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Introduction: Tremendous evidence indicates that N6-methyladenosine (m6A)

epigenetic modification and m6A-related enzymes constitute a complex

network, which jointly regulates prevailing pathological processes and

various signaling pathways in humankind. Currently, the role of the m6A-

mediated molecular regulatory network in hepatocellular carcinoma (HCC)

remains elusive.

Methods: We recruited expression and pathological files of 368 HCC patients

from The Cancer Genome Atlas cohort. Four public datasets serve as external

authentication sets for nearest template prediction (NTP) validation. The

correlation between 35 regulators and their prognostic value was compared.

Gene set variation analysis (GSVA) was used to explore the latent mechanism.

Four independent algorithms (ssGSEA, xCell, MCP-counter, and TIMER) were

used to calculate the ratio of tumor cells and non-tumor cells to evaluate the

tumor immune microenvironment. The m6Ascore model was established by

principal component analysis (PCA). Prediction of immunotherapy and potential

drugs was performed using TIDE and SubMap.

Results: A total of 35 m6A regulators were widely associated, most of which

were risk factors for HCC patients. The m6A phenotypic-cluster revealed

differences in regulator transcriptional level, gene mutation frequency,

functional pathways, and immune cell infiltration abundance under distinct

m6A patterns. As expected, the m6A gene cluster confirmed the

aforementioned results. The m6Ascore model further found that patients in
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the high-m6Ascore group were associated with lower tumor purity, higher

enrichment of immune and stromal cells, upregulation of metabolic pathways,

lower expression of m6A regulators, and favorable outcomes. Low-m6Ascore

patients were associated with adverse outcomes. Notably, low-m6Ascore

patients might be more sensitive to anti-PD-L1 therapy.

Conclusion: This study found that a classification model based on the m6A

manner could predict HCC prognosis and response to immunotherapy for HCC

patients, which might improve prognosis and contribute to clinical

individualized decision-making.
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m6A regulators, hepatocellular carcinoma, tumor microenvironment,
immunotherapy, prognosis

Introduction

The global number of individuals dying with liver cancer

and/or the corresponding complications has been increasing

gradually (Chen et al., 2021c). Also, as the most widespread

among primary liver cancers, hepatocellular carcinoma (HCC) is

a serious threat to public safety (Pinter et al., 2021). Surgical

resection is a feasible method for early HCC, but the current

treatment of advanced HCC is still not optimistic (Xu et al.,

2020). With the advent of targeted therapy and immunotherapy,

the overall survival (OS) time of HCC patients has been

improved to some extent (Ritchie et al., 2018; Wei et al.,

2019). Nevertheless, seeking safe and effective targets or

activating the cytotoxic function of effector immune cells in

the tumor microenvironment (TME) is still a difficult issue for

HCC patients during immunotherapy.

Epigenetic regulation opens a whole new level of molecular

research for us, that is, post-transcriptional regulation

independent of genomic DNA sequences (Dawson and

Kouzarides, 2012; Hogg et al., 2020). Aberrant levels of

epigenetic regulation mediate a variety of complex biological

processes in tumor development and progression (Phillips et al.,

2020; Hu et al., 2022). M6Amethylation modification is the most

prevalent RNA methylation modification and can mediate RNA

cleavage and splicing at the post-transcriptional level affecting

RNA stability (Dang et al., 2021; Jiang et al., 2021). RNA

modified by m6A methylation could cause changes in

expression levels after binding to specific binding proteins

(Liu et al., 2020). Therefore, dysregulation of m6A

methylation balance can lead to activation or inhibition of

downstream functional target molecule expression, which in

turn leads to the occurrence of malignant events such as

tumor proliferation, distant metastasis, and treatment

resistance (Han et al., 2019; Lin et al., 2020; Zhang et al.,

2020). In m6A RNA methylation, mainly methyltransferase

(termed “writer”), demethylase (termed “eraser”), and binding

protein (termed “reader”), regulate the physiological or

pathological processes of diseases (Lee et al., 2021). Previous

studies have confirmed that m6Amodifiers distinguish colorectal

cancer (CRC) patients into four classes to characterize their

tumor microenvironment and pharmacogenomic landscape

(Chen et al., 2021b). Numerous studies have shown that

methylation-related regulatory molecules are key markers of

HCC and reflect differences in patient prognosis (Chen et al.,

2018; Zhang et al., 2020; Zhou et al., 2020). Traditional bisulfite

sequencing methods and RNA immunoprecipitation sequencing

(RIP-seq) are not conducive to the dynamic detection of the

patient’s condition and prognostic evaluation (Chen et al., 2018).

