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Pancreatic cancer is one of the most malignant tumors of the digestive tract,

with the poor prognosis and low 5-year survival rate less than 10%. Although

surgical resection and chemotherapy as gemcitabine (first-line treatment) has

been applied to the pancreatic cancer patients, the overall survival rates of

pancreatic cancer are quite low due to drug resistance. Therefore, it is of urgent

need to develop alternative strategies for its treatment. In this review, we

summarized the major herbal drugs and metabolites, including curcumin,

triptolide, Panax Notoginseng Saponins and their metabolites etc. These

compounds with antioxidant, anti-angiogenic and anti-metastatic activities

can inhibit the progression and metastasis of pancreatic cancer. Expecting

to provide comprehensive information of potential natural products, our review

provides valuable information and strategies for pancreatic cancer treatment.
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Introduction

Pancreatic cancer (PC) is one of the leading causes of cancer-related deaths

worldwide. It has been known for its difficult in diagnosis and poor prognosis even

with surgery and chemotherapy. The symptom of PC is hard to be perceptible, therefore

the majority of patients were found to be the late stage of disease. Moreover, these

patients are inoperable due to the severe metastasis and invasiveness (Eiznhamer and

Xu, 2004). Lots of factors contribute to the oncogenesis and progression of pancreatic

cancer, including the environment and lifestyle, alcohol, high fat diet (Rawla et al.,

2019), genetic mutation of onco-hub genes as KRAS and other oncogenes as CDKN2A,

TP53 and SMAD4 (Dixon et al., 2012; Zhang et al., 2020), epigenetic regulation (Xiao

et al., 2015; Yu et al., 2018; Yu et al., 2020; Yu et al., 2021), hyperglycemia (Chien K and

Liao, 2016; Hu et al., 2019), and chronic pancreatitis (Kichler and Jang, 2020; Piersma

et al., 2020).
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Currently, surgery and adjuvant chemotherapy are

considered to be the only viable options for pancreatic cancer

treatment. However, 80% of patients are not suitable for surgery

due to the invasiveness and metastasis of tumor cells. Some

chemotherapeutic drugs and immunotherapy have been applied

for these patients, but the pharmacological effects are limited

(Hanahan andWeinberg, 2011; Holohan et al., 2013; Wang et al.,

2022a). Hence, there is an urgent need for finding novel potential

therapeutic drugs.

Traditional Chinese medicine has been applied in east asia

for thousands of years and some of these natural botanical drugs,

including paclitaxel, camptothecin and podophyllotoxin have

successfully applied in clinics for years (Xu et al., 2011;

Fedoros et al., 2018; Pan et al., 2020; Zhou et al., 2022a).

TABLE 1 Botanical drugs or metabolites for pancreatic cancer.

Category Natural
products

Source Cell line/
Animal model

Efficacy Mechanism Yes/No to
enter
clinical
trials

References

Triterpenoids Toosendanin Melia
azedarach L

PANC-1, AsPC-1
cells and BALB/c
nude mice

Inhibits cell
growth and
migration,
inhibits tumor
production

Inhibit EMT transition,
downregulation of Akt/
mTOR signaling

No Pei et al. (2017)

Diterpenoids Triptolide Tripterygium
wilfordii Hook. f

MiaPaCa-2,
Capan-1 and
BxPC-3 cells

Induction of
apoptosis

caspase-dependent
apoptotic death, suppression
of hedgehog signaling

No (Ding et al., 2015; Qiao
et al., 2016; Dai et al.,
2019; Feng et al., 2019;
Ma et al., 2019; Zhao
et al., 2020)

Libertellenone
H

Eutypellasp.D-1 PANC-1, SW
1990, AsPC-1,
BxPC-3, HPDE6-
C7 cells

Induction of
apoptosis

Induces ROS accumulation
via Trx system, triggers
autophagy

No Zhang et al. (2021b)

Glycosides Propolis Bee Panc-1 cells Induction of
apoptosis

Hippo-YAP signaling
pathway

No (Liu et al., 2018; He
et al., 2019; Tao et al.,
2021)

