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Ferroptosis relies on iron, and ferroptotic cell death is triggered when the

balance of the oxidation-reduction system is disrupted by excessive lipid

peroxide accumulation. A close relationship between ferroptosis and

nonalcoholic steatohepatitis (NASH) is formed by phospholipid peroxidation

substrates, bioactive iron, and reactive oxygen species (ROS) neutralization

systems. Recent studies into ferroptosis duringNASHdevelopmentmight reveal

NASH pathogenesis and drug targets. Our review summarizes NASH

pathogenesis from the perspective of ferroptosis mechanisms. Further, we

discuss the relationship between mitochondrial dysfunction, ferroptosis, and

NASH. Finally, potential pharmacological therapies directed to ferroptosis in

NASH are hypothesized.
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Introduction

Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver

disease (NAFLD). Its histological characteristics are similar to those of alcoholic hepatitis,

including macro-vesicular steatosis, hepatocyte ballooning, and necroinflammation, with

or without fibrosis (Brunt et al., 1999; Matteoni et al., 1999; Kleiner et al., 2005). NASH

may lead to cirrhosis in as many as 20% of patients (Matteoni et al., 1999) or to primary

hepatocellular carcinoma (Angulo and Diehl, 2015; Wang et al., 2021). To date, lifestyle

intervention is the immediate intervention for NASH (without fibrosis) (Diehl and Day,

2017), and pharmacological therapies for NASH are relatively rare, partly because NASH

pathogenesis is too complex to be elucidated.

The liver is essential for regulating iron balance (Chen et al., 2022). Transferring

receptor 1 (TFR1) and SLC39A14 deliver iron into hepatocytes and participate in many

physiological and metabolic processes. Excess iron is stored as ferritin, and ferroportin
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(FPN) is critical for the elimination of iron. Hepcidin, ring finger

protein 217, and a protein that regulates iron form a regulatory

network that balances iron levels.

Similarly, some evidence suggests that iron plays a role in the

progression of NASH (Bonkovsky et al., 1999; Facchini and

Stoohs, 2002; Valenti et al., 2010; Nelson et al., 2011). In

NASH patients, an increase in the haemochromatosis

mutation rate is associated with an elevation in the hepatic

iron level. More importantly, increased hepatic iron appears

to be associated with liver fibrosis in NASH patients. Notably,

iron is a crucial factor in insulin sensitivity. These studies imply

that ferroptosis, a programmed cell death that relied on iron

homeostasis, may play a role in the pathogenesis of NASH.

In this review, we focus on the potential mechanism of

ferroptosis involved in the development of NASH and

summarize some possible targets related to ferroptosis that

may be important to NASH therapy.

Ferroptosis, mitochondria, and
nonalcoholic steatohepatitis

In 2012, Dixon, Lemberg (Dixon et al., 2012) discovered a

unique mode of death mediated by erastin in cancerous cells.

They also found that certain iron chelators inhibited this unusual

death modality and concluded that the death modality relied on

iron; therefore, they called this form of death “ferroptosis.” They

further found that the target of erastin was the cystine-glutamate

transporter XC
− and that ferroptosis was triggered after cystine-

glutamate transporter XC
− activity was inhibited by erastin.

Cysteine deprivation (Gao et al., 2015) or suppression of

cystine-glutamate transporter XC
− disrupt glutathione (GSH)

synthesis. GSH is an important antioxidant, and its depletion

results in glutathione peroxidase 4 (GPX4) deactivation. Under

normal conditions, hydroperoxides formed by PUFAs are

reduced by GPX4. Inactivation of GPX4 leads to the

accumulation of lipid peroxide. Bioactive iron triggers lipid

peroxidation amplifies the generation of free oxygen radical

species via the Fenton reaction and intensifies the

dysregulation of oxidative lipid metabolism. Overall, the

balance of the oxidation-reduction system in the cell is

disrupted during ferroptosis. The mechanism map suggests a

kind of strong connection between ferroptosis and diseases

(Stockwell et al., 2017).