Therefore, new feasible tools are urgently needed to achieve the

effect of predicting prognosis and guiding clinical decision-

making.

Herein, we collected 35 key m6A regulators and the

corresponding transcriptome data and analyzed the

pathological and immunological characteristics mediated in

HCC patients via m6A manner. Subsequently, consensus

clustering was performed based on the differences in m6A

molecular expression patterns. Furthermore, we constructed

an m6A risk score model and demonstrated the predictive

effect of the model on prognosis and immune infiltration.

Materials and methods

Publicly available data acquisition and
m6A regulator gene collection

Gene expression data and clinical information of the liver

hepatocellular carcinoma cohort in UCSCXena from The Cancer

Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) were

collected and termed TCGA-LIHC cohort. Correspondingly,

GSE14520, GSE27150, and GSE54236 from the Gene

Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/)

database and the liver hepatocellular carcinoma cohort from the

International Cancer Genome Consortium (ICGC, https://dcc.

icgc.org/) Data Portal were collected. The somatic mutation and

copy number variation (CNV) data were downloaded from
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cBioPortal (http://cbioportal.org/). The RNA sequencing data

were transformed into the transcripts per kilobase million (TPM)

format. The R packages affy and lumi were run to normalize the

batch effect. The inclusion criteria for the samples are as follows:

1) primary HCC; 2) gene expression profiles and related clinical

information were available; 3) preoperative radiotherapy and

chemotherapy were not performed. A total of 35 m6A

methylation-related regulator genes (MRGs) were collected

from previous studies (Zaccara et al., 2019; Chen et al., 2021b;

Zhang et al., 2022). Genes were annotated and extracted using the

Genome Reference Consortium Human Build 38 (GRCh38).

Consensus clustering of 35 m6A regulator
genes and different expression genes

Unsupervised cluster typing of 35 m6A regulators, namely,

nine writers (VIRMA, METTL3, METL14, WTAP, RBM15,

RBM15B, METL16, ZC3H13, and PCIF1), 23 readers

(TRMT112, ZCCHC4, NUDT21, CPSF6, CBLL1, SETD2,

HNRNPC, RBMX, HNRNPA2B1, IGF2BP1, IGF2BP2,

IGF2BP3, YTHDC1, YTHDF1, YTHDF2, YTHDF3,

YTHDC2, SRSF3, SRSF10, XRN1, FMR1, NXF1, and

PRRC2A), and three erasers (FTO, ALKBH5, and ALKBH3)

was explored using the ConsensusClusterPlus R package.

Visualization results of cumulative distribution function

(CDF) under different K-values (2–9) were analyzed. A

random sample of 80% was selected for 500 repeated times

of all genes. Subsequent unsupervised clustering of

differentially expressed genes (DEGs) was described as

mentioned previously. Furthermore, 30 criteria were

performed in the NbClust R package to re-determine the

optimal number of clusters.

Somatic mutation and copy number
alteration analysis

Somatic mutation and copy number alteration (CNA)

information of HCC were downloaded from TCGA and

cBioPortal (http://www.cbioportal.org) for cancer genomics.

The maftools package was performed to summarize and

annotate mutational information, including tumor mutation

burden (TMB), single-nucleotide polymorphism (SNP), and

insertion and deletion (INDEL) (Mayakonda et al., 2018). The

ComplexHeatmap package converts the results into waterfall

diagrams (Gu et al., 2016).

Gene differential expression analysis

The TPM format of the TCGA-LIHC dataset was

log2 logarithmic to enhance the comparability between

different samples. Differentially expressed genes (DEGs) were

obtained by limma package screening (Ritchie et al., 2015).

Subsequently, genes with an absolute value of

log2FoldChange > 1 and a false discovery rate (FDR) <
0.01 were rigorously defined as significant DEGs.

Functional enrichment analysis

Based on the signaling pathways that belong to the Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) collected from MSigDB (http://www.gsea-msigdb.org/

gsea/msigdb/index.jsp), we performed gene enrichment

analysis for DEGs. The clusterProfiler package was used to

calculate the normalized enrichment score (NES). When

FDR was less than 0.01, the gene set was retained and

considered to be significantly enriched. In GO analysis,

20 representative functional pathways in three categories

(namely, biological process, cellular component, and

molecular function) were selected for visualization,

respectively.

