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Aim: The purpose of this study was to establish a mode of action for diosgenin

against breast cancer employing a range of system biology tools and to

corroborate its results with experimental facts.

Methodology: The diosgenin-regulated domains implicated in breast cancer

were enriched in the Kyoto Encyclopedia of Genes and Genomes database to

establish diosgenin-protein(s)-pathway(s) associations. Later, molecular

docking and the lead complexes were considered for molecular dynamics

simulations, MMPBSA, principal component, and dynamics cross-correlation

matrix analysis using GROMACS v2021. Furthermore, survival analysis was

carried out for the diosgenin-regulated proteins that were anticipated to be

involved in breast cancer. For gene expression analyses, the top three targets

with the highest binding affinity for diosgenin and tumor expression were

examined. Furthermore, the effect of diosgenin on cell proliferation,

cytotoxicity, and the partial Warburg effect was tested to validate the

computational findings using functional outputs of the lead targets.

Results: The protein-protein interaction had 57 edges, an average node degree

of 5.43, and a p-value of 3.83e-14. Furthermore, enrichment analysis showed

36 KEGG pathways, 12 cellular components, 27 molecular functions, and

307 biological processes. In network analysis, three hub proteins were

notably modulated: IGF1R, MDM2, and SRC, diosgenin with the highest

binding affinity with IGF1R (binding energy −8.6 kcal/mol). Furthermore,

during the 150 ns molecular dynamics (MD) projection run, diosgenin

exhibited robust intermolecular interactions and had the least free binding

energy with IGF1R (−35.143 kcal/mol) compared to MDM2 (−34.619 kcal/mol),

and SRC (-17.944 kcal/mol). Diosgenin exhibited the highest cytotoxicity

against MCF7 cell lines (IC50 12.05 ± 1.33) µg/ml. Furthermore, in H2O2-

induced oxidative stress, the inhibitory constant (IC50 7.68 ± 0.51) µg/ml of

diosgenin was lowest in MCF7 cell lines. However, the reversal of the Warburg

effect by diosgenin seemed to bemaximum in non-cancer Vero cell lines (EC50

OPEN ACCESS

EDITED BY

Mitesh Patel,
Parul University, India

REVIEWED BY

Mohammad Jahoor Alam,
University of Hail, Saudi Arabia
Mejdi Snoussi,
University of Hail, Saudi Arabia

*CORRESPONDENCE

Pukar Khanal,
pukarkhanal58@gmail.com

Darasaguppe R. Harish,
drharish49@gmail.com

†These authors have contributed equally
to this work and share first authorship

SPECIALTY SECTION

This article was submitted to
Pharmacology of Anti-Cancer Drugs,
a section of the journal
Frontiers in Pharmacology

RECEIVED 24 September 2022
ACCEPTED 05 December 2022
PUBLISHED 04 January 2023

CITATION

Khanal P, Patil VS, Bhandare VV, Patil PP,
Patil BM, Dwivedi PSR, Bhattacharya K,
Harish DR and Roy S (2023), Systems
and in vitro pharmacology profiling of
diosgenin against breast cancer.
Front. Pharmacol. 13:1052849.
doi: 10.3389/fphar.2022.1052849

COPYRIGHT

© 2023 Khanal, Patil, Bhandare, Patil,
Patil, Dwivedi, Bhattacharya, Harish and
Roy. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 04 January 2023
DOI 10.3389/fphar.2022.1052849

https://www.frontiersin.org/articles/10.3389/fphar.2022.1052849/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1052849/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1052849/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.1052849&domain=pdf&date_stamp=2023-01-04
mailto:pukarkhanal58@gmail.com
mailto:pukarkhanal58@gmail.com
mailto:drharish49@gmail.com
mailto:drharish49@gmail.com
https://doi.org/10.3389/fphar.2022.1052849
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.1052849


15.27 ± 0.95) µg/ml compared to the rest. Furthermore, diosgenin inhibited cell

proliferation in SKBR3 cell lines more though.

Conclusion: The current study demonstrated that diosgenin impacts a series of

signaling pathways, involved in the advancement of breast cancer, including

FoxO, PI3K-Akt, p53, Ras, and MAPK signaling. Additionally, diosgenin

established a persistent diosgenin-protein complex and had a significant

binding affinity towards IGF1R, MDM2, and SRC. It is possible that this

slowed down cell growth, countered the Warburg phenomenon, and

showed the cytotoxicity towards breast cancer cells.

KEYWORDS

breast cancer, computational pharmacology, diosgenin, gene ontology analysis,
system biology

Introduction

Breast cancer spreads through the inner layer of the milk

gland or lobules and ducts (Sariego, 2010), and it is one of the

second leading causes of mortality for women between the

ages of 45 and 55 (Jemal et al., 2009). It includes age, iodine

deficiency (Venturi, 2001; Aceves et al., 2005; Stoddard et al.,

2008), high hormone levels (Russo and Russo, 2006; Yager

and Davidson, 2006), and age-related (Steiner et al., 2008)

risk factors. This incident potentially results in the breast

being surgically removed entirely or in requiring chemo-,

radio-, or hormone-therapy (HeraviKarimovi et al., 2006).

However, these practises are preoccupied with multiple side

effects that are not specific to the breast tumor. Furthermore,

the currently used chemotherapeutic drugs in medical care

result in anemia, exhaustion, mouth soreness, vomiting, and

diarrhea. This suggests the requirement to discover a novel

therapeutic agent against breast cancer.

Diosgenin is a phyto steroid sapogenin obtained from the

hydrolysis by strong bases, acids, or enzymes of saponin. It is

commercially used as a precursor to synthesis various

hormones and steroid products like pregnenolone, and

cortisone including progesterone (Marker and Krueger,

1940) for the early manufacture of combined oral

contraceptive pills (Djerassi, 1992). Additionally, diosgenin

has the potential to inhibit activated pro-inflammatory and

pro-survival signaling pathways and promote the death of a

variety of cancer cells (Shishodia and Aggarwal, 2006).

Additionally, diosgenin inhibits the growth of oestrogen

receptor-positive MCF-7 cells by activating caspase three

and upregulating the p53 tumor suppressor gene. Further,

BCL2 is downregulated in estrogen receptor-negative MDA-

MB-231 breast cancer cells (Srinivasan et al., 2009). Although

the potential of diosgenin to treat breast cancer has been

demonstrated its interaction with proteins involved in the

progenesis of breast cancer has yet to be investigated.

As a result, the current study focuses on locating the

potential interactions of the diosgenin-regulated proteins

and attributable pathways implicated in breast cancer using

a range of system biology techniques i.e., gene ontology (GO)

analysis, molecular docking, and molecular dynamics (MD)

simulations, and reinforcing its findings using diverse

functional biomarkers using in vitro experiments in four

distinct cell lines.

Materials and methods

Computational pharmacology

The detected diosgenin-regulated proteins were enriched to

determine the altered pathways. Later, diosgenin was docked

with proteins, and the proteins with the maximum diosgenin

binding affinity were chosen for MD simulation. Furthermore,

the diosgenin-regulated proteins involved in breast cancer were

examined for survival and gene expression in normal and tumor

cell lines, including the three hub proteins determined by

molecular docking.

ADMET profile of diosgenin and its targets
Canonical SMILES of diosgenin (Figure 1) were retrieved

from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/)

andADMEprofile was predicted by SwissADME (Daina et al., 2017;

http://www.swissadme.ch/) and ADMETlab 2.0 (Xiong et al., 2021;

https://admetmesh.scbdd.com) and adverse effects from

ADVERPred (Ivanov et al., 2018; http://www.way2drug.

com/adverpred/).

Diosgenin-modulated targets were predicted using

SwissTargetPrediction (Daina et al., 2019; http://www.

swisstargetprediction.ch/), DIGEP-Pred (Lagunin et al.,

2013; http://www.way2drug.com/ge/), and BindingDB (Liu

et al., 2007; https://www.bindingdb.org/bind/index.jsp) and

any duplicates were eliminated. In addition, the semantic type

(neoplastic process) oestrogen receptor-positive breast cancer

targets (UMLS CUI: C2938924), were retrieved from

DisGeNET (https://www.disgenet.org/). Later, the
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diosgenin-modulated targets were compared with DisGeNET-

recorded targets to trace the reported targets involved in

oestrogen receptor-positive breast cancer using PivotTable

(Microsoft excel 2007; https://www.microsoft.com/en-in/

microsoft-365/excel).

GO and cluster analysis
The diosgenin-modulated targets involved in oestrogen

receptor-positive breast cancer were queried in STRING

(Szklarczyk et al., 2021; https://string-db.org/) ver 11.5 for

“Homo sapiens” to trace three GO terms i.e., cellular

components, molecular function, and biological processes.

In addition, probable regulations of multiple pathways were

also traced concerning the KEGG database (https://www.

genome.jp/kegg/pathway.html) with whole genome

statistical background. Also, the regulated proteins were

concerned with subcellular location (COMPARTMENT),

protein domains and features (InterPro), protein domain

(Pfam), and tissue expression (TISSUES). Later, the

protein-protein interaction (PPI) was also assessed for the

cluster analysis via k means clustering to identify three lead

distinct clusters.

Network construction and analysis

The network between diosgenin, its targets (involved in

oestrogen receptor-positive breast cancer), and the regulated

pathways were constructed using Cytoscape ver 3.5.1

(Shannon et al., 2003; https://cytoscape.org/). The constructed

network was recognized as directed and inspected by translating

node size and color to low values corresponding to small sizes

and low values corresponding to bright colors toward edge count.

In addition, the edge size and color were mapped to edge

betweenness, with low values corresponding to small sizes and

low values equating to bright colors.

Molecular docking
The regulation of insulin-like growth factor 1 receptor

(IGF1R), E3 ubiquitin-protein ligase Mdm2 (MDM2), and

proto-oncogene tyrosine-protein kinase Src (SRC) were

majorly triggered in the network interaction among

diosgenin-target(s)-pathway(s). As a result, these three

proteins were considered for molecular docking studies.

Ligand preparation: The ligand’s 3D conformation,

diosgenin, was obtained from the PubChem database (https://

pubchem.ncbi.nlm.nih.gov) and converted to .pdb using

Discovery Studio Visualizer (https://discover.3ds.com/discover-

studio-visualizer-download) ver. 2019. The ligand’s energy was

minimized using the mmff94 force field (Halgren 1996) and

saved in .pdbqt format.

Preparation of macromolecule:Diosgenin was docked against

IGF1R (PDB: 3I81),MDM2 (PDB: 3LBL), and SRC (PDB: 1O43);

retrieved from a protein data bank maintained by the Research

Collaboratory for Structural Bioinformatics (RCSB; https://www.

rcsb.org). All proteins were refined and saved in .pdb format after

eliminating all heteroatoms and pre-complex ligands.