Because ironmetabolism is closely associated with the liver, it

is not surprising that ferroptosis has been recently found to play

an essential role in hepatic injury (Wang et al., 2017; Chen et al.,

2022). More interestingly, Minoru Tanaka et al. found ferroptosis

was the first type of cell death via the choline-deficient,

methionine-supplemented diet model and mixed lineage

kinase domain-like protein (MLKL) knockout mice. The

research hints ferroptosis is an important player in NAFLD

conversion to NASH (Tsurusaki et al., 2019). Notably, three

characteristics of NASH suggest ferroptosis is involved in the

progression of NASH:

1) Lipid accumulation is the basis of hepatic steatosis. Excess

lipid accumulation induces oxidative stress (Chen et al.,

2020). Some reports have reported a high level of PUFAs

in plasma samples taken from patients with NASH (Loomba

et al., 2015), and PUFA intake increases the risk of NAFLD

(Xie et al., 2021). These lines of evidence imply that PUFAs

profoundly impact NASH development. The substrates for

polyunsaturated fatty acid-containing phospholipids (PUFA-

PLs) are necessary for ferroptosis (Lei et al., 2022). Oxidized

phospholipid-induced inflammation promotes the

progression of NASH (Sun et al., 2020). In summary, this

body of evidence suggests that hepatocytes in NASH patients

are likely to be enriched with PUFA-PLs, creating a

precondition for ferroptosis.

2) The available evidence suggests that hepatic iron is involved

in NASH. In physiological conditions, FPN is mainly

expressed in the cytomembrane of Kupffer cells and

hepatocytes around the portal vein (Drakesmith et al.,

2015). Wang F et al. have shown FPN plays an important

role in iron mobilization of hepatocyte and iron storage in

macrophage in hepatocyte-specific FPN1 deletion mice

(Zhang et al., 2012). Prolonged inflammation can produce

more interleukin-6 (IL-6), and the binding of IL-6 to its

receptor activates JAK/STAT pathway, resulting in

STAT3 phosphorylation. Phosphorylated STAT3 enters the

cell nucleus and activates the Hepcidin gene expression via

locating the binding site in the Hepcidin promoter region

(Camaschella et al., 2020). The combination of Hepcidin and

FPN results in the change of the spatial configuration of FPN

and leads to FPN degradation via ubiquitination and

internalization (Billesbølle et al., 2020). Low expression of

FPN inhibits iron release in macrophages and iron absorption

in the duodenum (Donovan et al., 2005). There is evidence

that IL-6 increases in NASH patients (Wieckowska et al.,

2008) and STAT3 activation plays an important role in the

fibrosis of NASH (Zhao et al., 2021). The molecular

mechanism suggests that hepatic iron is associated with

the development of NASH in a variety of pathological

processes. Insulin resistance (Mendler et al., 1999) is

directly associated with hepatic iron levels, and lower

blood sugar decreases the iron concentration and inhibits

iron transport. Other researchers have found a correlation

between the hepatic iron level and the mutation rate of the

haemochromatosis gene (HFE) (Bonkovsky et al., 1999). As a

significant symbol in NASH development, an increase in

hepatic iron has been related to the degree of hepatic

fibrosis (George et al., 1998; Valenti et al., 2010). More

importantly, elevated citrate has been detected in NAFLD;

citrate indirectly produces free radicals via the Fenton

reaction (van de Wier et al., 2013). The Fenton reaction

Frontiers in Pharmacology frontiersin.org02

Xiong et al. 10.3389/fphar.2022.1055793

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1055793


can amplify the number of free oxygen radical species.

Notably, bioactive iron is an essential component of

ferroptosis, suggesting that ferroptosis promotes the

progression of NASH via the Fenton reaction.

3) The cellular antioxidant ability is impaired. As mentioned

above, the antioxidant ability in NASH is damaged or

exhausted. The depletion of mGSH (Serviddio et al., 2008)

is only one of many influences, and a lack of a variety of

antioxidants has been found in NASH patients (Baskol et al.,

2007), indicating that the ROS neutralization system in

NASH was damaged. In recent years, researchers found

that loss of Nrf2 is the key factor for the development of

NASH (Xu et al., 2019). Nrf2 inhibits fatty acid biosynthesis

by down-regulating ATP-citrate lyase, acetyl-CoA

carboxylase 1, fatty acid synthase et al. (Yates et al., 2009;

Kitteringham et al., 2010; Wu and Klaassen, 2011). The

inhibiting action of Nrf2 on fatty acid biosynthesis might

be attributed to Nrf2-mediated inhibition of the nuclear

receptor liver X receptor–α gene (LXR-α) (Kay et al.,

2011). More importantly, as a reducing agent, NADPH is

necessary for biocatalysis and biotransformation of oxidized

GSH by glutathione reductase. Nrf2 regulates NADPH

biosynthesis with the help of malic enzyme and isocitrate

dehydrogenase (Thimmulappa et al., 2002). Low expression

of Nrf2 does not only promote the synthesis of fatty acids but

also leads to the loss of reduced glutathione. Nrf−/− mice also

show a correlation between Nrf2 and immunoreactions (Itoh

et al., 2004). As indicated above, the inhibition of the cystine-

glutamate transporter XC
− induces ferroptosis. Studies have

shown that cystine deprivation and glutaminolysis regulate

ferroptosis (Gao et al., 2015). These studies reveal that

ferroptosis is accompanied by the depletion of GSH. GSH

is the primary antioxidant in the mitochondrial repair system,

and its depletion shows that the cellular antioxidant ability is

diminished after ferroptosis.