Saponin Panax
Notoginseng
Saponins

Panax
notoginseng
(Burkill) F. H.
Chen ex C. H

MiaPaCa-2,
PANC-1, Panc-1/
GEM and
SW1990/GEM
cells

Inhibit
proliferation,
migration,
invasion and
autophagy

Caspase-dependent
apoptosis, ZFP91 mediated
TSPYL2 destabilization

No (Tang et al., 2013; Guo
et al., 2014; Jiang et al.,
2017; Zou et al., 2020)

Flavonoids

Xanthohumol Humulus
lupulus Linn

PANC-1, PSN-1,
MS1, BxPC-3 cells,
AsPC-1 cells and
MIA PaCa-2 cells

Induction of
apoptosis

Regulates the activity of NF-
κB and Nrf2

No (Jiang et al., 2015;
Kunnimalaiyaan et al.,
2015; Saito et al., 2018)

Curcumin Curcuma
longa L

BxPC-3,
SW1990 cells, nuce
mice, pancreatic
cancer patients

Inhibit
proliferation and
promote
apoptosis

IL-6/ERK/NF-κB axis Yes (Phase II:
NCT00094445)

(Malhotra et al., 2021;
Chen et al., 2022a;
Huang et al., 2022; Jie
et al., 2022; Malhotra
et al., 2022)

Pterostilbene Pterocarpus
indicus Willd

MIA PaCa-2 cell Inhibit
proliferation and
promote
apoptosis

expression via the RAGE/
PI3K/Akt axis

No (Benlloch et al., 2016;
Hsu et al., 2020; Chen
et al., 2021a; Obrador
et al., 2021)

Nucleosides Cordycepin Cordyceps
militaris (L.)
Link

BxPC-3, CFPAC-
1, AsPC-1, PANC-
1, SW 1990,
MIAPaCa-2 and
Capan-1 cells

Inhibit
proliferation and
promote
apoptosis

caspase-dependent
apoptosis, inhibit pro-
inflammation cytokines,
downregulate NF-κB) and
NLRP3

No (Zhang et al., 2018b; Li
et al., 2020; Yang et al.,
2020)

Abbreviations: EMT, Epithelial–mesenchymal transition; mTOR, mammalian target of rapamycin; ROS, reactive oxygen species; YAP, yes associated transcriptional regulator; Nrf2,

Nuclear factor erythroid 2-related factor 2; IL-6, interleukine-6; ZFP91, Zinc finger protein 91 homolog; TSPYL2, Y-encoded-like 2; PI3K, Phosphatidylinositol 3-kinase; Akt, protein kinase

B; ERK, Extracellular-signal-regulated kinase RAGE, receptor for advanced glycosylation end products; NF-κB, nuclear factor-κB; NLRP3, NLR, family pyrin domain-containing protein 3.
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Therefore, in light of summarizing the potential natural products

for pancreatic cancer treatment, we comprehensively addressed

the natural products and some major anti-cancer metabolites.

Current therapeutic strategy of
pancreatic cancer

Current treatment options for pancreatic cancer include

surgery, immunotherapy and targeted therapy. Surgical

resection is the major treatment for pancreatic cancer

(Bockhorn et al., 2014). Immunotherapy and targeted

therapies are currently new approaches to the treatment of

pancreatic cancer. Immunotherapy includes tumor vaccine,

adoptive cell immunotherapy, oncolytic virus therapy,

immune checkpoint inhibitors, etc (Conroy et al., 2018).

Targeted therapy mainly includes targeted therapy for tumor

angiogenesis, targeted therapy of KRAS or other proteins of

oncogenes and related signaling pathways. (Cao et al., 2021; Liu

et al., 2021).

Natural products undergoing clinical
evaluation in pancreatic cancer

Natural products refer to the constituents or their

metabolites in animals, plant extracts or insects, marine

organisms and microorganisms, which are collectively referred

to as natural products. For decades, natural products played an

important role in the development of anti-tumor drugs, and

many natural products such as paclitaxel, vincristine or their

analogs have been widely used in clinical practice (Flores-

Bustamante et al., 2010). These natural products exert their

antitumor activities through different or novel mechanisms of

action. Hence, we updated more information for botanical drugs

other than paclitaxel and vincristine. Table 1 summarizes the

therapeutic effects of some natural products on pancreatic

cancer.