Ligand–protein docking: Diosgenin was docked against the

aforementioned targets using AutoDock Vina, which was run

through the POAP pipeline (Trott and Olson 2010; Samdani and

Vetrivel 2018; Patil et al., 2022). Nine different poses of ligand

were obtained after docking. Docking results were analysed based

on the binding affinity, and number of interactions as explained

previously (Dwivedi et al., 2021; Badraoui et al., 2022). Further,

the diosgenin pose with the lowest binding energy was chosen to

visualize the ligand-protein interactions and perform MD

simulation (Samdani and Vetrivel 2018).

MD simulation
To examine the structural stabilities and intermolecular

interactions of diosgenin with IGF1R, MDM2, and SRC, an

all-atom MD simulation in an explicit solvent was performed

for 150 ns.We used the GROMACS software package, ver. 2021.3

FIGURE 1
Structure of Diosgenin (A) 2D and (B) 3D (ball and stick). PubChem CID: 99474, Molecular Formula: C27H42O3, Synonyms: Nitogenin, UNII-
K49P2K8WLX, (3β, 25R)-spirost-5-en-3-ol, Molecular Weight: 414.6.
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(https://www.gromacs.org/) and Amber ff99SB-ildn force field to

run MD simulations (Berendsen et al., 2005; Saeed et al., 2020;

Dwivedi et al., 2022). The topological parameters of the ligands

and the entire complex were calculated using the AmberTool’s

xleap module (https://ambermd.org/AmberTools.php) and the

partial charges of the small molecules were calculated using an

antechamber with a “bcc” charge model. The built systems were

solvated in a rectangular box with 10.0 Å boundary conditions

from the protein’s borders in all directions using the TIP3P water

model. The required amounts of counter ions were introduced to

the prepared systems to neutralize the charges. The steepest

descent and conjugate gradient energy reduction methods were

used to discover the least energy conformations of the near-

global state. To equilibrate the systems for 1 ns, “Canonical

(NVT) and isobaric (NPT) ensembles” were used. A modified

Berendsen thermostat approach was utilized to keep the volume

and temperature consistent during NVT equilibration (300 K).

During NPT equilibration, a Parrinello-Rahman barostat was

used to keep the pressure constant at 1 bar. Furthermore, the

Particle Mesh Ewald approximation with a cut-off value of 1 nm

was used to calculate the long-range electrostatic interactions,

van der Waals, and Coulomb interactions. A similar LINear

Constraint Solver method was used to constrain bond length.

Every complex went through a 150 ns production run with

coordinates recorded every 2 fs. Other software programs, in

addition to the built-in gromacs tools, were utilized to perform

specific analyses on the acquired trajectories as required.

Analysis of free binding energy of complexes
utilizing molecular mechanics
Poisson–Boltzmann surface area (MM-PBSA)

In MD simulations and thermodynamic calculations, the

relative binding energy of a ligand-protein complex was

employed to investigate the binding free energies. The relative

binding free energy and its contribution to individual residues

were calculated using the MM-PBSA method and the “g_

mmpbsa” tool (Kumari et al., 2014; Dwivedi et al., 2022). The

parameters for binding free energy calculations were taken from

our previous study (Khanal et al., 2022). The binding free energy

(ΔG) was calculated using 50 representative snapshots taken

throughout the stable trajectory observed between 100 and

150 ns. The change in entropy (ΔS) was calculated using the

Schlitter formula and finally, accurate binding free energy was

calculated using the formula, ΔG = ΔH–TΔS, where, ΔG = Gibbs

free energy, ΔH = enthalpy change, T = temperature (Kelvin),

and ΔS = entropy change.

Principal component (PCA) and dynamic cross-
correlation matrix (DCCM) analysis

PCA was performed over the stable MD trajectory to examine

various forms of molecular motion (Amadei et al., 1993; Amadei

et al., 1996; Bhandare and Ramaswamy 2018). To accomplish this,

the “least square fit” to the reference structure was used to account

for themolecular translational and rotationalmotion. The collection

of eigenvectors obtained by diagonalizing a covariance matrix was

produced by a linear transform of cartesian coordinate space to

reflect the direction of the molecular motion. The energy

contribution of each eigenvector to the motion was presented by

the eigenvalue associated with the respective eigenvector. The “time-

dependent motions” that the components carry out in an atomic

vibrational mode were demonstrated by projecting the trajectory

onto a particular eigenvector. The atomic vibrational components’

contribution to this form of coordinated motion was shown by the

projection’s time average (Amadei et al., 1993; Van Aalten et al.,

1995; Amadei et al., 1996; Bhandare and Ramaswamy 2018).

DCCM evaluates the magnitude of each pairwise cross-

correlation coefficient to determine whether or not atomic

pair motion is correlated i.e., positive or negative (Khanal

et al., 2021). We examined each DCCM component in this

section, where Cij = 1 denotes the same period and phase

(positive correlation), Cij = 0 indicates a lack of correlation,

and Cij = −1 indicates a negative correlation between the

fluctuations of i and j (Khanal et al., 2021).

Survival analysis of hub genes
To assess the prognostic values of hub genes of diosgenin-

regulated oestrogen receptor-positive breast cancer targets, the

Kaplan–Meier plotter breast cancer database (http://kmplot.

com/analysis/) was used with APP, AR, CDK4, CRHR1,

CYP17A1, CYP19A1, CYP3A4, FASN, FGFR2, GRM1, IGF1R,

LYN, MDM2, MDM4, NR3C1, PDGFRB, PRCP, PTPN1, RET,

SRC, and STAT3 probe ID. Patients were divided into two groups

with “auto-detected best cutoff”; overall survival was analyzed

against n = 2,976 samples with a follow-up of 20 years of data.

Also, the subtype analysis was restricted to lymph node status

(n = 2,887), ER status (n = 2,789), PGR status (n = 2,662), HER2

status (n = 2,875), KI67 status (n = 1,360), Nottingham histologic

grade (n = 2,917), and PAM50 subtype (n = 2,976) and cohort

restriction i.e., endocrine treated (n = 2,955) and chemo treated

(n = 2,956). The difference among the groups was considered to

be statistically significant if p < 0.05.

Gene expression analysis in tumor, normal and
metastatic tissues

Herein, we evaluated the top three genes based on the log-

rank test from survival analysis, and in silico molecular docking

was evaluated for the gene expression in normal, tumor, and

metastatic tissues using RNA sequence data in the platform of

tumor, normal and metastatic samples. These data were analyzed

using Kruskal Wallis and Dunn test.

Experimental pharmacology

Through different in vitro pharmacology profiling, we

investigated the influence of diosgenin on breast cancer cell
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lines. To begin, brine shrimp lethality (BSL) bioassay was used to

assess its cytotoxicity and the effect was compared with

doxorubicin. Later, the effect of diosgenin on breast cancer

cell lines (MCF7, MDA-MB-231, SKBR3, and T47D) was

compared to normal epithelial cell lines (Vero) by

emphasizing on cell viability, proliferation, and Warburg effect.

BSL bioassay
The brine shrimp lethality bioassay was performed as

explained by McLaughlin et al. (1998) with minor

modifications. Here, Artemia salina Leach. eggs from

Seamonk international Artemia cyst 003 were used for the

assay. Briefly, 10–12 brine shrimps were incubated within the

different concentrations of diosgenin and doxorubicin (prepared

in seawater) for 24 h. Controls were used without the test agents.

After 24 h, the survived shrimps were counted and the %

cytotoxicity was calculated as

% cytotoxicity � Total shrimps added − live shrimps

Total shrimps
( ) × 100

The LC50 was calculated using a linear regression curve.

In vitro MTT assay tumor and non-tumor cell
lines

The cytotoxic activity of diosgenin and doxorubicin on

tumor and normal cell lines was performed using an MTT

assay (Mosmann, 1983) with minor modifications. Briefly, cell

lines were plated onto 96-well flat-bottom plates, maintaining the

cell density (20,000 cells/well), and were allowed to proliferate

(24 h). After that, the cells were treated with different

concentrations of diosgenin and doxorubicin maintaining the

final volume of 250 µL after adding DMEM media

(supplemented with 3% FBS) and incubated (37°C, 48 h, 5%

CO2). Next, 20 μL of MTT reagent was added and incubated

(37°C in 5% CO2, 4 h). After incubation, the wells were washed

(PBS, 3X) to discard the MTT. Then, formazan crystals were

dissolved in DMSO (99.5% v/v, 100 μL) by gentle shaking. The

absorbance was then recorded (570 nm) using an ELISA plate

reader. The cell viability was calculated as

% viability � Absorbance of control − Absorbance of sample

Absorbance of control
( ) × 100

In vitro scratch assay
In vitro scratch assay was performed as explained by Bolla

et al (2019) with minor modifications. Briefly, a stock solution

(200 μg/ml) of diosgenin and doxorubicin was prepared and

sterilized by filtering using a sterile membrane filter (0.22 µm).

Later the solution was diluted using geometric series up to

1.56 μg/ml. This series of concentrations were chosen based

on the number of experiments (trial and error). All the cells

were seeded (2 × 105 cells/well) in 12-well tissue culture plates to

obtain the confluence of 80–90% after 24 h of culture. After 24 h

of post-seeding, the cell monolayers were scraped to create

scratches of (300 µm). The detached cells and debris were

washed with phosphate buffer. The media containing the

samples were added to each well. Suitable controls were used

by adding the minimal media and the scratch coverage was

recorded at 0, 12, 24, 48, and 72 h after sample addition. The

percentage scratch coverage was calculated using the following

formula

% scratch coverage � Scratch length at 0 min − t min( )
Scratch length at 0 min

( ) × 100

Effect of diosgenin on Warburg effect
The effect of diosgenin on the Warburg phenomena was

evaluated by evaluating glucose uptake via the above-mentioned

cancer cell lines vs. normal cell lines (Vero). Initially, the cells

were grown in six well plates and incubated (37°C, 48 h) in a CO2

incubator. After the formation of the confluent monolayer, the

culture was renewed (DMEM consisting of 0.2% BSA) and again

incubated (37°C, 18 h) in the CO2 incubator. After incubation,

the media was discarded and washed with KRP buffer. The cells

were then treated with diosgenin and metformin in the presence

of insulin followed by the addition of glucose (1 M) and

incubated (30 min). The remaining amount of glucose was

quantified from the supernatant. The percentage glucose

uptake was calculated as the difference between the initial and

final glucose content in the incubated medium (Gupta et al.,

2009).

Statistical analysis

For the enrichment analysis, the whole-genome statistical

background was used. The inhibitory constant (IC50) and

effective concentration (EC50) were calculated using linear

regression in GraphPad Prism (https://www.graphpad.com/)

ver 5.0.