In summary, considering phospholipid peroxidation

substrates, bioactive iron, and antioxidant system inhibition,

ferroptosis may play an essential role in NASH development.

Some indirect evidence supports this supposition; for example,

haem oxygenase-1 blocked the progression of steatohepatitis

(Wang et al., 2010). Moreover, recent research showed that

haem oxygenase-1 induced ferroptosis mediated via

mitochondrial factors (Wang et al., 2016). Further, the human

genetic study brought home this point. Xingguo Liu et al. found

that in two patients with mitochondrial DNA depletion

syndrome (MDS), DGUOK mutant hepatocyte-like cells and

hepatocyte organoids were more susceptible to iron overload-

induced ferroptosis (Guo et al., 2021).

Some reports have shown that NASH usually exhausts

mitochondrial glutathione (mGSH) by increasing the

mitochondrial cholesterol level (Serviddio et al., 2008;

Josekutty et al., 2013). GSH plays a crucial role in the

antioxidative system, and its function is facilitated by its

reduction and conjugation (Forman et al., 2009). The

depletion of mGSH suggests that mitochondria have lost

antioxidative capacity and that ROS levels have increased.

Hence, mGSH is at least part of the second hit in the 2-s hit

theory of NASH. GSH levels are generally lower in NAFLD

patients than in healthy people (Kumar et al., 2013). Although

the details of mGSH transport have not been thoroughly

explained (Ribas et al., 2014), a lower level of cellular GSH

exacerbates mGSH depletion; that is, changes in cellular GSH

charge and concentration affect mGSH levels. Data have shown

that glutamate is usually increased in NAFLD patients (Gaggini

et al., 2018); therefore, a decrease in GSH may partly contribute

to increased glutaminolysis (Du et al., 2020). Moreover, some

researchers have indicated that the cysteine level is increased in

NAFLD patients (Kalhan et al., 2011). In summary, impaired

mitochondria indicate damage to the ROS neutralization system.

Hence, glutamine is a critical factor in ferroptosis, and

glutaminolysis regulates ferroptosis (Gao et al., 2015); α-
ketoglutarate is a product of glutaminolysis and is part of the

tricarboxylic acid cycle; therefore, mitochondria and ferroptosis

seem to be linked (He et al., 2020). As mentioned above,

mitochondrial dysfunction is accompanied by NASH

development. Abnormal mitochondrial ultrastructure has also

been observed in ferroptosis (Dixon et al., 2012). Similar to that

in NASH, a change in mitochondrial morphology has been found

in hepatocytes undergoing ferroptosis (Wang et al., 2017).

Mitochondria are the primary sources of ROS (Murphy,

2009); therefore, mitochondria likely produce ROS, increasing

lipid peroxidation. During NASH development, the depletion of

mGSH implies that a decreased GSH level (Serviddio et al., 2008)

is a result of mGSH exhaustion in mitochondria but not factors

outside mitochondria. mGSH exhaustion-related ferroptosis is

reported in programmed cell death of cardiomyocyte (Jang et al.,

2021). RSL3 induced ferroptosis of cardiomyocytes via the

accumulation of adrenoyl-phosphatidylethamines (PEs). The

decrease of dicarboxylate carrier (DIC) and oxoglutarate

carrier (OGC) leads to the depletion of mGSH and increase

ROS. The interaction of mGSH and GPX4 regulates the process

of ferroptosis with the help of the accumulation of PEs. The

depletion of mGSH suggested that NASH may have a similar

mechanism in NASH development.

Interestingly, the research showed the inhibition of DIC and

OGC has a significant effect on mitochondrial membrane

potential which was reduced by 14% less in PSA&BMA-

treated cells (PSA, DIC inhibitor, and BMA, OGC inhibitor)

than in the untreated cells (Jang et al., 2021). Earlier research also

reported mitochondrial membrane potential changes in

ferroptosis (Gao et al., 2019). The evolutionary formation of

the membrane potential indicates that modification of

membrane permeability—the transformation of membrane

permeability—is most likely exacerbated by mGSH depletion.

In the cellular defense mechanism, GPX4 is the most critical
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antioxidase; research has shown that lipid peroxidation induced

by GPX4 is not evident in mitochondria (Angeli et al., 2014).