Assessment of immune cell infiltration

To demonstrate the global landscape of immune cell

infiltration abundance, four algorithms were used to compare

the infiltration features of immune cells, respectively. 1) Single-

sample gene set enrichment analysis (ssGSEA) algorithm; the

GSVA package was used to compare the abundance of

28 immune cells for each individual; 2) xCell package;

signature extraction was performed among a total of

64 immune cells and stromal cells, including epithelial cells,

hematopoietic progenitor cells, and extracellular matrix cells; 3)

MCP-counter package; the abundance of eight immune cells and

two stromal cells from normalized transcriptome data was

calculated; 4) Tumor Immune Estimation Resource (TIMER,

https://cistrome.shinyapps.io/timer/) database; the Spearman

correlation between immune cell infiltration and gene

expression was summarized. The pheatmap package was

adopted to visualize the aforementioned results. Furthermore,

we assessed the purity of tumor samples using the ESTIMATE

package, which deduces the proportion of mesenchymal cells to

immune cells in tumor tissues by analyzing gene expression

profile characteristics.

Generation of m6A gene signature

For the purpose of making the model easier to explore and

enhancing clinical convertibility, the principal component

analysis (PCA) was adapted to perform dimension reduction

analysis on standardized gene expression data to preserve key
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features. Furthermore, the m6A score was calculated with the

feature coefficients of principle components 1 and 2:

m6A score � ∑
n

i�1
(PC1i + PC2i).

Here, i refers to the m6A-related key genes and n is the total of

m6A-related key genes.

The Sankey diagram was performed to represent the

diverging situation between different clusters in proportion

and finally reflected in different survival outcomes.

Nearest template prediction validation

We used the CMScaller R package to calculate the nearest

template prediction (NTP). The NTP algorithm provides a

convenient method to make category predictions, using only a

gene list and a test dataset to assess the predicted confidence

calculated in each patient’s gene expression data. In order to

intuitively demonstrate the prediction and grouping ability of the

m6Ascore model, four validation queues were verified and the

results were visualized: GSE14520, GSE27150, GSE54236, and

ICGC cohorts. Among them, the intersection of module

characteristic genes and DEGs was the feature genes of the

NTP program.

Immunotherapy prediction and drug
sensitivity exploration

The tumor Immune Dysfunction and Exclusion (TIDE,

http://tide.dfci.harvard.edu/) score and SubMap method were

used to predict the potential efficacy of immune checkpoint

inhibitor therapy (including anti-PD1 therapy and anti-

CTLA-4 therapy) for individuals in each cluster. The

pRRophetic package was applied to obtain the half-maximal

inhibitory concentration (IC50) value of distinct drugs

(Geeleher et al., 2014). The IC50 value can reveal the

sensitivity of patients with different m6Ascores in HCC

treatment to the ability of chemotherapy drugs to induce

apoptosis.

Statistical analysis

All analysis was performed in the environment of R

(4.1.0 version) software. Kaplan–Meier and Cox regression

in the survival package were used to analyze survival

differences between groups and calculate the cumulative

survival rate. The Pearson’s chi-squared test for categorical

variables and t-test for continuous variables were used in this

study. The spearman analysis was performed to calculate the

correlation. The circlize package was used to transform results

into visual circular shapes. The two-tailed method with p <
0.05 was deemed as statistically significant.

Results

Identification of 35 key m6A phenotype-
associated regulators

As the m6A methylation level is regulated by a series of

enzymes and RNA-binding proteins in vivo, we recruited 35m6A

phenotype-related regulators based on existing studies (Zaccara

et al., 2019; Chen H. et al., 2021; Zhang et al., 2022). The detailed

names were listed in the Methods section. The flowchart of this

study is shown in Supplementary Figure S1. First, the correlation

and univariate analysis among 35 m6A regulators were

performed in TCGA-HCC cohort (Figures 1A,B), which

showed extensive crosstalk and widely prognostic implications.