Results

Computational pharmacology

Diosgenin ADMET profile and its targets
Diosgenin has molecular weight of 414.62 g/mol with 3 H-bond

acceptors and 1 H-bond donor. Diosgenin was predicted to possess

the high human intestinal absorption (>30). In addition, it also

showed the plasma protein binding, fraction unbound in plasma,

and its volume of distribution 97.743%, 1.872%, and 1.695 L/kg,

respectively. It was predicted as no inhibitory action towards

CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 and showed
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high clearance rate of 23.332 ml/min/kg. In addition, it was not

predicted for any side effects based on the ADVERPred server

projection.

Diosgenin was predicted to regulate 105 targets in

SwissTargetPrediction and four in DIGEP-Pred and

BindingDB. The predicted targets in BindingDB were in

common with SwissTargetPrediction. Similarly, a total of

510 different targets were recorded in DisGeNET for the

neoplastic process of oestrogen receptor-positive breast cancer

targets (UMLS CUI: C2938924). In general, the Diosgenin

targeted 21 different proteins involved in breast cancer

compared to recorded targets in DisGeNET (UMLS CUI:

C2938924); Supplementary Figure S1.

Gene set enrichment analysis
The interaction of diosgenin-targeted 21 proteins had a

total of 57 edges, 5.43 average node degree, 0.701 average local

clustering coefficient, 17 edges (expected), and 3.83e-

14 enrichment p-value (Figure 2).

KEGG enrichment analysis
Concerning the KEGG record, the PPI reflected the

regulation of 36 different pathways in which EGFR tyrosine

kinase inhibitor resistance (hsa01521) had the lowest false

discovery rate i.e., 1.06E-05 via the regulation of five genes

i.e., PDGFRB, STAT3, IGF1R, SRC, and FGFR2 against

78 background genes at 1.78 strength. Additionally, eight

different pathways were detected for keyword “cancer” i.e.

pathways in cancer; hsa05200 (regulated eight genes i.e.

CDK4, MDM2, PDGFRB, STAT3, IGF1R, RET, AR, and

FGFR2 against 517 background genes at 1.16 strength and

1.06E-05 false discovery rate), prostate cancer; hsa05215

(regulated five genes i.e. MDM2, PDGFRB, IGF1R, AR, and

FGFR2 against 96 background genes at 1.69 strength and 1.06E-

05 false discovery rate), bladder cancer; hsa05219 (regulated

three genes i.e. CDK4, MDM2, and SRC against 41 background

genes at 1.83 strength and 0.00062 false discovery rate),

microRNAs in cancer; hsa05206 (regulated four genes i.e.

MDM2, PDGFRB, STAT3, and MDM4 against

FIGURE 2
Protein-protein interaction of the diosgenin-triggered protein. Node color; colored nodes: query proteins and first shell of interactors,

white nodes: second shell of interactors, Node content; empty nodes: proteins of unknown 3D structure, filled nodes: some 3D structure
is known or predicted, Known Interactions; from curated databases, experimentally determined, Predicted Interactions;

gene neighborhood, gene fusions, gene co-occurrence and Others; text mining, co-
expression, protein homology.
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160 background genes at 1.37 strength and 0.00099 false

discovery rate), proteoglycans in cancer; hsa05205 (regulated

four genes i.e. MDM2, STAT3, IGF1R, and SRC against

196 background genes at 1.28 strength and 0.0015 false

discovery rate), central carbon metabolism in cancer;

hsa05230 (regulated three genes i.e. PDGFRB, RET, and

FGFR2 against 69 background genes at 1.61 strength and

0.0015 false discovery rate), non-small cell lung cancer;

hsa05223 (regulated two genes i.e. CDK4 and STAT3 against

68 background genes at 1.44 strength and 0.0349 false discovery

rate), and pancreatic cancer; hsa05212 (regulated two genes i.e.

CDK4 and STAT3 against 73 background genes at 1.41 strength

and 0.0387 false discovery rate). Also, a total of 129 genes were

modulated in 36 different pathways in which insulin-like

growth factor-1 receptor (IGF1R) was majorly triggered in

18 different pathways i.e., EGFR tyrosine kinase inhibitor

resistance; hsa01521, pathways in cancer; hsa05200, prostate

cancer; hsa05215, long-term depression; hsa04730, glioma;

hsa05214, melanoma; hsa05218, endocrine resistance;

hsa01522, ovarian steroidogenesis; hsa04913, signaling

pathways regulating pluripotency of stem cells; hsa04550,

adherens junction; hsa04520, proteoglycans in cancer;

hsa05205, endocytosis; hsa04144, focal adhesion; hsa04510,

and Ras; hsa04014, MAPK; hsa04010, FoxO; hsa04068, PI3K-

Akt; hsa04151, and Rap1 signaling pathway; hsa04015

(Supplementary File S1; Supplementary Sheet S1). The

modulated genes in the KEGG pathways were observed to be

common with three GO terms i.e., cellular components,

molecular function, and biological processes (Supplementary

Figure S2); detailed below. Further, the interaction between the

diosgenin-modulated targets and triggered pathways is

presented in Figure 3. The associated protein-pathways

interaction with respective false discovery rate and strengths

is presented in Figure 4.

FIGURE 3
Network interaction of diosgenin-regulated proteins and respective pathways. Pink color presents a low edge count and green color presents a
high edge count. A large node size presents a higher edge count and a smaller edge count presents a lower edge count.
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GO analysis
GO analysis identified 12 GO terms for cellular components

in which receptor complex; GO:0043235 had the lowest false

discovery rate i.e., 0.00025 regulated seven genes i.e., PDGFRB,

IGF1R, APP, RET, GRM1, FGFR2, and LYN against 381 genes at

1.23 strength. Also, a total of 21 genes were triggered in multiple

cellular components in which tyrosine-protein kinase Lyn (LYN)

was majorly triggered in 11 cellular components except for

cytoplasmic vesicles; GO:0031410 (Supplementary File S1;

Supplementary Sheet S1). In addition, the Pearson p-value for

cellular components was 0.795 strength vs. false discovery rate,

0.0003 strength vs. observed gene count, 0.8093 false discovery

rate vs. observed gene count, 2.684e-004 observed gene count vs.

strength, and 0.809 observed gene count vs. false discovery rate.

In addition, the minimum observed Pearson r was −0.084 and the

maximum was 1.000 (Supplementary Figure S3). The proteins

modulated by the diosgenin in the different cellular

compartments are presented in Figure 5.

Likewise, 27 different molecular functions GO terms were

identified via the PPI in which protein tyrosine kinase activity;

GO:0004713 had the lowest false discovery rate i.e., 3.53E-05 to

trigger six genes i.e., PDGFRB, IGF1R, RET, SRC, FGFR2, and LYN

against 137 background genes at 1.61 strength. Herein, a total of

22 genes were triggered in 27 molecular functions in which proto-

oncogene tyrosine-protein kinase Src (SRC) was involved in

18 molecular functions except hormone binding; GO:0042562,

transmembrane receptor protein tyrosine kinase activity; GO:

0004714, transition metal ion binding; GO:0046914, steroid

hydroxylase activity; GO:0008395, oxygen binding; GO:0019825,

nuclear receptor activity; GO:0004879, peptide hormone binding;

GO:0017046, platelet-derived growth factor receptor binding; GO:

0005161, and steroid-binding; GO:0005496 (Supplementary File S1;

Supplementary Sheet S3). Herein, the correlation p values were

0.130 strength vs. false discovery rate, 2.0510e-009 strength vs.

observed gene count, and 0.753 false discovery rate vs. observed

gene count. Within the interaction of strength, false discovery rate,

and observed gene count, −0.877 and 1.000 were minimum and

maximum r values for molecular function (Supplementary

Figure S3).

Similarly, a total of 307 biological processes was traced due to

PPI in which cellular response to oxygen-containing compound;

GO:1901701 had the lowest false discovery rate i.e., 2.72E-09 in

modulating 14 genes i.e., NR3C1, CDK4, MDM2, PDGFRB,

STAT3, IGF1R, APP, RET, PTPN1, SRC, AR, CRHR1, FGFR2,

and LYN against 1,055 background proteins at 1.09 strength. In

addition, a total of 21 genes were triggered for 307 biological

processes via the 21 proteins associated with breast cancer in

which SRCwas involved and linked with 213 biological processes.

In addition, the order of triggered genes in multiple pathways was

as CYP17A1 (17) < CYP3A4 (22) < PRCP (33) < CRHR1 (35) <
FASN (42) < GRM1 (52) < CYP19A1 (59) < NR3C1 (60) <
MDM4 (71) < CDK4 (111) < IGF1R (113) < PTPN1 (114) < RET

(130) < MDM2 (134) < AR (139) < STAT3 (140) < FGFR2

(149) < PDGFRB (160) < LYN (161) < APP (198) < SRC (213).

The detailed biological processes of participation of the above

genes are supplemented in Supplementary File S1;

Supplementary Sheet S4. The Pearson correlation p-value was

found to be 0.034 strength vs. false discovery rate,

FIGURE 4
The associated protein-pathways interaction with respective false discovery rate and strength.
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1.0622e-063 strength vs. observed gene count, and 8.1767e-

017 false discovery rate vs. observed gene count. In addition,

the minimum Pearson r values for biological processes were

-0.779 and 1.000 respectively (Supplementary Figure S3).

Compartments enrichment analysis
The PPI reflected the modulation of proteins in 16 different

compartments in which the intrinsic component of plasma

membrane; GOCC:0031226 had the lowest false discovery rate

i.e., 0.00027 in regulating nine genes i.e., PDGFRB, STAT3,

IGF1R, APP, RET, GRM1, CRHR1, FGFR2, and LYN against

841 background genes at 1 strength. Herein, a total 21 were

triggered in 16 compartments in which LYN was traced in all; the

order of genes regulation in multiple enriched compartments was

MDM4 (5) < NR3C1 (6) = AR (6) < CYP17A1 (7) < CYP19A1

(8) = CYP3A4 (8) = CDK4 (8) = GRM1 (8) =MDM2 (8) < FASN

(9) = PDGFRB (9) = PRCP (9) = PTPN1 (9) = SRC (9) < CRHR1

(12) = FGFR2 (12) < IGF1R (13) < RET (14) = STAT3 (14) <APP

(15) < LYN (16); Supplementary File S1; Supplementary

Sheet S5.