Curcumin

Curcumin is a plant polyphenolic compound extracted from

the Curcuma longa L. of the ginger plant turmeric. It is also

known as diferuloylmethane, and was first isolated in 1815.

Curcumin has a broad variety of pharmacological effects,

including anti-inflammatory, antioxidant, anti-tumor,

enhancing radiotherapy and chemotherapy sensitivity, and

protecting liver and kidney functions (Hewlings and Kalman,

2017). It has been broadly investigated in cancers, including acute

myeloid leukemia (Zhou et al., 2022b), prostate cancer (Al-Rabia

et al., 2022), breast cancer, lung cancer etc (Giordano and

Tommonaro, 2019).

For the pre-clinical study of curcumin, great progress has

been made on both its mechanisms. In BxPC-3 cells, curcumin

could restore mutant p53(Y220C) function and promote

apoptosis in a dose- and time-dependent manner (ranging

from 2 µM to 10 μM, 12–72 h, respectively) (Malhotra et al.,

2021; Malhotra et al., 2022). Curcumin could synergically

suppress the pancreatic cancer cell (SW1990 cell) proliferation

with 10058-F4, an inhibitor of c-Myc both in vitro and in vivo (Jie

et al., 2022). Curcumin analogue C66 has been reported to inhibit

the proliferation and migration of pancreatic cancer in a dose-

and time-dependent manner (25–100 μM, 24–72 h, respectively).

Further this analogue could inhibit the inflammatory cytokines

(IL-1β, IL-6, IL-8, and IL-15) secretion via the inhibition of JNK

pathway (Chen et al., 2022a). The anti-pancreatic cancer effects

and mechanisms of curcumin and its derivatives are described in

detail (Huang et al., 2022).

Curcumin is the only metabolite or botanical drug under

clinical study for pancreatic cancer. From 2004 to 2010, a total of

44 patients diagnosed of pancreatic neoplasms adenocarcinoma,

were enrolled in a phase II clinical trial of curcumin. In

collaboration with Sabinsa Corporation, this trial is performed

at M.D. Anderson Cancer Center. Curcumin is delivered orally at

the dosage of 8 g/day for 8 weeks. The median age included in

this study is 65 (range: 40-87) with 56% female. Meanwhile, it is

neither an open-label study nor randomized trial. The outcome

of this trial is not disclosed by the researchers. We only know that

nine of the 44 patients has serious adverse effects, including

cardiac disorders (chest pain, multiple pulmonary emboli, etc.),

gastrointestinal disorders (chronic cancer progression,

metastasis, abdomen pain, etc.) and other disorders (Kim

et al., 2021).

Triptolide

Triptolide is an epoxy diterpene lactone compound extracted

from the roots, leaves, flowers and fruits of Tripterygium wilfordii

Hook. f. Triptolide has a broad range of pharmacological effects

on autoimmune diseases, including rheumatoid arthritis (Li et al.,

2022a), systemic lupus erythematosus (Zhang et al., 2022a),

ankylosing spondylitis (Ji et al., 2022), and so on. Due to poor

water solubility (0.017 mg/ml) and severe toxicity including

excessive immune responses, its clinical application is greatly

limited (Ding et al., 2017), and several strategies has been applied

to reduce its toxicity and to improve its solubility (Kang et al.,

2022a; Zhang et al., 2022b; Rao et al., 2022).

Triptolide has also been applied in a broad range of cancers.