Most of these regulators are risk factors in liver cancer, such as

IGF2BP2, YTHDC1, HNRNPC, PCIF1, CBLL1, CPSF6, SRSF3,

HNRNPA2B1, IGF2BP3, WTAP, RBMX, YTHDF1, NXF1,

RBM15, VIRMA, METTL3, NUDT21, ZCCHC4, TRMT112,

SRSF10, YTHDF2, PRRC2A, and RBM15B (all p < 0.05,

HR > 1). Meanwhile, SETD2 ranked first when comparing the

somatic mutation frequency of 35 regulators (Supplementary

Figure S2A). The CNA analysis revealed that VIRMA has the

most copy number amplification, while YTHDF1 has the most

copy number deletion (Supplementary Figure S2B). Additionally,

the expression levels in 33 of the 35 regulators were significantly

different between tumor and normal tissues (Supplementary

Figure S2C). In brief, these regulators might exhibit strong

bioregulatory potential.

Construction and exploration of m6A-
pattern cluster

Previous studies have confirmed that m6A modification-

related methylases, demethylases, and RNA-binding proteins

play a fundamental role in the tumorigenesis and

development of HCC (Zhou et al., 2020; Du et al., 2021; Kim

et al., 2021; Li et al., 2021). Subsequently, TCGA-HCC cohort was

divided into two clusters according to the expression of 35 m6A

regulators: phenotypic-cluster 1 (C1, n = 180) and phenotypic-

cluster 2 (C2, n = 188) (Figure 1C). Furthermore, the calculation

of consensus CDF and program NbClust analyses suggested that

K = 2 was the optimal cluster number (Figures 1D,E). Notably,

patients in the two clusters showed considerable differences in

gene expression (Figure 1F, all p < 0.0001). Gene set variation

analysis (GSVA) was applied to explore the potential biological

functions of m6Amodificationmodes in two phenotypic-clusters

(Figures 2A,B). The RNA splicing, histone modification,

peptidyl-lysine modification, and nuclear envelope and
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FIGURE 1
M6A methylation modification patterns in HCC. (A) Interaction between m6A regulators. Yellow dots represent writers, blue dots represent
erasers, and red dots represent readers. Pink lines represent positive correlation between m6A regulators, and blue lines represent negative
correlation betweenm6A regulators. The size of each circle represents the prognostic effect of each adjustment factor and is scaled by a p-value. (B)
Univariate Cox regression analysis of 35m6A regulators. (C)Consensusmatrix when k = 2. (D)Consensus cumulative distribution function (CDF)
of the consensusmatrix for each k (indicated by colors). (E)Optimal cluster number by K-means clustering and programNbClust. (F)Difference in the
expression level of 35 m6A regulators between two m6A clusters.
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transcription regulator activity in the GO term and the herpes

simplex virus 1 infection, nucleocytoplasmic transport,

ubiquitin-mediated proteolysis, spliceosome, and mRNA

surveillance pathway in KEGG analysis were ranked ahead.

To further demonstrate the infiltrating features of immune-

related cells globally, four independent algorithms were used:

ssGSEA, xCell, MCP-counter, and TIMER algorithm (Figures

2C–F). Also, the NES of cells included in the four algorithms also

showed statistical differences between the two phenotypic-

clusters (Supplementary Figures 3A–D). The fraction

comparison of ESTIMATE score, immune score, stromal

score, and tumor purity also showed statistical differences

(Figure 2G, all p < 0.01), which manifested that the m6A

modification pattern might shed light on the cellular level of

FIGURE 2
GO and KEGG analyses and immune cell infiltration characteristics in two m6A modification modes in HCC. (A) GO enrichment analysis. (B)
KEGG enrichment analysis. (C–F) Heatmaps of immune cell infiltration in m6A modification patterns based on ssGSEA, xCell, MCP-counter, and
TIMER algorithms, respectively. (G)Difference in ESTIMATE, immune, stromal, and tumor purity scores between twom6Amodificationmodes based
on ESTIMATE algorithm.
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FIGURE 3
Two genomic subtypes of differentially expressed genes that can affect a cancer patient’s prognosis using unsupervised cluster analysis. (A)
Consensus matrix when k = 2. (B) CDF graph of the consensus matrix for each k (indicated by colors). (C) Optimal cluster number by K-means
clustering and program NbClust. (D)Difference in the expression level of 35m6A regulators between two gene clusters (*p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001, and ns, not significant). (E) GO enrichment analysis. (F) KEGG enrichment analysis.
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the immune microenvironment and guide the immunotherapy

in clinical practice of HCC patients.