InterPro enrichment analysis
Protein-protein enrichment analysis traced seven InterPro in

which tyrosine-protein kinase, catalytic domain; IPR020635 was

FIGURE 5
Different proteins affected by the diosgenin in the various compartment of the cell. The cellular organelles presented reflect the membrane-
bounded organelle or intracellular organelle.
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traced with minimum false discovery rate i.e., 8.42E-06 to

regulate six genes i.e., PDGFRB, IGF1R, RET, SRC, FGFR2,

and LYN against 79 background genes at 1.85 strength.

Herein, in the enrichment of InterPro analysis, a total of nine

genes were triggered in order asMDM2 (1) =MDM4 (1) < CDK4

(3) < FGFR2 (6) = IGF1R (6) = LYN (6) = PDGFRB (6) = RET

(6) = SRC (6); Supplementary File S1; Supplementary Sheet S6.

Pfam enrichment analysis
Enrichment analysis concerning to Pfam database traced the

regulation of protein kinase domain; PF00069 and protein

tyrosine kinase; PF07714 at the false discovery rate of

0.0068 to regulate seven genes i.e., CDK4, PDGFRB, IGF1R,

RET, SRC, FGFR2, and LYN at 1.13 strength against 486 and

481 background genes respectively; Supplementary File S1;

Supplementary Sheet S7.

Tissues enrichment analysis
Enrichment analysis of PPI for TISSUES traced 13 different

TISSUES terms in which erythroleukemia cell; BTO:0000426 was

traced with the lowest false discovery rate i.e., 0.0088 in

regulating five genes i.e., MDM2, STAT3, PTPN1, SRC, and

LYN at 1.32 strength against 225 background genes. Herein,

there was a regulation of 21 genes i.e. APP, AR, CDK4, CRHR1,

CYP17A1, CYP19A1, CYP3A4, FASN, FGFR2, GRM1, IGF1R,

LYN, MDM2, MDM4, NR3C1, PDGFRB, PRCP, PTPN1, RET,

SRC, and STAT3 in which nuclear receptor subfamily 3, group C,

member 1 (NR3C1) was majorly triggered in 10 different

TISSUES i.e. bone marrow cancer cell (BTO:0000583),

organism form (BTO:0000284), leukemia cell (BTO:0001271),

fibroblast (BTO:0000452), liver (BTO:0000759), whole body

(BTO:0001489), reproductive system (BTO:0000081),

embryonic structure (BTO:0000174), endocrine gland (BTO:

0001488) and connective tissue (BTO:0000421);

Supplementary File S1; Supplementary Sheet S8.

Cluster analysis
K means analysis of PPI against the whole genome of Homo

sapiens traced three sets of clusters which are indicated by red

(cluster 1; included AR, CYP17A1, CYP19A1, CYP3A4, FASN,

NR3C1, and PRCP), green (cluster 2; included APP, CDK4,

CRHR1, FGFR2, GRM1, IGF1R, LYN, PDGFRB, PTPN1, RET,

SRC, and STAT3) and blue (cluster 3; included MDM2 and

MDM4); Supplementary Table S1.

In cluster 1, the interaction of seven nodes corresponded to

11 edges with 3.14 average node degree, 0.8 average local

clustering coefficients, 1 expected edge, and 1.07e-09 PPI

enrichment p-value. Herein, a total of nine molecular

functions were traced in which steroid hydroxylase activity

(GO:0008395) and oxygen binding (GO:0019825) scored the

lowest false discovery rate i.e., 0.0013 via the regulation of

three genes i.e., CYP3A4, CYP17A1, and CYP19A1 against

36 background genes at 2.37 strength. Similarly, Steroid

binding (GO:0005496) showed 0.0082 false discovery rate and

regulated three genes i.e., NR3C1, CYP3A4, and AR against

104 background genes at a strength of 1.91. Similarly,

two KEGG pathways i.e., steroid hormone biosynthesis

(hsa00140) and ovarian steroidogenesis (hsa04913) were

traced. Herein, steroid hormone biosynthesis was identified

with a false discovery rate of 0.00048 to regulate three genes

i.e., CYP3A4, CYP17A1, and CYP19A1 against 59 background

genes at 2.15 strength. In addition, ovarian steroidogenesis

regulated two genes i.e., CYP17A1 and CYP19A1 against

50 genes at 2.05 strength and 0.0327 false discovery rate. Also,

two different biological processes i.e., androgen metabolic

process (GO:0008209) and organic cyclic compound

biosynthetic process (GO:1901362) were identified to regulate

three genes i.e., CYP3A4, CYP17A1, and CYP19A1 against

27 background genes at 2.47 strength and 0.002 false

discovery rate and six genes (NR3C1, FASN, CYP3A4,

CYP17A1, AR, and CYP19A1I) against 1,211 background

genes at 1.14 strength and 0.0033 respectively (Supplementary

File S2; Supplementary Sheet S1).

In cluster 2, 12 protein interactions traced 25 edges with

4.17 average node degree, 0.843 average local clustering

coefficient, seven expected edges, and 3.83e-07 PPI

enrichment p-value. Herein, a total of 25 enriched cellular

components were traced in which receptor complex (GO:

0043235), an integral component of the plasma membrane

(GO:0005887), and cell junction (GO:0030054) were majorly

enriched at a false discovery rate of 2.03E-06, 0.001, and

0.0033 and strength of 1.48, 0.91, and 0.8 respectively. Herein,

the receptor complex was enriched with seven genes

i.e., PDGFRB, IGF1R, APP, RET, GRM1, FGFR2, and LYN, an

integral component of the plasma membrane with eight genes

i.e., PDGFRB, IGF1R, APP, RET, GRM1, CRHR1, FGFR2, and

LYN and cell junction with eight genes i.e., CDK4, PDGFRB,

STAT3, APP, GRM1, SRC, FGFR2, and LYN. Also, a total of

21 enriched molecular functions were traced for cluster 2 in

which protein tyrosine kinase activity; GO:0004713 (regulated six

genes i.e. PDGFRB, IGF1R, RET, SRC, FGFR2, and LYN against

137 background genes at 1.85 strength and 6.36E-07 false

discovery rate), insulin receptor binding; GO:0005158

(regulated four genes i.e. IGF1R, APP, PTPN1, and SRC

against 24 background genes at 2.43 strength and 4.29E-

06 false discovery rate) and ephrin receptor binding; GO:

0046875 (regulated four genes i.e. APP, PTPN1, SRC, and LYN

against 28 background genes at 2.37 strength and 5.02E-06 false

discovery rate). A total of 45 KEGG pathways were traced within

the PPI of cluster 2 in which EGFR tyrosine kinase inhibitor

resistance; hsa01521 (regulated five genes i.e. PDGFRB, STAT3,

IGF1R, SRC, and FGFR2 against 78 background genes at

2.02 strength and 4.26E-07 false discovery rate), long-term

depression; hsa04730 (regulated four genes i.e. IGF1R, GRM1,

CRHR1, and LYN against 59 background genes at 2.04 strength

and 1.07E-05 false discovery rate), and pathways in cancer;
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hsa05200 (regulated six genes i.e. CDK4, PDGFRB, STAT3,

IGF1R, RET, and FGFR2 against 517 background genes at

1.28 strength and 4.31E-05 false discovery rate) were

identified to be top three majorly triggered pathways.

Similarly, a total of 222 biological processes were traced

within the PPI of cluster 2 in which cellular response to

oxygen-containing compound; GO:1901701 (regulated

11 genes i.e. CDK4, PDGFRB, STAT3, IGF1R, APP, RET,

PTPN1, SRC, CRHR1, FGFR2, and LYN against

1,055 background genes at 1.23 strength and 2.37E-09 false

discovery rate), regulation of protein serine/threonine kinase

activity; GO:0071900 (regulated nine genes i.e. CDK4,

PDGFRB, IGF1R, APP, RET, GRM1, PTPN1, SRC, and LYN

against 521 genes at 1.45 strength and 1.31E-08 false

discovery rate), and regulation of protein phosphorylation;

GO:0001932 (regulated 11 genes i.e. CDK4, PDGFRB, STAT3,

IGF1R, APP, RET, GRM1, PTPN1, SRC, FGFR2, and LYN against

1,459 background genes at 1.09 strength and 1.93E-08 false

discovery rate (Supplementary File S2; Supplementary Sheet S2).

In cluster 3 the interaction of the nodes had 1 edge count,

average node degree, and average local clustering coefficient with

0.0398 PPI enrichment p-values. Here, only two KEGG pathways

and eight biological processes were traced. In KEGG pathways,

the p53 signaling pathway; hsa04115, and microRNAs in cancer;

hsa05206 were associated with two genes i.e., MDM2 andMDM4

against 72 and 160 background genes, 2.43 and 2.09 strength and

0.0064 and 0.0155 false discovery rate respectively. Further,

interaction between MDM2 and MDM4 triggered eight

biological processes i.e. atrioventricular valve morphogenesis;

GO:0003181 (24 background genes at 2.91 strength and

0.0274 false discovery rate), endocardial cushion

morphogenesis; GO:0003203 (34 background genes at

2.76 strength and 0.0274 false discovery rate), ventricular

septum development; GO:0003281 (73 background genes at

2.43 strength and 0.0274 false discovery rate), atrial septum

development; GO:0003283 (23 background genes at

2.93 strength and 0.0274 false discovery rate), DNA damage

response, signal transduction by p53 class mediator resulting in

cell cycle arrest; GO:0006977 (59 background genes, 2.52 strength

and 0.0274 false discovery rate), negative regulation of cell cycle

arrest; GO:0071157 (23 background genes, 2.93 strength and

0.0274 false discovery rate), regulation of signal transduction by

p53 class mediator; GO:1901796 (182 background genes,

2.03 strength, and 0.0376 false discovery rate), and cellular

response to hypoxia; GO:0071456 (189 background genes,

2.02 strength and 0.0395 false discovery rate); Supplementary

File S2; Supplementary Sheet S3.

Diosgenin-targets-protein network analysis
The combined interaction between the diosgenin, its targets,

and regulated pathways traced IGF1R, MDM2, SRC, CDK4, and

PDGFRB as the top five lead hub proteins. In addition, pathways

in cancer; hsa05200, EGFR tyrosine kinase inhibitor resistance;

hsa01521 prostate cancer; hsa05215, viral carcinogenesis;

hsa05203, and PI3K-Akt signaling pathway; hsa04151 were

traced as the top five lead hub pathways modulated within

diosgenin-targets-pathways interactions.