It could synergistically increase apoptosis of gastric cancer cells

with Tumor necrosis factor-α (TNF-α) via the inhibition of H19/

miR-204-5p/NF-κB/FLIP axis (Yuan et al., 2022). Followed by

the decreased DNA (cytosine-5-)-methyltransferase 1 (DNMT1)

and DNA (cytosine-5-)-methyltransferase 3a (DNMT3a)

expression and the inhibition of Wnt inhibition factor 1
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(WIF1), Sex-determining region Y-box (SOX17), cadherin 1

(CDH1) and Secreted Frizzled Related Protein 5 (SFRP5)

demethylation, triptolide could inhibit the Wnt pathway, and

thereby it inhibits T-cell acute lymphoblastic leukaemia (Ma

et al., 2022). For the malignant melanoma treatment, targeted

delivery of triptolide was applied with cyclopeptide and

αvβ3 integrin-specific exosomes (Gu et al., 2022).

Accumulating evidences revealed that triptolide has a strong

antitumor effect in a broad range of cancers, including non-small

cell lung cancer (Zhou et al., 2022c), colorectal cancer (Liskova

et al., 2022; Song et al., 2022), hepatocellular carcinoma (Li et al.,

2022b), acute myeloid leukemia (Chen et al., 2022b; Kang et al.,

2022b) and so on.

For the treatment of pancreatic cancer, triptolide at the

dose of 10–40 nM could inhibit pancreatic cancer cell

proliferation through the suppression of hedgehog signaling

pathway (Feng et al., 2019), or via the inhibition of

plasminogen activator urokinase (PLAU) (Zhao et al.,

2020). In another study, 50 nM triptolide could increase

TRAIL sensitivity, downregulate the PUM1, and stimulate

autophagy of pancreatic cancer cell (Dai et al., 2019). Study on

BxPC-3 cells, PANC-1 cells and transplanted tumor models

revealed that triptolide, at the dose of 0.1–1 µM could improve

the gemcitabine sensitivity via the suppression of TLR4/NF-

κB signaling pathway (Qiao et al., 2016; Ma et al., 2019). At the

dose of 10–50 ng/ml, triptolide could also inhibits the

proliferation by suppressing hypoxia-inducible factor-1α
(HIF-1α) and c-Myc expression (Ding et al., 2015). It

induces cell death by O-GlcNAc modification of

transcription factor Sp1((Banerjee et al., 2013)). It can also

be modified as prodrug. Chitosan oligosaccharide (CSO)

conjugated triptolide could improve the water solubility to

15 mg/ml) (Wang et al., 2022b). Triptolide could also be

conjugated with 2-(pyridin-2-yldisul-fanyl)ethyl acrylate

(PDA)- poly (ethylene glycol) methyl (PEG) and

lactobionic acid (LBA) (Sui et al., 2021). Three amino acids

(tryptophan, valine, and lysine) based triptolide prodrug

could also inhibit the growth of pancreatic cancer (Lou

et al., 2021). In combined with a cytoprotective agent,

diammonium glycyrrhizinate (DG), a complex lipid

emulsion (TP/DG-CLE) could increase the therapeutic

effects of triptolide (Mu et al., 2022).

Panax Notoginseng Saponins and their
metabolites

Panax Notoginseng Saponins (PNS) is the main chemical

component of the Panax notoginseng (Burkill) F. H. Chen ex C.

H. PNS has multiple pharmacological functions, including the

inhibition of the platelet aggregation, improving

microcirculation, inhibiting the inflammation responses and

reducing the oxidative stress (Zhang et al., 2018a).

Recent research on PNS revealed its anti-cancer activity and

low toxicity in various cancers, including prostate cancer,

colorectal cancer, retinoblastoma, and so on (Han et al., 2018;

Li et al., 2022c; Hawthorne et al., 2022; Zhong et al., 2022). Study

on pancreatic cancer Miapaca2 and PANC-1 cells revealed that

the IC50 of PNS are 377.1 and 492.5 µM, respectively, whiles

gemcitabine is the positive control. PNS could limit the

proliferation, migration, invasion of pancreatic cell

proliferation, and induce the autophagy of these cells.

Importantly, it could stimulate the apoptosis and

chemosentivity to gemcitabine via caspase-dependent pathway

(Yao et al., 2021). Gold nanoparticles from the leaf of PNS has

been proved to possess anti-pancreatic cancer activity in PANC-1

cells (Wang et al., 2019).