However, further studies showed that GPX4 in mitochondria

plays a defender in ferroptosis after dihydroorotate

dehydrogenase (DHODH) is deactivated (Zhu et al., 2020;

Mao et al., 2021). DHODH is located on the outside surface

of the inner mitochondrial membrane. It can reduce coenzyme Q

(CoQ) to ubiquinol (CoQH2). CoQ is a critical component in the

electron transport chain. CoQH2 is the reduced form of CoQ; as

an antioxidant, CoQH2 captures free radicals produced via lipid

peroxidation. Hence, when the expression level of GPX4 is low,

DHODH is expressed to prevent ferroptosis (Figure 1).

Paradoxically, a recent study showed the benefit of using an

inhibitor of DHODH to treat NAFLD (Zhu et al., 2020). Notably,

the work concentrated on inflammatory cells, not hepatic cells or

Kupffer cells. In summary, mitochondria are likely to regulate

ferroptosis by inhibiting the ROS neutralization system.

Potential drug targets of
nonalcoholic steatohepatitis related
to ferroptosis

To date, pharmacologic therapies for NASH have shown

limited efficacy. As an antioxidant, vitamin E, which is used to

treat NASH, has led to inconsistent results. A randomized

FIGURE 1
The figure shows ferroptosis involves both the cytoplasm andmitochondria. Cystine-glutamate transporter XC

− is responsible for the transfer of
Cystine into the macrophage (or hepatocytes around the portal vein), then Cysteine takes part in the process of Glutathione biosynthesis.
GPX4 regulates the reduced state (GSH) and oxidized state (GSSH). Meanwhile, PL-PUFA-OOH is converted to PL-PUFA-OH by GPX4. When
prolonged inflammation can produce more interleukin-6 (IL-6), and the binding of IL-6 to its receptor activates hepatocyte’s JAK/STAT
pathway, resulting in STAT3 phosphorylation. Phosphorylated STAT3 enters the hepatocyte nucleus and activates the Hepcidin gene expression by
locating the binding site in the Hepcidin promoter region. A large amount of Hepcidin protein is finally secreted out of the cells. It results in the
combination of Hepcidin and FPN and leads to FPN degradation via ubiquitination and internalization, so macrophages (or hepatocytes around the
portal vein) accumulate more iron. When GPX4 is deactivated, the Fenton reaction can initiate ferroptosis in the cytoplasm. For NASH patients, there
exists another mechanism: ferroptosis in mitochondria. Mitochondria have two kinds of antioxidase: GPX4 and DHODH. DHODH is located on the
outside surface of the inner mitochondrial membrane. It can reduce coenzyme Q (CoQ) to ubiquinol (CoQH2). CoQ is a critical component in the
electron transport chain. CoQH2 is the reduced form of CoQ; as an antioxidant, CoQH2 captures free radicals produced via lipid peroxidation.
Hence, ferroptosis will start successfully in mitochondrial if DHODH and GPX4 are both deactivated.
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control trial (RCT) showed that vitamin E or vitamin C reduced

fibrosis scores (which was significant, p = 0.002) (Harrison et al.,

2003). However, in another study, vitamin E treatment failed to

reduce fibrosis scores (p = 0.24) (Sanyal et al., 2010). A meta-

analysis revealed that trials with vitamin E indicated high

heterogeneity (Musso et al., 2010). Some insulin sensitizers

have shown a similar pattern (Musso et al., 2010).

Furthermore, long-term use of vitamin E has a potential risk

and large doses of vitamin E may increase all-cause mortality

(Miller et al., 2005). In addition, vitamin E treatment may

increase the risk of prostate cancer (Klein et al., 2011). More

importantly, most trial periods are too short to maintain data

accuracy, and these trials typically do not include crucial clinical

outcomes, such as liver cirrhosis or liver cancer. Even the curative

effects of GLP-1 receptor agonists are unclear (Newsome et al.,

2021), indicating the need for additional data on GLP-1 receptor

agonist trials.

Furthermore, GLP-1 receptor agonists are used only for

patients with NASH and diabetes, and the scope of treatment

is limited. In summary, the mechanism of insulin resistance is

unlikely to be sufficiently similar to those of potential drug

targets for NASH; therefore, we need to change our minds:

ferroptosis may be a more analogous system. That is, based on

the mechanism of ferroptosis, potential pharmacologic

therapies can be classified into three attributional

categories: regulating substrates for phospholipid

peroxidation, iron chelating, and repairing the ROS

neutralization system.