In diosgenin-targets-pathways interactions, none of the

nodes were single or undirected. Herein, two pathways’ nodes

i.e., adherens junction and central carbon metabolism in cancer

had a maximum average shortest path length i.e., 2.67. Herein,

33 nodes i.e. diosgenin, PI3K-Akt signaling pathway, EGFR

tyrosine kinase inhibitor resistance, viral carcinogenesis,

prostate cancer, endocrine resistance, proteoglycans in cancer,

glioma, melanoma, human cytomegalovirus infection,

endocytosis, Rap1 signaling pathway, FoxO signaling pathway,

Kaposi sarcoma-associated herpesvirus infection, Epstein-Barr

virus infection, MicroRNAs in cancer, long-term depression,

focal adhesion, bladder cancer, signaling pathways regulating

pluripotency of stem cells, Ras signaling pathway, MAPK

signaling pathway, regulation of actin cytoskeleton, chemokine

signaling pathway, p53 signaling pathway, prolactin signaling

pathway, gap junction, ovarian steroidogenesis, Cushing

syndrome, chronic myeloid leukemia, non-small cell lung

cancer, pancreatic cancer, and epithelial cell signaling in

Helicobacter pylori infection had the maximum closeness

centralities i.e. 1. Further, the CYP3A4 node had the

maximum clustering coefficient i.e., 0.5. Likewise, three

pathways nodes i.e., adherens junction, central carbon

metabolism in cancer, and pathways in cancer had maximum

eccentricity i.e., 3. In addition, node diosgenin had the maximum

stress i.e., 101 followed by 21°, 0.03 betweenness centrality,

21 directed nodes, 0.85 radiality, 22 edge count, and,

19 outdegrees. Further, four nodes i.e. NR3C1, PRCP, APP,

FIGURE 6
Edgebetweenness of network interaction and node
interaction count. The highest edge betweenness was 51
(1 interaction) and the lowest was 1 (125 interactions).
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and FASN had maximum neighborhood connectivity i.e., 22. In

addition, the AR node had the maximum topological coefficient

i.e., 0.79 and IGF1R had maximum indegree i.e., 19

(Supplementary File S3; Supplementary Sheet S1).

In a network a total of nine categories of edge betweenness

were traced i.e., 1 (125 interactions), 5 (3 interactions), 6

(7 interactions), 7 (9 interactions), 19 (2 interactions), 14, 18,

38, and 51 had the 1 interaction (Figure 6). Herein, within the

whole network, 51 edge betweenness was within the RET and

diosgenin interaction, 38 with PTP1B and diosgenin interaction,

19 with adherens junction interaction with PTPN1, and central

carbon metabolism in cancer interaction with RET, 18 with

steroid hormone biosynthesis with diosgenin, and 14 with

pathways in cancer with RET (Supplementary File S3;

Supplementary Sheet S2).

Molecular docking
Among the three studied targets, diosgenin was predicted to

possess a maximum binding affinity with IGF1R (ΔG= −8.6 kcal/

mol, 11 alkyl interactions with Val983, Met1126, Val1033,

Met1112, Met1049, Ala1001, and Ile1130) compared to MDM2

(ΔG = -8.5 kcal/mol, 16 alkyl interactions with Ile61, Val75,

Phe86, Ile99, Leu54, Ile103, Leu57, Val93, Tyr67, and His73

and three van der Walls interactions with Phe91, Gly58, and

His96) and SRC (ΔG = -7.4 kcal/mol, five alkyl interactions with

Phe194, Leu200, and Ala168, four van der Waals interaction and

three carbon-hydrogen bond with Arg172); Figure 7.

Molecular dynamics simulation
Stability of diosgenin–IGF1R complex

The diosgenin-IGF1R complex showed stable dynamics up

to 150 ns after a 20 ns equilibration phase. Initial backbone

and complex RMSD values climbed steadily increased from

1.0 Å to 3.1 Å and ~1.4 Å to ~3.7 Å, respectively from 0 to

20 ns After 20 ns, it was discovered that the backbone and

complex RMSD (~2.5 Å and 3.0 Å, respectively) were

stabilized with lesser fluctuations (Figure 8A). The loop-

forming residues Leu1064 to Pro1077 showed comparatively

greater fluctuations (7.0 Å). On the other hand, residues

Leu975, Val983, Ala1001, Glu1050, Asp1123, and Ile1130

that interacted with diosgenin during docking studies

didn’t exhibit fluctuation because they were involved in

stable non-bonded interactions. Additionally, it was

discovered that residues Gly1122 to Tyr1131 forming the

loop region were involved in ligand binding and showed

the least RMS fluctuation (~2.0 Å) (Figure 8B,

Supplementary Movie S1). There was a formation of a

compact globular shape, which was supported by a gradual

drop in Rg value from 20.5 Å to 19.6 Å and was further found

to be stable at 20.0 Å (Figure 8C). The initial and final surface

FIGURE 7
3D interaction of diosgenin with (A) SRC, (B)MDM2 and (C) IGF1R. The surface around the ligand presents an aromatic surface. The ligand was
presented in ball and stick. Amino acid residues were presented on a stick and the active site of the protein was presented with .
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area occupied by IGF1R and diosgenin docked complex was

163.825 nm2 and 159.1106 nm2. The complex typically

occupied 159.95 nm2 (Figure 8D). The complex formed

3 H-bonds of which two were consistent during the

simulation (Figure 8E). It was discovered that diosgenin

and IGF1R had relative binding energy of −35.143 ±

3.03 kcal/mol. Supplementary Table S2 summarizes the free

energy contribution of diosgenin with IGF1R, MDM2, and

SRC. The per residue contribution energy revealed that

16 residues from the binding pocket i.e. Glu974, Leu975,

Val983, Tyr984, Glu985, Ala1001, Glu1020, Val1033,

Leu1051, Met1052, Asp1056, Met1112, Asp1123, Met1126,

Ile1130, and Tyr1131 significantly contributed to the

formation of a stable complex. These residues also scored

the least per residue decomposition/contribution energy

which ranged from −2.0 kJ/mol to −6.8 kJ/mol whereas the

positive contribution energy of 4.0 kJ/mol was achieved by

residues Lys1003, Lys1058, and Arg1109 (Figure 8F).

Stability of diosgenin–MDM2 complex

Throughout a 150 ns production run, the Diosgenin-

MDM2 complex exhibited stable dynamics. The initial and

final backbone RMSD values were 0.62 and 1.21, respectively,

and an average was 1.40 Å. Similar to this, the initial and final

RMSD of the docked complex MDM2 and diosgenin were

0.92 and 2.13 respectively with an average of ~2.30 Å

(Figure 9A). The loop forming Met17 to Ser22 residues at

the N-terminus had substantially greater fluctuations

(~4.2 Å). Further, residues interacting with diosgenin

during docking studies (Leu57, Tyr67, Phe91, Val93, and

Ile99) did not exhibit variations as they were involved in

stable non-bonded interactions (Figure 9B and

Supplementary Movie S2). By monitoring a stable Rg, a

more compact and stable complex was formed. The

complex’s initial and final Rg values were determined to be

13.2 Å and 1.31 Å. Similarly, the initial and final surface area

occupied by IGF1R and diosgenin docked complex was

63.90 nm2 and 61.57 nm2. The complex had an average

surface area of 62.89 nm2 (Figure 9D). Two H-bonds were

established by the complex of which one was consistent during

MD simulation (Figure 9E). The relative binding energy

between diosgenin and IGF1R was discovered to

be −34.619 ± 2.81 kcal/mol. Further, seven residues (Leu57,

Gly58, Ile61,Met62, Tyr67, Val93, and Ile99) from the binding

pocket scored the lowest per residue decomposition/

contribution energy, ranging from −3.65 kJ/mol to −8.87 kJ/

mol. These residues contributed significantly to forming the

stable complex according to the per residue decomposition/

contribution energy. The residue Glu69 had positive

contribution energy of 2.68 kJ/mol (Figure 9F).

Stability of diosgenin–SRC complex

Another diosgenin–SRC complex also showed stable

dynamics with the RMSD value of < 2Å after the

equilibration period of 50 ns(Figure 10A). In addition, the

RMSD of the complex showed a sharp increase in its values

after 40 ns to 8 Å (Figure 10A). The careful observation of the

entire complex trajectory and representative snapshots

extracted from the region reveal the structural transition of

diosgenin from its primary binding pocket to the neighboring

alternate pocket which formed a stable complex during the

entire simulation period. Thus, for the first time, we report the

existence of an alternate binding site other than the primary

binding site on SRC. From the simulation movie

(Supplementary Movie S3) it was observed that the

complex undergoes major conformational changes in the

FIGURE 8
Parameters representing the structural stability of the Diosgenin-IGF1R complex. (A) Backbone and complex RMSD, (B) RMSF, (C) Rg, (D) SASA,
(E) number of H-bond interactions, and (F) contribution energy plot demonstrates the significance of the ligand binding domain residues in stable
complex formation.
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secondary structure of the protein including the primary

binding pocket, leading to the increased conformational

flexibility of SRC, hence the diosgenin switches its original

position from the primary binding pocket to the reported

alternate binding pocket (formed by the residues Tyr152 to

Leu164). The residual fluctuations observed show fewer

C-alpha fluctuations (<2.2Å), interestingly the residues

from the primary binding pocket as well as new reported

alternate binding pocket show the least RMSF values ~0.5Å

(Figure 10B), mainly due to the stable non-bonded

interactions shown by them. The complex diosgenin–SRC

gains a compact globular shape during the simulation, thus

we propose the stable complex formation was favored after the

equilibration period of MD simulation (Figure 10C). The

solvent-accessible surface area represents an exposure of

the hydrophobic residues to the solvent, here in this

complex SASA exhibited a similar trend as that of Rg

values. SASA value decreased gradually till the equilibration

state and further, it stabilized till the simulation end

(Figure 10D), suggesting the proper folding of the

hydrophobic core including both the binding sites. Two

H-bonds were established by the complex of which one was

consistent during MD simulation (Figure 10E). The relative

binding energy between diosgenin to SRC was discovered to

be −17.994 ± 5.67 kcal/mol. In addition, three residues

i.e., Ile156, Thr157, and Leu164 from the binding pocket

scored the lowest energy contribution per residue. These

residues contributed significantly to forming the stable

complex according to the per residue decomposition/

contribution energy. The residue Ile156 had the least

contribution energy of −8.9 kJ/mol (Figure 10F).