Further studies on the metabolites of PNS revealed that there

are ginsengosides have anti-proliferative function on pancreatic

cells. Haixia Pan et al. found that 50–200 µM ginsenoside

Rg3 could increase the chemosensitivity of gemcitabine on

pancreatic adenocarcinoma through the inhibition of Zinc

finger protein 91 homolog (ZFP91) mediated testis specific

Y-encoded-like protein 2 (TSPYL2) destabilization (Pan et al.,

2022). Another study on ginsenoside Rg3 demonstrated that

same dose of ginsenoside Rg3 could suppresses the growth of

gemcitabine-resistant pancreatic cancer cells (Panc-1/GEM and

SW1990/GEM cells). Molecular mechanism investigation

revealed that ginsenoside Rg3 could upregulate lncRNA-

CASC2 and activates PTEN signaling pathway (Zou et al.,

2020). In BxPC-3 and AsPC-1 cells, it stimulates the apoptosis

and increase the anti-proliferative effects of erlotinib via the

decreased phosphorylation of EGFR, PI3K, and Akt (Jiang et al.,

2017). It inhibits the angiogenesis of pancreatic cancer via the

downregulation of VE-cadherin/EphA2/MMP9/

MMP2 signaling pathway (Guo et al., 2014). Furthermore,

20–60 µM ginsengoside Rh2 could also induce Bxpc-3 cell

cycle arrest, and reduced migration and invasion in a caspase

dependent manner (Tang et al., 2013).

Toosendanin

Toosendanin is a tetracyclic triterpenoid extracted from the

fruit or bark of the plant Melia toosendan Sieb. et Zucc. or Melia

azedarach L. Toosendanin is a white crystalline powder, easily

soluble in methanol, ethanol and pyridine (Shi and Li, 2007).

With an IC50 of 26 nM, toosendanin could inhibit the growth of

a broad range of tumors. By inhibiting the Hh-involved

Hedgehog pathway, toosendanin coud inhibit colorectal

cancer cell growth (Zhang et al., 2022c). As an autophagy

inhibitor, it could block autophagy by inhibiting the activity

of vacuolar-type H+-translocating ATPase, induce necroptosis

and promote apoptosis in triple-negative breast cancer cells and

tumor xenograft models (Dong et al., 2022; Zhang et al., 2022d;

Zhang et al., 2022e). Through the inhibition of the PI3K/Akt/
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mTOR signaling pathways, toosendanin could inhibit the growth

of glioma cells and tumor growth in vivo animal models (Zhang

et al., 2021a). In the hepatocellular carcinoma, toosendanin

functions as WW-domain containing oxidoreductase

(WWOX) agonist and thereby inhibits tumor metastasis by

the inhibition of JAK2/Stat3 and Wnt/β-catenin signaling

pathways (Yang et al., 2021a; Yang et al., 2021b). It could

induce the apoptosis of ovarian cancer and gastric cancer in a

caspase-dependent pathway and through the κ-opioid receptor/

β-catenin signaling axis (Shao et al., 2020; Wang et al., 2020;

Wang et al., 2021a).

Pancreatic cancer cells were treated with different

concentrations of toosendanin (50, 100 and 200 nM,

respectively), and the results showed that pancreatic cancer

cell lines had apoptosis in a dose dependent manner (Pei

et al., 2017). Besides, toosendanin can also inhibit the

migration and invasion of pancreatic cancer cells at the

dosage of 200 μM.

Further mechanism investigation revealed that toosendanin

could reverse the TGF-β induced epithelial-mesenchymal

transition through increasing the expression of Ecadherin and

reducing the expression of Vimentin, ZEB1 and SNAIL. It also

suppressed TGF-β mediated EMT via the deactivation of Akt/

mTOR signaling pathway. In the in vivo xenograft mice

experiments, toosendanin at a dose of 0.2 mg/kg. Taken

together, toosendanin shows an activity that can specifically

inhibit pancreatic cancer cells (Pei et al., 2017).