Screening of differentially expressed
genes and establishment of gene clusters

Given the transcription imparity between m6A modifiers in

distinct phenotypic-clusters, we explored the genetic

characteristics and potential mechanisms regulated by m6A

modes. First, 3500 DEGs were screened out between two m6A

phenotypic-clusters. Furthermore, the remaining 2260 DEGs

were filtered by univariate Cox analysis. Subsequently, two

gene clusters (C1, n = 172; C2, n = 196) based on 2260 DEGs

were obtained by unsupervised cluster analysis and verified

(Figures 3A–C). Similarly, all 35 m6A regulators were

significantly upregulated in gene-cluster 1 (Figure 3D).

Moreover, the top pathways enriched by GO and KEGG

analyses were roughly the same as the phenotypic-cluster

results. Among them, the cell cycle pathway was worth

mentioning and ranked third in KEGG (Figures 3E,F). The

abundance of immune cell infiltration and the NES of related

cells were evaluated for the two gene clusters, respectively

(Figures 4A–D; Supplementary Figures 4A–D). The primary

immune cells that dominate innate and/or acquired immunity

in humanity, such as central memory CD8 T cells (ssGSEA

method), effector memory CD4 T cells (ssGSEA method),

cytotoxic lymphocytes (xCell method), NK cells (xCell

method), macrophages (MCP-counter method), Th2 cells

(TIMER method), and Tregs (TIMER method), were

differently enriched in gene-clusters 1 and 2. The ESTIMATE

score, immune score, stromal score, and tumor purity also

showed statistical differences (Figure 4E, all p < 0.01).

Generation of the m6Ascore model and
detection of functional roles

In order to further refine this subject and achieve

individualized prediction, we further explored the m6Ascore

model based on gene clusters. The PCA showed well

separation efficiency (Figure 5A). When comparing the

diverging status of samples from different subtypes, it was

found that the m6Ascore might have the best predictive

power for prognosis, and low-m6Ascores possess adverse

outcomes (Figures 5B,C, log-rank p < 0.0001). Interestingly,

FIGURE 4
Immune landscape underlying two different m6A gene clusters in liver cancer. (A–D)Heatmaps of immune cell infiltration inm6A gene clusters
based on ssGSEA, xCell, MCP-counter, and TIMER algorithms, respectively. (E) Difference of ESTIMATE, immune, stromal, and tumor purity scores
between two m6A gene clusters based on ESTIMATE algorithm (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns, not significant).
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the high-m6Ascore subtype was positively correlated with m6A

phenotypic-cluster 2 and gene-cluster 2 and was accompanied by

low tumor purity, high stromal score, high ESTIMATE score, and

high immune score (Figures 5D–F, all p < 0.05). Four calculations

showed that low-m6Ascore patients generally possessed a higher

abundance of local immune cell infiltrates, including the ssGSEA

FIGURE 5
Construction of an m6A gene signature and exploration of its clinical significance in HCC. (A) Two gene clusters by principal component
analysis. (B) Sankey diagram showing the changes in m6A clusters, gene clusters, m6Ascore, and survival status. (C) Survival outcomes of patients by
m6Ascore. The survival outcomes of patients in the low-m6Ascore group are better. (D) Variation analysis of m6Ascore between m6A clusters. (E)
Variation analysis of m6Ascore between gene clusters. (F) Difference in ESTIMATE, immune, stromal, and tumor purity scores between high-
and low-m6Ascore groups based on ESTIMATE algorithm (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns, not significant). (G–J)
Heatmaps of immune cell infiltration in high- and low-m6Ascore groups based on ssGSEA, xCell, MCP-counter, and TIMER algorithms, respectively.
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FIGURE 6
Validation of high- and low-m6Ascore grouping using the NTP algorithm and exploration of prognostic differences in other cohorts. (A–D)
Heatmaps and K-M curves showing predicted patient distribution and prognostic differences for liver cancer in GSE14520, GSE27150, GSE54236,
and ICGC cohorts, respectively.
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method (the activated CD4 T cell, central memory CD4 T cell,