Principal component and dynamic cross-
correlation matrix

PCA is a statistical technique being used to study the

dynamics of bimolecular complexes as it limits the 3 N (N =

number of atoms in the protein) degrees of freedom describing

functionally crucial motions of the protein. It was observed that

in all the complexes maximum dynamics during the simulation

have been captured by the first 10 eigenvectors, of which the first

two contributed significantly to the collective motions exerted by

all the simulated complexes (Figures 14A–C). Hence, we

examined the collective motion sampled by the first two

principal components (PCs), and 2D projections for PC1 and

PC2 were plotted (Figures 11D–F). The complexes of diosgenin

with MDM2 and SRC express the compact clusters in the

conformational spaces those range from -1.5 to 1.5. In the

MD trajectory of complexes Diosgenin-SRC and Diosgenin-

MDM2, PC1 and PC2 (top two modes) showed the uniform

distribution across the configurational space while the remaining

complex of Diosgenin-IGF1R showed a large diversity in the

conformational space and was widely clustered in the range of

-4.5 to 4.5 (Figure 11D). MD trajectory sampled three states of

the protein as seen by the three individual clusters in the

scatterplot of PC1 v/s PC2. Herein, we propose that the

Diosgenin-IGF1R complex has undergone significant

conformational changes in the secondary structure during the

simulation those favored in forming a stable complex. However,

other complexes namely Diosgenin-SRC and Diosgenin-MDM2

were well stabilized and undergone comparatively lesser

conformational changes in the secondary structure hence

exhibited compact cluster in the conformations space. Further,

the convergence of sampling was also analyzed by calculating the

FIGURE 9
Parameters representing the structural stability of the Diosgenin-MDM2 complex. (A) Backbone and complex RMSD, (B) RMSF, (C) Rg, (D) SASA,
(E) number of H-bond interactions, and (F) contribution energy plot demonstrates the significance of the ligand binding domain residues in stable
complex formation.
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cosine content of all the trajectories obtained. The cosine content

was calculated for the trajectories of the first top two principal

components (PC1 and PC2) for complexes Diosgenin-SRC and

Diosgenin-MDM2, and Diosgenin-IGF1R is observed as

0.024225, 0.0175249 and 0.158163 respectively. It has been

reported that the value of cosine content for the first few PCs

FIGURE 10
Parameters representing the structural stability of the Diosgenin-SRC complex. (A) Backbone and complex RMSD, (B) RMSF, (C) Rg, (D) SASA, (E)
number of H-bond interactions, and (F) contribution energy plot demonstrates the significance of the ligand binding domain residues in stable
complex formation.

FIGURE 11
Represents the principal component analysis and dynamic cross-correlation matrix of complexes: The first 120 eigenvectors were plotted v/s
eigenvalues for diosgenin with (A) IGF1R (B) MDM2, and (C) SRC. The collective motions of diosgenin with (D) IGF1R (E) MDM2, and (F) SRC using
projections of MD trajectories on two eigenvectors corresponding to the first two principal components. Dynamic cross-correlation matrix of Cα
atoms observed in diosgenin with (G) IGF1R (H) MDM2, and (I) SRC. The amber-colored positive regions reflect strongly correlated Cα atom
movements (Cij = 1), whereas the blue-colored negative regions show anticorrelated motions (Cij = -1).
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close to 1 indicated bad sampling of the trajectory pointing to all

our simulation trajectories being well converged and properly

sampled in the free energy landscape.

The concerted motion exerted by the three complexes during

the simulation was examined using DCCM (dynamic cross-

correlation matrix). The calculation of the correlation matrix

is utilized to depict the dynamical information of proteins in two

dimensions. To observe the correlation in the dynamics of the

binding site correlation matrix over the stable trajectory of all the

complexes were plotted (Figures 11F,G). The diagonal orange-

red line indicates the self-correlation of the individual residues

with themselves. The orange-red region in the correlation map

signifies the concerted movement of the residues in the same

direction whereas the dark blue region represents anti-correlated

fluctuations. The N- and C-terminal region of the complex

Diosgenin-MDM2 represents strong anticooperative

movement with each other. Comparatively, this complex

exhibited a maximum amplitude of negative correlation across

all the residues. The maximum region in the complex Diosgenin-

IGF1R showed positive correlation mainly at the binding pocket

region (residues Glu974, Leu975, Val983, Tyr984, Glu985,

Ala1001, Glu1020, Val1033, Leu1051, Met1052, Asp1056,

Met1112, Asp1123, Met1126, Ile1130, and Tyr1131). This

signifies the closure movement observed at the binding pocket

region facilitating stable complex formation (Supplementary

Movie S1). Similarly, in the Diosgenin-SRC complex, the

binding pocket residues (Arg158, Glu181, Thr182, Cys188,

Lys203-Lys206) showed moderately positive cooperative

motion compared to other regions in the SRC structures.

Interestingly, the residues from the alternate binding region

show the cooperative motion results in stable non-bonded

contact with the newly reported alternate binding pocket.

In general, the conformational flexibility of all the complexes

i.e., Diosgenin-IGF1R, Diosgenin-MDM2, and Diosgenin-SRC

varies greatly as observed in the DCCM plot and the collective

dynamics nature observed in the PCA and DCCM plot favors the

stable complex formation during the simulation.

Survival analysis of hub genes
To evaluate the prognostic significance of genes, we analyzed the

survival curves of each gene. Among 21 genes, 17 geneswere observed

to had the significant effect over the Kaplan–Meier survival analysis

i.e., APP (log-rank p = 0.0018),AR (log-rank p = 0.0033), CDK4 (log-

rank p= 0.0062),CYP19A1 (log-rank p= 0.036), FGFR2 (log-rank p=

2.9 × 10–5), GRM1 (log-rank p = 0.027), IGF1R (log-rank p = 3.2 ×

10–05), LYN (log-rank p = 0.017), MDM2 (log-rank p = 0.0012),

MDM4 (log-rank p= 0.044),NR3C1 (log-rank p= 0.00038),PDGFRB

(log-rank p = 1.2 × 10–06), PRCP (log-rank p = 0.015), PTPN1 (log-

rank p=0.00041),RET (log-rank p=0.03), SRC (log-rank p=0.0039),

and STAT3 (log-rank p = 1.4 × 10–06). Similarly, four genes

i.e., CRHR1 (log-rank p = 0.09), CYP17A1 (log-rank p = 0.14),

CYP3A4 (log-rank p = 0.056), and FASN (log-rank p = 0.15) were

insignificantly linked with disease prognosis; Table S3.

Gene expression analysis in tumor, normal and
metastatic tissues

Kruskal Wallis test revealed the significant expression (p =

5.96e-04) of the PDGFRB gene in breast invasive carcinoma

compared to normal and metastatic samples. In addition, the

similar observations were also noted for the FGFR2 (p = 3.03e-

08) and STAT3 (p = 9.51e-02) genes. In addition, Dunn test pointed

the difference in PDGFRB expression in the normal vs. tumor (p =

7.74e-05), tumor vs.metastasis (p = 5.66e-02), normal vs.metastasis

(p = 2.61e-01), FGFR2 in normal vs. tumor (p = 2.31e-04), tumor vs.

metastasis (p = 2.98e-02), and normal vs. metastasis (p = 3.41e-01)

and STAT3 normal vs. tumor (p = 1.59e-02), tumor vs. metastasis

(p = 4.26e-01), and normal vs.metastasis (p = 3.57e-01); Figure 12).

Among IGF1R, SRC, andMDM2, all the genes had a significant

difference in gene expression compared to three different tissues

i.e., IGF1R (p = 2.07e-01), SRC (p = 2.71e-18), and MDM2 (p =

1.91e-02) which were evaluated using Kruskal Wallis test. In

addition, there was a significant difference in MDM2 expression

in normal vs. tumor (p = 3.83e-03), tumor vs.metastasis (6.87e-02),

and normal vs. metastasis (2.03e-01) as revealed by the Dunn test.

Likewise, there was a significant difference in SRC expression in

normal vs. tumor (p = 1.72e-19), tumor vs. metastasis (1.92e-03),

and normal vs. metastasis (2.62e-01). Likewise, there was a

significant difference in IGF1R expression in normal vs. tumor

(p = 4.25e-02), tumor vs. metastasis (p = 4.91e-01), and normal vs.

metastasis (p = 3.19e-01); Figure 13.

In vitro pharmacology

BSL bioassay
Exposure to the different concentrations of diosgenin and

doxorubicin showed concentration-dependent brine shrimp

lethality. In addition, the LC50 was found to be 19.15 and

0.71 μg/ml respectively reflecting the doxorubicin to be

27.06 times more potent than diosgenin (Supplementary Figure S4).

In vitro MTT assay
Here, the MTT assay showed the IC50 of the diosgenin to be

significantly higher than that of the doxorubicin in MCF7 (p <
0.001), MDA-MB-231 (p < 0.05), SKBR3 (p < 0.05) and Vero (p <
0.001) compared to the doxorubicin. In vitro MTT assay on

MCF7 cell lines reflected the doxorubicin (IC50 3.21 ± 0.29 μg/

ml) to be 3.7 times more potent than the diosgenin (IC50 12.05 ±

1.33 μg/ml). In addition, over the MDA-MB-231 cell lines, the

IC50 of diosgenin was found to be (45.54 ± 23.41) µg/ml

compared to doxorubicin (6.30 ± 2.67) µg/ml which suggests

the doxorubicin to be 7.2 times more potent than diosgenin. In

addition, the diosgenin and doxorubicin had the IC50 (15.11 ±

5.32) µg/ml and (5.47 ± 1.09) µg/ml respectively over

SKBR3 reflecting the doxorubicin to be 2.76 times more

potent than that of diosgenin. In addition, the IC50 of

diosgenin and doxorubicin was found to be (17.78 ± 7.86)
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and (8.18 ± 8.18) µg/ml respectively over the T47D cell lines to

point doxorubicin to be 2.17 times more potent. Further,

diosgenin and doxorubicin had the IC50 of (38.59 ± 4.03) and

(7.05 ± 0.69) µg/ml respectively in which the doxorubicin was

found to be 7 times more cytotoxic than Vero cell lines;

Supplementary Figure S5; Supplementary Table S4.

In vitro scratch assay
After the 72-h exposure to different cells, it was observed that

diosgenin (200 μg/ml) had the highest effect on SKBR3 cell lines

(18.22 ± 1.237%) to prevent cell migration compared to the rest.

In addition, we observed a significant difference in percentage

scratch closure within MCF vs. SKBR3 (p < 0.01), MDA-MB-

231 vs. SKBR3 (p < 0.05), SKBR3 vs. T47D (p < 0.01) and

SKBR3 vs. Vero (p < 0.001) cell lines (Supplementary Figure S6).

In addition, the concentration and time-dependent effect of the

diosgenin on scratch closure are presented in Supplementary

Figure S7.

