibiting TIMP-2/3. The study by
Liu et al. clearly shows that in injury-induced OA pathology,
exosomes and miRNA play an important role in OC-
chondrocyte crosstalk. Therefore, the transfer of exosomes of

FIGURE 4
Anterior cruciate ligament transection (ACLT) was performed on mice to create the OA phenotype. Combined with in vitro culture models, small
extracellular vesicles rich in coding miRNAs are secreted by OCs. These miRNAs are translocated to chondrocytes, where they suppress genes like TIMP that
alleviatematrix deterioration, increasing the activities of ADAMTS5 andMMP-13. The concentration ofOCmiRNAs in circulating exosomes increases, and they
appear to leave the SCB and re-enter the chondrocytes.
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OC-miRNAs to chondrocytes is thought to be a viable treatment
approach to alleviate the development of OA (Figure 5).

6.3 The future perspective of exosomes in OA
treatment

The pathology of OA involves cartilage, subchondral bone, synovial
tissues, and exosomes can act as hubs for their delivery pathways. Synovial
fibroblast-derived exosomes can induce OA progression, and serum- and
synovial-derived exosomes can contribute to the diagnosis of OA by
increasing chondrocyte proliferation and suppressing inflammation.
Remarkably Mφs-EXOs can repair joints or alleviate disease
progression. While it is also true that these effects of exosomes will
greatly facilitate research into the mechanisms, diagnosis, and treatment
of OA, there are also several challenges. Firstly, exosomes contain many
proteins and non-coding RNAs. Although they are involved in or regulate
the development of OA, it is difficult to identify the exact molecules that
contribute. Future studies could therefore focus on the functional
dissection of a single component and the network of interactions
between them. Secondly, both Mφs-EXOs and the modified exosomes
act only in small animals, and the exact mechanisms are not yet
understood. Therefore, their safety and efficacy in vivo need to be
further investigated. In the future, they could be further tested on
large animals.

7 Conclusion

Growing evidence points to mammalian and bacteria-derived EVs’
possibility of acting as nano messengers for communications between the
host and the microbiota. BEVs represent their parental microbes in a
range of interpersonal interactions. Contrary to their origin, they are less
likely to enter circulation. They can transfer their contents to locations
distant from the intestine, such as the bones. Instead of individual
metabolites and secreted proteins, the contents of EVs are encased in
bilayers as a means of protecting them from lysozyme and RNase in the

extracellular environment and facilitating their diffusion to distant organs
(Al-Nedawi et al., 2015; Choi et al., 2015). EVs are still underutilized as a
means of connecting with the host.

Earlier investigations have examined the characterization of
their proteome and/or RNA contents or the connection of EVs
from a particular microorganism with certain bodily reactions
(Perez-Burgos et al., 2013; Al-Nedawi et al., 2015; Emery et al.,
2017; Zakharzhevskaya et al., 2017; Zhang et al., 2018; Lee et al.,
2020). This might be explained by the absence of standardized
techniques for isolating and identifying BEV components as well as
by the absence of clear-cut biomarkers extracted from BEVs.
Furthermore, host EVs and BEVs are not separated using the
current techniques. Recent studies have revealed several
methods for separating BEVs from bodily fluids using size
exclusion chromatography, density gradient centrifugation, and
ultrafiltration (Tulkens et al., 2020).

Moreover, the lack of accurate ways to determine the parental
bacterial origin of various EVs is another challenge, BEVs or their
observed content in different microbial communities, such as
transgenic (Nahui Palomino et al., 2021). Future studies are
necessary to demonstrate the relationship between the variability of
the parent microbiota and the variability of BEV production and
composition. Besides, more investigation is needed to determine how
BEVs are packaged by microbial cells and the reasons behind the
packaging of these specific molecules. Questions such as whether they
target specific cells or host cells, whether they can cross biological
barriers, including the blood-brain barrier and the intestinal barrier,
how they target host cells, and how they release their contents remain
to be investigated.

Furthermore, the study on targeting exosome-mediated
pathogenesis of other bone disorders like OA is unique in its
molecular penetration, clearly demonstrating that exosomes and
miRNAs have an important role in OC-chondrocyte crosstalk in
injury-induced OA pathology (Meulenbelt et al., 2021). It will be
important to investigate in the future whether there is an association
between exosome crosstalk on the development of age-related OA.
From experiments in mice, it is shown that tissue-targeted inhibition

FIGURE 5
A new OC-targeted exosome inhibitor (OCEoInhib) to block Rab27-mediated OC exosome release. The measurement of OC miRNA in circulating
exosomes could be used to diagnose illnesses and monitor their treatments.
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of disease expression by exosomes is feasible. It could lead to
breakthroughs in the treatment of OA and other orthopedic
diseases. Although the observation of elevated serum exosome
levels in patients with severe knee injuries increases the
translational significance of this finding, the pathological process of
OA characterized by ACLT in young mice is not similar to that of age-
related OA in humans.

The recent developments discussed in this review give us a
glimpse of host and bacteria EVs’ evolving role as mediators of
host-microbiota interaction, despite the various challenges that
must be overcome before they may possibly be exploited as a
platform for the delivery of biologic therapeutics to particular
body sites.
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Glossary

OP Osteoporosis

EVs Extracellular vesicles

BEVs Bacterial extracellular vesicles

OA Osteoarthritis

GM Gut microbiota

OBs osteoblasts

OCs osteoclasts

MSCs Mesenchymal stem cells

HucMSC Human umbilical cord MSC

hiPSC-MSC human induced pluripotent stem cells

BMP Bone morphogenetic protein

PI3K Phosphoinositide-3 kinase

BMSCs Bone marrow mesenchymal stem cells

RANKL Receptor activator of nuclear factor-κB ligand

OPG Osteoclastogenesis inhibitory factor

RANK Receptor activator of nuclear factor-κB
Runx2 Runt-related transcription factor 2

YAP1 Yes-associated protein 1

MT1DP Metallothionein 1D pseudogene

PTEN phosphatase and tensin homolog

Mφs Macrophages

DUSP1 Ddual specificity phosphatase 1

JNK C-Jun N-terminal kinase

EC Endothelial cells

EPCs Endothelial progenitor cells

MALAT-1 Metastasis associated lung adenocarcinoma transcript 1

SCFAs Short-chain fatty acids

FAO Food and Agriculture Organization of the United Nations

WHO World Health Organization

MEVs Mammalian EVs

TLR Toll-Like Receptors

LGG Lactobacillus rhamnosus GG

AKK Akkermansia muciniphila

FMT Fecal microbiota transplantation

EGM Elderly GM

CGM Children GM

OVX Ovariectomy

PM Proteus mirabilis

Bax BCL2-associated X protein

ROS Reactive oxygen species

TIMP tissue inhibitor of metalloproteinases

SCB subchondral bone

ACLT anterior cruciate ligament transection

ADAMST5 activity of a disintegrin and metalloproteinase with
thrombospondin motifs 5

MMp-13 matrix metalloproteinase-13
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