central memory CD8 T cell, effector memory CD4 T cell,

immature dendritic cell, and type 2 T helper cell), MCP-

counter method, TIMER method, and xCell method (CD4 +

memory T cells, Th1 cells, and Tregs) (Figures 5G–J,

Supplementary Figures 5A–D, all p < 0.05). Some immune

cell infiltration was more superior in the high-risk group,

while most of these made no sense and were not statistically

significant (such as activated B cell, aDC, and cDC). Additionally,

only several types of cells show different trends in xCell algorithm

(such as DC and endothelial cells). However, there was no

consistency among the four algorithms (ssGSEA, MCP-

FIGURE 7
Gene set enrichment analysis underlying the m6A signature in HCC. (A)Most significantly enriched GO terms in the high-m6Ascore group. (B)
Most significantly enriched GO terms in the low-m6Ascore group. (C)Most significantly enriched KEGG pathways in the high-m6Ascore group. (D)
Most significantly enriched KEGG pathways in the low-m6Ascore group. (E) Gene set variation analysis underlying the m6A signature. (F) Most
significantly enriched hallmark pathways in the low-m6Ascore group. (G)Difference in the expression level of 35m6A regulators between high-
and low-m6Ascore groups (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns, not significant).
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counter, TIMER, and xCell). Therefore, considering the analysis

results of the four algorithms, it is reasonable to assume that the

low-risk group may be more responsive to immunotherapy.

Validation of nearest template prediction
in the m6Ascore model and functional
exploration

To evaluate the reliability and robustness of the model, we

performed nearest template prediction (NTP) and survival

analysis in four queues recruited from different platforms:

GSE14520, GSE27150, GSE54236, and ICGC cohort (Figures

6A–D). Patients in the low-m6Ascore subtype possess a poor

prognosis in four validation datasets, respectively (all log-rank

p < 0.05). The GSEA of the GO term found that the top five terms

between high- and low-m6Ascore subtypes were distinct (Figures

7A,B). The metabolism-related terms of arachidonic acid

monooxygenase activity, aromatase activity, benzene-

containing compound metabolic process, epoxygenase

p450 pathway, and xenobiotic catabolic process were visibly

enriched in the high-m6Ascore subtype, while terms of

histone mRNA metabolic process, nucleosome binding,

replication fork, single-stranded DNA helicase activity, and

structural constituent of nuclear pore were downregulated in

the low-m6Ascore subtype. Similarly, the metabolism-related

KEGG pathways were upregulated in high-score groups, such

as ascorbate and aldarate metabolism, asthma, beta-alanine

metabolism, phenylalanine metabolism, and primary bile acid

biosynthesis pathways (Figure 7C). Remarkably, the gene

regulation-correlated pathways were negatively enriched in

low-score groups, such as cell cycle, DNA replication,

homologous recombination, mismatch repair, and spliceosome

pathways (Figure 7D). Furthermore, GSVA provided potential

directions for m6A signatures to explore, such as G2M

checkpoint, mitotic spindle, E2F targets, PI3K/AKT/MTOR

signaling, coagulation, and corresponding hallmark pathways

(Figures 7E,F).

Comparison of transcriptome and
genome level in distinct m6Ascore

Driving of the m6A phenotype is inextricably linked to

genomics and transcriptomics. Undeniably, m6A regulators

play a leading role in the occurrence of methylation

modification events (Zaccara et al., 2019). Consequently, the

gene expression level of all 35 regulators in each group of the

m6Ascore model was compared. As expected, all 35 regulators

showed absolute upregulation in low-m6Ascore patients

(Figure 7G). Subsequently, the waterfall plot of 30 genes with

the highest mutation frequency and the relationship between the

model andmutation characteristics in HCC were performed. The

mutation frequency of TP53 and CTNNB1 secured the top

2 ranks (Supplementary Figures 6A,B, both p < 0.05). The

correlation analysis of mutation characteristics showed that

the high-score group was associated with high mutation

trends, including TMB, SNP, and INDEL (Supplementary

Figures 6C–E).

Prediction of immunotherapy responses
and drug sensitivity prediction

We further evaluated the prediction efficiency of the m6A

model about immunotherapy effectiveness for HCC patients.

Based on TIDE algorithms, the results showed the distribution of

predicted immunotherapy responders and differences in TIDE

scores in high- and low-m6Ascore groups (Figures 8A,B). The

low-score subtype might be more sensitive to immunotherapy

and possessed lower TIME score (p < 0.001). The SubMap

method proved that low-m6Ascore patients receiving anti-PD-

1 therapy may be effective, which contributed to the therapeutic

strategies made for improving outcomes in HCC patients with

low m6Ascore (Figure 8C, p < 0.05). Moreover, the IC50 values of

138 compounds were calculated using the pRRophetic package.