Effect of diosgenin and doxorubicin over H2O2-
induced stress in cell lines

Upon the 24 h exposure of the H2O2, it was observed that

diosgenin has an equivalent effect to ascorbic acid over MCF cell

lines with an IC50 (7.68 ± 0.51) µg/ml and (7.13 ± 0.31) µg/ml

respectively. In addition, diosgenin and ascorbic acid showed the

IC50 of (13.58 ± 0.90) µg/ml and (10.60 ± 1.60) µg/ml respectively

over the MDA-MB-231 cell lines. However, diosgenin (IC50

6.68 ± 0.67 μg/ml) had more effect over the SKBR3 compared

to ascorbic acid (9.39 ± 3.09 μg/ml). Similarly, diosgenin and

doxorubicin had the IC50 (8.90 ± 0.98) and (9.14 ± 0.78) µg/ml

respectively over T47D cell lines. Further, the diosgenin and

ascorbic acid had the IC50 (13.72 ± 1.83) µg/ml and (12.68 ±

4.53) µg/ml respectively over the Vero cell lines (Supplementary

Table S5). The concentration-dependent effect of diosgenin and

ascorbic acid is presented in Supplementary Figure S8.

Effect of diosgenin on Warburg effect
It was observed that diosgenin had efficacy in dealing

glucose uptake in tumor cells. The EC50 of the diosgenin was

observed to be significantly higher in glucose uptake in MCF7

(p < 0.001), SKBR3 (p < 0.05), T47D (p < 0.001), and Vero (p <
0.01) cell lines compared to metformin in the presence of

insulin. It was observed that diosgenin had a comparatively

higher EC50 (26.19 ± 2.77) µg/ml compared to metformin

(3.10 ± 0.99) µg/ml which showed the diosgenin to possess a

comparatively lower glucose uptake efficacy than metformin in

FIGURE 12
Differential gene expression analysis of PDGFRB, FBFR2, and STAT3 in tumor, normal and metastatic tissues. These genes were identified to
possess the least log-rank test.

FIGURE 13
Differential gene expression analysis of IGF1R,MDM2, and RSC in tumor, normal andmetastatic tissues. Diosgenin was predicted to possess the
highest binding affinity with these targets.
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MCF7 cell lines. In addition, in MDA-MB-231 cell lines,

diosgenin and metformin had an equivalent EC50 in

promoting glucose uptake i.e., EC50 (17.92 ± 1.19) and

(17.03 ± 2.59) µg/ml respectively. Furthermore, it was

observed that diosgenin had comparatively higher the EC50

in promoting the glucose uptake in SKBR3 (EC50 19.99 ±

2.91 μg/ml), T47D (EC50 37.47 ± 1.75 μg/ml), and Vero

(EC50 15.27 ± 0.95 μg/ml) compared to metformin (EC50

SKBR3; 11.74 ± 3.19 μg/ml, T47D; 12.50 ± 1.42 μg/ml, and

Vero; 11.79 ± 1.65 μg/ml); Supplementary Table S6;

Supplementary Figure S9

Discussion

The present study focused on tracing the targets of diosgenin

and evaluates the probably triggered pathways via the PPI in

breast cancer. In this regard initially, we predicted the targets

using three open-source platforms i.e. SwissTargetPrediction,

DIGEP-Pred, and BindingDB; matched with estrogen

receptor-positive breast cancer targets (UMLS CUI:

C2938924); retrieved from DisGeNET in which diosgenin was

predicted to target 21 different proteins i.e. APP, CDK4, CRHR1,

CYP17A1, CYP19A1, CYP3A4, FASN, FGFR2, GRM1, IGF1R,

LYN, MDM2, MDM4, PDGFRB, PRCP, PTPN1, RET, and SRC,

(predicted in SwissTargetPrediction) AR and NR3C1 (predicted

in DIGEP-Pred), and STAT3 (predicted in SwissTargetPrediction

and BindingDB) in the breast cancer. Herein concerning the

KEGG database, it was observed that 36 different pathways were

triggered in which 12 pathways i.e. pathways in cancer; hsa05200,

prostate cancer; hsa05215, viral carcinogenesis; hsa05203, glioma;

hsa05214, melanoma; hsa05218, bladder cancer; hsa05219,

MicroRNAs in cancer; hsa05206, Kaposi sarcoma-associated

herpesvirus infection; hsa05167, proteoglycans in cancer;

hsa05205, central carbon metabolism in cancer; hsa05230,

non-small cell lung cancer; hsa05223, and pancreatic cancer;

hsa05212 were identified which explores the anti-cancer

pharmacological spectra of the diosgenin.

Breast cancer is one of the main causes of death among

women. Chiefly, the cells lining the milk-forming duct of the

mammary glands are the origination of breast cancer (Herbein

and Kumar, 2014) which can be further subdivided based on the

presence or absence of the hormone receptors i.e., estrogen and

progesterone subtypes and human epidermal growth factor

receptor-2 (HER2). In addition, the estrogen receptor pathway

triggers hormone receptor-positive breast cancer (Rani et al.,

2019). Similarly, in HER2-positive breast cancer, HER2 triggers

RAS/RAF/MAPK and PI3K/AKT signaling pathways that

stimulate cell growth, survival, and differentiation (Dittrich

et al., 2014). We discovered 21 diosgenin-regulated proteins

that are involved with oestrogen receptor-positive breast

cancer (UMLS CUI: C2938924) targets in this investigation. In

addition, three pathways i.e., PI3K-Akt (modulated five genes

i.e., CDK4, MDM2, PDGFRB, IGF1R, and FGFR2), Ras

(modulated three genes i.e., PDGFRB, IGF1R, and FGFR2),

and MAPK (modulated three genes i.e., PDGFRB, IGF1R, and

FGFR2) signaling pathways associated to HER2 positive breast

cancer were modulated. Since diosgenin modulated three

pathways closely associated with HER2-linked pathogenesis, it

can be speculated that diosgenin could act via the manipulation

of HER2.

It has previously been proposed that Akt activation

influences endocrine resistance in metastatic breast cancer. In

addition, Akt activation in the downstream pathway of

HER2 could resist the endocrine therapy of breast cancer

(Tokunaga et al., 2006). Furthermore, Ras proteins activate

the cytoplasm and extracellular signaling networks via

receptor tyrosine kinase and are involved in cell proliferation,

survival, growth, metabolism, motility, and apoptosis, and their

hyperactivation promotes the growth and progression of breast

cancer. In addition, Ras’s intracellular localization, activation,

and signaling have been used in developing therapeutic

candidates against breast cancer via the enzymes involved in

posttranslational modification of Ras e.g., farnesyltransferase and

geranylgeranyltransferase 1 (Moon, 2021). Further, MAPK links

the extracellular mitogenic signals to cell proliferation which may

be concerned with or act independently towards estrogen-

mediated events in breast cancer cells (Yue et al., 2002). In

the present study, we identified the modulation of the above-

modulated pathways i.e., PI3K-Akt signaling pathway (false

discovery rate: 0.0011, strength: 1.12), Ras signaling pathway

(false discovery rate: 0.0263, strength: 1.09), andMAPK signaling

pathway (false discovery rate: 0.0446, strength: 0.99). This

suggests the probability of involvement of these pathways

linked to HER2 function which could be modulated by

diosgenin in breast cancer.

The role of EGFR dysregulation or mutation in cancer

etiology, particularly breast cancer, has been proposed

previously. However, resistance towards EGFR tyrosine kinase

inhibitors may occur due to secondary mutations (T790M),

activation of secondary pathways (AXL, c-Met, HGF),

aberrant downstream pathways (K-RAS mutations, loss of

PTEN), deregulation of the EGFR tyrosine kinase-mediated

apoptosis, histological transformation, and ATP binding

cassette transporter effusion, etc (Huang and Fu 2015).

The FoxO signaling system interacts with the PI3K-Akt

signaling pathway and relates to cancer progression,

particularly breast cancer advancement (Farhan et al., 2017).

In addition, FoxO negatively regulates activated EGFR signaling

which was demonstrated via the in vitro cell line culture method

and in vivomodels (Sangodkar et al., 2012). Here, in the present

study, we identified the regulation of the FoxO signaling

pathway via the modulation of four genes i.e. MDM2,

STAT3, IGF1R, and GRM1 which could support the

functioning of the PI3K-Akt and EGFR signal against breast

cancer pathogenesis.
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Furthermore, the Rap1 signal has been linked to tumor cell

proliferation, invasion, and metastasis through regulating

integrin- or cadherin-mediated cell function, cytoskeletal

alterations, protease (metal metalloprotease) production, and

cell adhesion (Zhang et al., 2017). In addition, Rap1 has been

traced to attenuate metastasis and EGFR-triggered carcinoma

(Huang et al., 2012). Since breast cancer progression is closely

linked to EGFR tyrosine kinase signal; it can be speculated that

diosgenin-mediated Rap1 signal could attenuate tumor invasion

andmetastasis; was observed to be modulated via the modulation

of three genes i.e., PDGFRB, IGF1R, and FGFR2.

The p53 acts as a transcription factor for p21 via cyclin-CDK

interactions which is important for the transition of the G2 phase to

the mitosis phase (Alam et al., 2015). In addition, p21 protects cells

from apoptosis, regulates the cell cycle, causes apoptosis, and

decreases cell proliferation in tumor cells (Wang et al., 2021).

Mutant p53 has been pointed to as the guardian of the cancer

cells (Mantovani et al., 2019) and is also associated with worsening

breast cancer affecting overall survival (Gasco et al., 2002). In the

present study, we identified the regulation of the three genes

i.e., CDK4, MDM2, and MDM4 which could activate the

p53 signal against breast cancer. Furthermore, excessive plasma

prolactin levels have been associated with an increased risk of

breast cancer in both premenopausal and postmenopausal

women; is more prominent in estrogen or progestogen receptor

cancer type (Tworoger et al., 2004; Tworoger et al., 2006). Here, in the

present study, we identified the diosgenin to regulate the prolactin

signaling pathway via the regulation of three genes i.e., STAT3,

CYP17A1, and SRC which could avoid estrogen or progestogen

receptor-mediated breast cancer progression. In addition, chemokine

signals are not limited to tissue differentiation, hematopoiesis,

inflammation, and immune regulation but also process tumor

development by triggering angiogenesis, metastasis, drug

resistance, and immunity of breast cancer (Liu et al., 2020). In the

present study, we identified the diosgenin to trigger the chemokine

signaling pathway, and regulated three genes i.e., STAT3, SRC, and

LYN at 1.18 strength and 0.0168 false discovery rate). In addition, in

enrichment analysis i.e., tissues, Pfam, InterPro, and compartments

enrichment analysis we observed the multiple proteins that are

concerned with the breast cancer prognosis.

Also, in the present study, we identified three proteins

i.e., IGF1R, MDM2, and SRC in diosgenin-protein(s)-pathway(s)

interaction. Hence, these were further considered for post-network

analysis i.e.,molecular docking andmolecular dynamics simulation.

Apart fromhandling the transcription, IGF1R can trigger the growth

and metastasis of malignant melanoma cells through the PI3K-Akt

signaling pathway (Ekyalongo and Yee, 2017). Diosgenin was

anticipated to interact with IGF1R in the current investigation,

potentially preventing breast cancer metastasis and tumor

invasion, which could be PI3K-Akt driven, as previously discussed.