Xanthohumol and phenethyl
isothiocyanate

Xanthohumol, a flavonoid isolated fromHumulus lupulus L.,

has anti-inflammatory, anti-tumor and anti-angiogenesis

properties (Krajka-Kuźniak et al., 2013; Niederau et al., 2022;

Vesaghhamedani et al., 2022). It could reduce cell viability and

cause G2/M arrest at the dose of 40 μM through MAPK JNK

pathway for human nasopharyngeal carcinoma cells (Hsieh et al.,

2022). At 10 nM dose, it could inhibit the colon cancer

cellproliferation and progression via downregulating

inflammatory signals (TNF-α and IL-6) and glucose

metabolism (Torrens-Mas et al., 2022). By increasing p53-

upregulated modulator of apoptosis (PUMA)-mediated

apoptosis, it also inhibits non-small cell lung cancer (Li et al.,

2022d). It hampers glutamine uptake in triple negative breast

cancer (Carmo et al., 2022). It also inhibits a variety of cancers as

prostate, B-chronic lymphocytic leukemia, hepatocellular, and

medullary thyroid cancers (Lust et al., 2005; Szliszka et al., 2009;

Cook et al., 2010; Dorn et al., 2010).

Xanthohumol could inhibit the growth of MiaPaCa-2,

PANC-1, AsPC-1, and L3.6 pl cells at a dose-dependent

manner, ranging from 5 mM to 30 mM. It can also inhibit PC

patient-derived cells in a dose-dependent manner as well. Further

mechanisms studies revealed that xanthohumol mediated cell

apoptosis via the inhibition of Notch 1, HES-1 and survivin at

both transcription and translation levels (Kunnimalaiyaan et al.,

2015). It could also induce cell cycle arrest of PANC-1 and BxPC-

3 cells by inactivating signal transducer and activator of

transcription 3 (STAT3) and downstream genes as cyclinD1,

survivin, and Bcl-xL (98). Xanthohumol has been reported to

suppress angiogenesis by inactivation of NF-κB, and inhibiting

the vascular endothelial growth factor (VEGF) and interleukin-8

(IL-8) expression both in vitro (BxPC-3 cells, AsPC-1 cells and

MIA PaCa-2 cells, 10–25 µM) and in vivo (10 mg/kg) (Saito et al.,

2018). Xanthohumol, in combination with phenethyl

isothiocyanate (extracted from Oenanthe javanica (Bl.) DC.)

could inhibit the PSN-1 cell growth with an IC50 46 µM and

inhibit the MS1 cell growth with an IC50 49 µM. This

combination could greatly reduce the expression of NF-κB
p65 subunits, and activate Nrf2 and downstream genes as

GSTP, NQO1, and SOD in PANC-1 cells (Krajka-Kuźniak

et al., 2020) and PSN-1 cells (Cykowiak et al., 2021). Further

investigation revealed that the combination of xanthohumol

(40 mg/kg) and phenethyl isothiocyanate (15 mg/kg) could

inhibit the plasma COX-2 and nuclear STAT3 expression

(Cykowiak et al., 2021).

Pterostilbene

Pterostilbene (3,5-dimethoxy-40 -hydroxystilbene) is a

phytoalexin, the secondary metabolite isolated from the

heartwood of red sandalwood pTocarpus santalinus.

Pterostilbene has been reported to be an efficient anti-cancer

agents in hepatocellular carcinoma with IC50 of about 20–40 μM

in various HCC cell lines. Meanwhile, it has similar inhibitory

function in drug (sorafenib and lamivudine)-resistant HCC cell

through the inhibition of ribonucleotide reductase activity, and

thereby inhibit virus replication (Qian et al., 2018; Wang et al.,

2021b).