The results revealed that high-m6Ascore individuals were

sensitive to axitinib, bicalutamide, dasatinib, gefitinib,

lapatinib, roscovitine, salubrinal, and sunitinib (Figures 8D–G,

all p < 0.05), while ATRA, bleomycin, bosutinib, camptothecin,

doxorubicin, etoposide, gemcitabine, nilotinib, rapamycin,

shikonin, tipifarnib, and vorinostat might be sensitive on low-

m6Ascore patients (Figures 8D–G, all p < 0.05).

Discussion

Due to high heterogeneity, HCC has attracted extensive

attention from clinicians and is also a difficult problem to be

solved urgently in the field of oncology and immunology (Liu

et al., 2021a; Liu et al., 2021b). Meanwhile, it cannot be ignored

that the occurrence and progression of HCC often lead to a series

of fatal complications, which will greatly increase the life safety

threat of patients (Pinter et al., 2016; Marasco et al., 2019).

Consequently, the complex pathogenesis and the obscure

background of tumor local immune cell infiltration make it

difficult to evaluate and treat HCC. Currently, more robust

and comprehensive prognostic assessment and efficacy

prediction systems are needed to help manage HCC patients.

Proverbially, m6A epigenetic modification has influenced the

way and future directions of oncology research (Topper et al.,

2020; Guo et al., 2022). As the methylated regulatory network

mediated via m6A is closely linked to a variety of star pathways,

such as the Hippo pathway, TGF-β pathway, andWNT pathway,

m6A-related regulators have been endowed with increasing

biological functions (Han et al., 2020; Feng et al., 2021; Qiao
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et al., 2021). For m6A modification, a reversible and dynamic

process, perhaps the molecular network that dominates its global

nature could clearly dissect its potential biological significance.

METTL3-mediated m6A modification can promote the

progression and metastasis of CRC and reduce the prognosis

of patients (Li et al., 2019; Chen et al., 2021a). The LINC00460/

DHX9/IGF2BP2 complex promotes CRC proliferation and

metastasis by m6A modification, which could serve as a

promising predictive biomarker for the diagnosis and

prognosis (Hou et al., 2021). ALKBH5, a demethylase, impairs

the malignancy of HCC via m6A manner and provides

therapeutic targets of treatment (Chen et al., 2020).

Attractively, Shen et al. (2021) identified that YTHDF1-related

m6A modification-dependent ferroptosis is a potential target for

the treatment of liver fibrosis. Another study demonstrated that

WTAP was upregulated in HCC, which indicated the poor

FIGURE 8
Immunotherapy response prediction and potential drug exploration. (A,B)Distribution of predicted immunotherapy responders and differences
in TIDE scores based on TIDE algorithms in high- and low-m6Ascore groups. (C) Response prediction to immunotherapy (anti-PD-1 and anti-CTLA-
4) between high- and low-m6Ascore groups according to the SubMap algorithm. (D–G)Difference in prediction of sensitivity of 138 drugs between
high- and low-m6Ascore groups based on the pRRophetic algorithm (*p < 0.05, **p < 0.01, ***p <0.001, ****p <0.0001, and ns, not significant).
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outcomes (Chen et al., 2019). Overall, these m6A regulators are

closely associated with the prognosis of patients with solid

tumors such as HCC. However, most studies have focused on

individual methylation-related enzymes and/or RNA-binding

proteins, and little is known about global m6A methylation

regulatory networks and their applications. Likewise, the

potential roles of m6A patterns in HCC patients are pendent.

In this study, we describe a methylation regulatory network

by recruiting 35 m6A regulators: nine writers, 23 readers, and

three erasers that have been reported in the previous literature

works. For instance, METTL3 and METTL14, as methylating

enzymes, regulate a variety of malignant events, including tumor

proliferation, metastasis, stemness maintenance, and

chemotherapy resistance (Li et al., 2019; Wang et al., 2020b;

Xu et al., 2021; Zhang et al., 2021). The demethylase FTO, an

“eraser” of m6Amethylation, exhibits dual effects (tumorigenesis

and tumor inhibition) in disparate solid tumors (Tao et al., 2021;