The IGF1R is a transcription factor that binds to DNA and

influence transcription. Both ERK1/2 and AKT are involved in

the transcriptional control of the IGF1R gene. MicroRNA-139-5p

modulates the growth and metastasis of malignant melanoma

cells via the PI3K/AKT signaling pathway by binding to IGF1R

(binding energy -8.6 kcal/mol). Previously,MDM2 amplification

has been reported to relate to estrogen receptor status and its

presence has been indicated in human breast cancer cell (Quesnel

et al., 1994); was observed to be manipulated with diosgenin in

the third cluster of the PPI binding (binding energy −8.5 kcal/

mol). Likewise, another modulated protein i.e., SRC has been

reported to increase its expression in human breast cancer by

4–30 fold which was evidenced via both immunohistochemistry

and immunoblotting (Verbeek et al., 1996); was also predicted to

be modulated by diosgenin interaction (binding energy -7.4 kcal/

mol). In addition, since 17 genes i.e. APP, AR, CDK4, CYP19A1,

FGFR2, GRM1, IGF1R, LYN,MDM2,MDM4, NR3C1, PDGFRB,

PRCP, PTPN1, RET, SRC, and STAT3 were observed to have a

significant role in disease prognosis, it can be speculated that the

above-modulated proteins are primarily concerned with breast

cancer management with diosgenin treatment.

The docking study revealed diosgenin to interact with active

site residues of three potential targets involved in breast cancer

via IGF1R, MDM2, and SRC. Diosgenin formed stable

intermolecular interactions throughout 150 ns MD simulation

revealing them as the best lead. Among the interactions of

diosgenin with IGF1R, diosgenin interactions with Leu975,

Val983, Met1112, Met1126, and Ile1130 were consistent in

both docking and MD simulation. Multiple studies have

demonstrated these residues involve the pocket as a primary

binding site (also validated by PrankWeb server; https://

prankweb.cz/) for inhibition of IGF1R (Munshi et al., 2002; Li

et al., 2009; Guo et al., 2015). This indicates, that diosgenin as a

potent lead hit against IGF1R. Similarly, diosgenin scored the

lowest binding energy of -8.5 kcal/mol and binding free energy of

-34.619 kcal/mol and formed stable interactions Leu57, Gly58,

Ile61,Met62, Tyr67, Val93, and Ile99 throughout the 150 ns MD

production run. Both docking and MD simulation revealed

diosgenin as a potent lead hit for targeting MDM2.

Interestingly, a study by Li et al. (2021) identified AG-690/

37072075 and AO-022/43452814 as potent anticancer lead

hits against MDM2. These molecules were predicted to

interact with the residues “Leu57, Gly58, Ile61, Met62, Tyr67,

Val93, and Ile99” and were also found to inhibit p53-MDM2

interaction in wild-type p53 cells. Hence, we believe that

diosgenin may interfere with the p53-MDM2 interaction

(MDM2 inhibits the transcriptional activity of p53 by

attaching to its transactivation domain), and further

experimental studies are required to validate our findings.

Further, diosgenin scored -7.4 kcal/mol binding energy against

SRC and formed interaction with Ala168, Arg172, Phe194, and

Leu200. The structural shift of diosgenin from its initial binding

pocket to the neighboring alternative pocket was revealed

through MD simulation, and the complex remained stable

throughout the entire simulation. As a result, we are the first

to disclose the discovery of a secondary binding site in the SRC.
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The simulation movie (Supplementary Movie S3) shows that the

complex undergoes significant conformational changes in the

protein’s secondary structure, including the primary binding

pocket, increasing the conformational flexibility of SRC and

causing diosgenin to switch positions from the primary

binding pocket to the alternate binding pocket that has been

reported. The PCA and DCCM revealed that diosgenin with

IGF1R, MDM2, and SRC exhibited significant differences in

conformational flexibility and also support the stable complex

formation during the simulation.

During the differential gene expression analysis of diosgenin-

regulated genes, we observed that PDGFRB, FBFR2, and STAT3

possess maximum gene expression in tumor and metastatic vs.

normal tissues. In addition, molecular docking and simulation

also identified IGF1R, MDM2, and SRC could be the prime

diosgenin-modulated targets against breast cancer. Hence, to

confirm this we further assessed the functional role of each target

using cell line studies. The PDGF family (PDFGRB) has been

reported to use PDGF ligands released by cancer stromal cells

from breast cancer cells to drive cell proliferation (Farooqi and

FIGURE 14
Mechanism of action of diosgenin against oestrogen receptor-positive breast cancer. Diosgenin acts on the two cell surface proteins IGF1R and
PDGFRB and inhibits invasion, metastasis, angiogenesis, and cell proliferation. In addition, it acts on the four cytoplasmic proteins i.e.,MDM2, STAT3,
FGFR2, and SRC. Diosgenin may inhibit the cell to escape p53 surveillance by binding withMDM2, inhibit cell proliferation and promote apoptosis by
binding to STAT3, interfere withNF-kB signals check the cancer cell self-renewal, and inhibit themetastatic spread by inhibiting the SRC action.
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Siddik, 2015). Similarly, FBFR2 has been reported to promoting

cell self-renewal by interacting with NF-kB signals (Kim et al.,

2013). Likewise in previous studies, STAT3 inhibition has been

reported to decrease cell proliferation and apoptosis promotion

in various cancers including breast cancer (Kanai et al., 2003;

Pancotti et al., 2012; Chen et al., 2013). In this regard, because

these targets were directly triggered by diosgenin and were also

significantly higher in the tumor than in the normal, diosgenin

may limit cell proliferation and promote apoptosis by interfering

with the self-renewal process. This hypothesis was further

supported by the MTT and scratch assays. Previously, an

increase in glucose uptake has been reported in the cancer cell

which supports ATP production and acts as a fuel (Adekola et al.,

2012). This glucose uptake can be reduced by blocking insulin’s

impact on cancer cells. In comparison to metformin, the current

investigation found a considerably greater effective

concentration to limit glucose uptake. As a result, diosgenin

may inhibit glucose uptake in cancer cells. In the current

investigation, however, the glucose absorption assay was done

in the presence of insulin. As a consequence, more research is

needed to determine its role in glucose uptake in the absence of

insulin. Similarly, MDM2 helps cancer cells to escape

p53 surveillance and avoid cellular apoptosis (Momand et al.,

1998). In the present study, since, diosgenin had a significant

binding affinity with MDM2, it could probably promote the

apoptosis that needs to be further confirmed. In addition, SRC

has been indicated for cancer metastasis and also helps in cancer

progression and development which is an indicator of cell

proliferation (Wheeler et al., 2009). In the current

investigation, we discovered that diosgenin inhibited cell

proliferation in a variety of cell lines. This may be due to the

blockage of the SRC generated by diosgenin by binding to it. This

could have prevented cell multiplication, as revealed by the

scratch assay. Based on the information presented above, it is

FIGURE 15
Probable checkpoints affected by the diosgenin in the pathogenesis of breast cancer (Homo sapiens (human); hsa05224) targets/

pathways. In the KEGG pathway analysis, it was diosgenin-regulated targets involved in breast cancer were also identified to trigger EGFR, PI3K-Akt,

MAPK, and p53 signaling pathways.
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reasonable to believe that diosgenin may act against breast cancer

by reducing glucose utilization, invasion, and metastasis via the

surface protein IGF1R. Furthermore, it may limit cancer cell

proliferation by acting on another surface protein, PDGFRB. In

addition, the diosgenin may also act over theMDM2 and prevent

the cancer cell to escape the p53 surveillance in the cytoplasm.

Also, diosgenin may primarily act over two cytoplasmic targets

FGFR2 and SRC to prevent the interaction with NF-kB (prevents

cell self-renewal) and metastatic spread respectively (Figure 14)

and may also modulate other pathways within the breast cancer

pathogenesis (Figure 15) which was evidenced during KEGG

pathway analysis.

Although diosgenin inhibited cell growth, was cytotoxic,

and had an effect on the various cellular compartments of the

tumor cell, the inhibitory constant efficacy was found to be

greater than that of doxorubicin. In addition, the previous

drug discovery process utilized the concept of the “lock and

key” approach in which a designed drug is specific to a single

protein e.g. doxorubicin complexes with DNA by

intercalation and inhibits topoisomerase II. However, this

approach has often failed many times and molecules were

potent cytotoxic to normal cells which was also observed in

the present study. However, a single compound preferably

from a natural source tends to act through a

polypharmacology approach in which a single molecule

can target multiple proteins based on the concept “master

key can unlock multiple locks” to target multiple proteins and

pathways (Chandran et al., 2017). If it happens, the amount

of concentration required is a bit high; however, approaches

should be made through the targeted drug delivery to breast

cancer which is yet to be studied. This issue could be

remedied by increasing diosgenin’s cellular permeability

and promoting anti-cancer action against breast tumors

via a novel drug delivery mechanism, as established in

previous studies (Dhamecha et al., 2015; Jagwani et al.,

2020; Dhamecha et al., 2021; Ramasamy et al., 2021). In

addition, the effect of diosgenin on the hub genes (SRC,

MDM2, and IGF1R) expression is based on the

computational models which need to be further evaluated

using real-time or reverse transcriptase polymerase chain

reaction even though the present study pointed their

functional effect via the glucose uptake, cell proliferation,

and apoptosis which is the perspective of the present

findings.

Conclusion

The present study utilized a series of system biology tools

to trace the potential action of diosgenin against breast cancer.

Herein, we identified the probable action of the diosgenin

against breast cancer via FoxO, PI3K-Akt, p53, Ras, and

MAPK signaling pathways. In addition, we traced the

selectivity of the diosgenin to manipulate the action of

three hub genes i.e., IGF1R, MDM2, and SRC. Our

molecular modeling study reveals that the stable complex

formation is primarily facilitated by the cooperative closure

motion exerted by the primary binding pocket residues in

diosgenin-MDM2, and diosgenin-IGF1R complex while, in

Diosgenin-SRC similar compact closure dynamics are also

observed at the alternate binding pocket. Conformational

flexibility and convergence of the trajectories during MD

have been investigated using PCA. Diosgenin showed stable

non-bonded interactions forming stable binary complexes

with all three screened targets namely SRC, MDM2, and

IGF1R. Thus, we proposed that these stable interactions of

Diosgenin would trigger the successful inhibition of SRC,

MDM2, and IGF1R; the newly identified targets in breast

cancer. The results of our computer modeling

investigations agree well with the results of the

experimental cell line tests. As a result, we hope that this

work will open the way for the development of novel

therapeutic techniques and/or medication candidates for

breast cancer.
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