Studies on pancreatic ductal adenocarcinoma (PDAC)

demonstrated that 10–75 µM pterostilbene could enhance

chemosensitivity by the inhibition of MIA PaCa-2 cell

proliferation and cell cycle arrest. It could also induce both

apoptosis and autophagy. Further mechanic study revealed

that pterostilbene inhibited multidrug resistance protein 1

(MDR1) expression through the Receptor for advanced

glycosylation end products (RAGE)/PI3K/Akt signaling

pathway (Hsu et al., 2020). It can also increase cell death by

inducing lysosomal membrane permeabilization (Obrador et al.,

2021). Chloroquine could substantiate the anti-tumor effects of

pterostilbene on PC through the inhibition of autophagy via

downregulating RAGE/STAT3 and protein kinase B (AKT)/

mammalian target of rapamycin (mTOR) signaling pathway

(Chen et al., 2021a). In vivo study using AsPC-1 and BxPC-3

cells xenograft mice revealed that 20–40 mg/kg pterostilbene
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downregulates the glucocorticoid secretion via reducing

glucocorticoid receptor and inhibiting Nrf2-dependent

signaling pathway (Benlloch et al., 2016).

Cordycepin

Cordyceps militaris is the mycelium of Cordyceps militaris

(L.) Link. It has the functions of anti-tumor and immune

regulation. Cordycepin is one of its main active components,

which has the activity of regulating immunity, antibacterial and

anti-inflammatory (Pan et al., 2015; Kong et al., 2022). It has

been broadly investigated in various cancers, including triple-

negative breast cancer (Wei et al., 2022; Wu et al., 2022),

lymphoma (Shi et al., 2022), colon cancer (Deng et al.,

2022), glioblastoma (Chen et al., 2022c) and so on both

in vitro and in vivo. It could also increase the

radiosensitivity by cell cycle arrest, ER stress and caspase

dependent apoptosis (Lee et al., 2022). It could induce

autophagy in tumor cells (Chen et al., 2021b).

Cordycepin has been reported to induce the caspase-

dependent apoptosis in a dose dependent manner.

50–100 µM cordycepin suppress the growth pancreatic

cancer cell growth with an IC50 of 38.85, 72.99, 150.1, 213.1,

and 349.3 μM for BxPC-3, CFPAC-1, AsPC-1, PANC-1 and

SW1990 cells, respectively. It induces S-phase arrest via

activating checkpoint kinase 2 (Chk2) and downregulating

cyclin A2 and CDK2 phosphorylation, inhibits Ras/ERK

pathway (Li et al., 2020). In human pancreatic cancer cells

(MIAPaCa-2 and Capan-1 cells), cordycepin could induce

apoptosis in a dose- and time-dependent manner in vitro

(ranging 50–600 μM, 24–72 h, respectively) and in vivo

(15and 50 mg/kg/d for 28 days) via mitochondrial mediated

intrinsic apoptosis pathways (Zhang et al., 2018b).

Furthermore, for acute pancreatitis therapy, cordycepin

could also be potential treatment by inhibiting the pro-

inflammatory cytokines as IL-6, IL-1β, and TNF-α via the

inhibition of nuclear factor-κB (NF-κB) and NLR family

pyrin domain-containing protein 3 (NLRP3) (Yang et al.,

2020).

Libertellenone H

Libertellenone H (LH) is a marine-derived diterpene-type

diterpenoid isolated from the high latitude lived arctic fungus

Eutypella sp. D-1 (120). In the anti-tumor assay, the positive

controls are adriamycin, 5-fluorouracil and paclitaxel, and LH

has been proved to inhibit the growth of U251 cells, SW-1990

cells, SG7901 cells, MCF-7 cells, Huh-7 cells, Hela cells, and

H460 cells (Lu et al., 2014).

For pancreatic cancer treatment, it could inhibit the growth

of human pancreatic cancer cell lines PANC-1 (IC50, 3.21 μM),

SW 1990 (IC50, 0.67 μM), AsPC-1 (IC50, 2.78 μM), BxPC-3 (IC50,

5.53 μM) and human pancreatic duct epithelial cells HPDE6-C7

(IC50, 10.86 μM) in a dose-dependent manner (Zhang et al.,

2021b). Further investigation revealed that it could stimulate

ROS accumulation via the suppression on the Trx and the

corresponding receptor system. Covalently binds toTrx1 and

TrxR, it activates ASK1/JNK signaling pathway (Zhang et al.,

2021b).