Huang et al., 2022). In addition, FTO inhibitors and their

homologues have shown certain therapeutic effects in clinical

trials (Huang et al., 2015). Furthermore, univariate analysis

showed that individual methylation levels were associated with

different outcomes. Therefore, the degree of m6A modification

was preliminarily classified according to the expression level of

35 regulators. The two clusters of the m6A pattern showed well

differentiation at both genomic mutation and transcriptome

levels. Enrichment analysis found that the genomic and

metabolic regulation differences between phenotypic-clusters

1 and 2 are primarily reflected in the RNA splicing, histone

modification, transcription coregulator activity terms, herpes

simplex virus 1 infection, and nucleocytoplasmic transport

pathways. Abundance analysis of four immune infiltrate

statuses further explored the potential differences in molecular

mechanisms and cell composition under different m6A modes.

Furthermore, we screened potential functional gene targets for

different m6A phenotypic-clusters. A total of 2260 DEGs with

survival significance from two phenotypic-clusters were obtained.

The following clusters of differential genes showed consistent

results with phenotypic-clusters in terms of expression of

35 regulators. Enrichment analysis and immune cell infiltration

prediction also confirmed differences in metabolic and infiltration

abundance between gene-clusters 1 and 2. ESTIMATE score was

used to infer tumor cell composition and normal cell (mainly

stromal cells and immune cells) infiltration to predict differences

in tumor microenvironments. The result found that gene-cluster

1 has low immune and stromal cell infiltration and high tumor

purity, which might be associated with tumor proliferation and

drug resistance. To increase the usefulness of individual patient

assessment, we reduced the dimension of data and constructed a

m6Ascore model. Also, the model was closely associated with

patient prognosis, m6A phenotypic-clusters, and gene clusters.

The stability of the model for prognostic assessment was also

verified by four external public datasets, namely, GSE14520,

GSE27150, GSE54236, and ICGC cohort. Additionally, GO and

KEGG analyses showed that metabolization-related pathways were

significantly upregulated in the high-score group. The E2F targets,

G2M checkpoint, mitotic spindle, MYC targets, and protein

secretion hallmark pathways were most significantly enriched in

the low-m6Ascore group.

For decades, immunotherapy has revolutionized cancer

treatment. However, not all cancer patients can achieve

satisfactory results after immunotherapy (Wang et al., 2020a;

Liu et al., 2022). As a whole, immunotherapy strategies

primarily based on immune checkpoint blockers still need to be

investigated. How to screen out suitable immunotherapy for

patients and select appropriate drugs for patients has become a

prevailing challenge for clinicians. Herein, we explored the

predictive power of the m6Ascore model for the treatment of

HCC patients. It was found that patients in the low-m6Ascore

group may have a greater chance of responding to

immunotherapy, such as anti-PD-L1 therapy, than those in the

high-m6Ascore group. Meanwhile, the IC50 values of individuals

were calculated and showed that the IC50 values of some drugs,

including axitinib, bicalutamide, dasatinib, and gefitinib, were

smaller in the high-m6Ascore group, which indicated that these

patients may be more sensitive, while some drugs, such as

bosutinib, camptothecin, etoposide, nilotinib, and tipifarnib,

might provide therapeutic effects on low-m6Ascore patients. In

fact, some drugs, such as sunitinib and axitinib, have been proved

to have good application prospects in HCC. Synergizing sunitinib

and radiofrequency ablation to treat HCC triggered an antitumor

immune response (Qi et al., 2020). Moreover, according to a

clinical study, avelumab in combination with axitinib can be

used as a first-line treatment in patients with advanced HCC

(Kudo et al., 2021). Generally, the drug prediction results provide a

broad clinical prospect for future treatment options.

Conclusion

The m6A methylation-related regulators were adopted to

progressively construct the phenotypic-cluster, gene cluster and

m6Ascore model, and the differences between genomics and

transcriptomics as well as the potential functional pathways and

mechanisms were evaluated, respectively. Furthermore,

immunotherapy based on epigenetic modification in clinical

patients has been predicted, and some potential therapeutic

compounds have been developed. In fact, there are some

limitations to this study. First, all the data analyzed in this

study are based on the public cohort, and more sample

information and clinical in-house cohorts need to be further

mined. Second, some related basic experiments would be more

conducive to the verification of results in vivo and/or in vitro.

Collectively, this study established a powerful m6Ascore model

and proposed a stratified precision strategy, which contributed to

achieving the classification management and enhancing

prognosis for HCC patients.
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