Other herbal drugs or metabolites

Mangiferin, 1,3,6,7-tetrahydroxyxanthone-C2-β-D-
glucoside, is extracted from the leaves and barks of mango

tree (Mangifera indica L.). It possesses a variety of

pharmacological activities, such as antioxidative, antitumor,

antibacterial, antiviral, anti-diabetes, and so on (Wang et al.,

2014; Du et al., 2018; Wang et al., 2018). It could inhibit the

proliferation of lung cancer (Shi et al., 2016), ovarian cancer (Zou

et al., 2017; He et al., 2019), breast cancer, glioblastoma (Mu et al.,

2018) and other cancers (Du et al., 2018). Recent studies on

mangiferin revealed that it could inhibit the Mia-PaCa2 cell

proliferation in a dose-dependent manner ranging from 3.06 to

100 µM. Further mechanic study indicated that 5, 10, and 20 µM

mangiferin could induce autophagy, and caspase-dependent

apoptosis. Additionally, it could induce the G2/M arrest and

endogenous ROS production (Yu et al., 2019).

Propolis is a natural product obtained by mixing resin

collected by bees and their own secretions. The chemical

composition of propolis is very complex, which is affected by

various factors such as its plant source, the type of bees collected

and the collection time. In recent years, many studies have

proved that propolis from Mexico, Brazil, Vietnam and other

places has an inhibitory effect on the proliferation of pancreatic

cancer cells (Awale et al., 2008; Li et al., 2010; Nguyen et al.,

2017). For example, the Algerian bee limb can enhance the anti-

pancreatic cancer effect mediated by doxorubicin by regulating

apoptosis, cell cycle and inhibiting the activity of P-glycoprotein

(Rouibah et al., 2018). The active ingredient CAPE in propolis

can induce apoptosis of pancreatic cancer Panc-1 cells through

mitochondrial dysfunction and activation of caspase-3/-7 (Chen

et al., 2008). In addition, Chinese propolis inhibits the

proliferation of human pancreatic cancer Panc-1 cells through

the Hippo-YAP signaling pathway (Liu et al., 2018; He et al.,

2019). The IC50 value of Propolis on human pancreatic cancer

Panc-1 cell is about 50 μg/ml. Treatment with 50μg/ml Propolis

for 48 h resulted in 34.25 ± 3.81% apoptosis of human pancreatic

cancer Panc-1 cells. After treatment with propolis, the expression

of YAP in human pancreatic cancer Panc-1 cells was significantly

reduced, and its nuclear entry was inhibited. At the same time,

the expression levels of the main upstream proteins MST1 and

LATS1 and the downstream phosphorylated effector protein

p-YAP were significantly increased. These studies will justify
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the research and development of pharmaceuticals and related

health products containing propolis (Tao et al., 2021).

Conclusion and perspectives

Accumulating evidences revealed that metabolites or

botanical drugs could efficiently inhibits pancreatic cell

proliferation and induces apoptosis or autophagy in vitro and

alleviates the progression of cancer in xenograft mouse models.

Because botanical drugs have been used in the world for

thousands of years, especially in east asia, the advantages and

adverse effects have been tested known. However, most studies of

these botanical drugs are in the primitive stage. Data from in vitro

cell study and in vivo xeograft mouse research are not enough for

pre-clinical study. More animal studies as rabbit, beagle and non-

human primate studies are needed for the new drug development

of these botanical drugs. Meanwhile, these studies will cover the

gap from bench to bed. Among these studies, curcumin is under

phase II clinical trial of pancreatic neoplasms adenocarcinoma

sponsored by researchers from M.D. Anderson Cancer Center.

However, the detailed outcome of this trial is not released by the

researcher and we could only find pieces of information about the

adverse effects of curcumin, including cancer progression and

metastasis. As most of these metabolites/botanical drugs are still

based on in vitro cell study and in vivo rodent data, the major

bottleneck for the clinical trial is no large animal study is

available. How to shorten the gap between pre-clinical

research and clinical trial is still challenges for researchers and

clinicians. And more non-human primate studies should be

performed for the efficacy and safety of these metabolites/

botanical drugs before clinical trials. With more and more in-

depth investigations on large animals, metabolites or botanical

drugs will ultimately be applied in clinics in the near future.
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