Substrates of phospholipid peroxidation can be regulated;

for example, statins are a choice for regulating PUFAs

(Nozue et al., 2013). However, data on statins as

therapeutic drugs are insufficient to prove their benefit for

NASH patients (Tomasiewicz et al, 2018). Paradoxically,

omega-3 polyunsaturated fatty acids are beneficial to

NAFLD patient (Masterton et al., 2010). However, PUFA-

PLs are also found in normal cells. It is essential to maintain

certain physiological functions, such as the cell membrane

fluidity structure of the cytomembrane; therefore, PUFA-PLs

may be necessary for hepatic cells. In addition, considering

the mechanism, cells’ oxidation-reduction system is

imbalanced during ferroptosis. When the imbalanced

oxidation-reduction system cannot be corrected, the

simple reduction in PUFAs may not be enough to inhibit

ferroptosis. Therefore, regulating substrates for phospholipid

peroxidation is not a key factor in ferroptosis.

Iron chelators appear to be good choices for regulating

ferroptosis. Brent Stockwell et al. discovered ferroptosis was

inhibited via the intervention of certain iron chelators (Dixon

et al., 2012). However, in a cohort study, the main clinical effects

of iron accumulation in NASH patients were insignificant

(Younossi et al., 1999). In this unselected cohort, certain

unknown confounding factors were not eliminated, and the

number of patients with NASH was lower than that of the

other cohort. Therefore, further research is needed. In the

past, targeted pharmacologic therapies for NASH usually

focused on insulin resistance and antioxidants; fewer studies

have been directed to hepatic iron as a drug target for NASH.

Notably, no significant benefit has been obtained via phlebotomy

(Adams et al., 2015); hepatic iron was not adequately removed. In

the clinic, a chelating agent is a potential therapeutic choice. For

example, deferoxamine is usually suitable for beta-thalassemia

and other iron-overload conditions. Compared with

phlebotomy, hepatic parenchymal cells can take up more iron.

This means that deferoxamine can clear iron directly from

hepatocytes. Indeed, the half-life of deferoxamine is short; the

potential question is whether iron accumulates in mitochondria.

In rat hepatic cells, the iron level in mitochondria was double that

of the cytoplasm (Paul et al., 2017). Iron chelators may not be

able to capture enough bioactive iron in mitochondria to benefit

NASH patients; therefore, further physiological efficacy and

safety data need to be generated in future relevant clinical

studies of NASH.

Repairing the ROS neutralization system via GSH is a good

choice in ferroptosis. A pilot study showed a benefit from

biochemical tests for patients with NASH (Irie et al., 2016).

However, similar to iron chelators, GSH levels can be exhausted

in mitochondria (Serviddio et al., 2008). It is unclear whether

supplementation with GSH can lead to mGSH level recovery. A

method to transport GSH into mitochondria is also a challenge.

Additional data on GSH effects are needed in the future to

develop mGSH-targeted pharmacologic therapy for NASH.

We now know that GPX4 and DHODH are two central

defense systems against ferroptosis in mitochondria (Mao

et al., 2021). As DHODH is depleted, the defense system

increasingly relies on GPX4 and vice versa. Pharmaceutical

inhibitors of DHODH are potential for cancer treatment;

however, the same drug target is not useful for developing

NASH therapies.

Interestingly, a DHODH inhibitor drug, vidofludimus,

showed the potential to reverse hepatic steatosis and reduce

inflammation (Zhu et al., 2020). However, the results of

these studies do not seem to comport with the mechanism of

ferroptosis. Immune cells were the targets in the study.

However, one hypothesis suggests that DHODH

inhibition upregulates the expression of GPX4 under

certain conditions and thus inhibits ferroptosis. In

addition, a recent study of the regulation of cancer

immunity by ferroptosis sheds some light on that

question. Weiping Zou, Weimin Wang et al. found CD8+

cells induce tumor ferroptosis by interferon gamma they

produced (Wang et al., 2019). The research first discovered

ferroptosis is a new mechanism of anti-tumor, and it has

widely applied prospects in the immunotherapy of tumours.

According to this line of thinking, In the development of

NASH, vidofludimus may regulate hepatic cell ferroptosis

via the inhibition of Immune cells. Additional research is
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needed to explore the relevant mechanism of DHODH

action in ferroptosis.

Conclusion and perspectives

Importantly, although the pathogenesis of NASH is still

debated, a large body of evidence shows that ferroptosis likely

plays an essential role in NASH development. Evidence

suggesting a relationship between ferroptosis and NASH

has been mainly focused on three aspects: (Brunt et al.,

1999) A high level of PUFAs is found in NASH patients,

and PUFAs undergo oxidative phosphorylation, a process that

induces inflammation. These characteristics suggest that

PUFA-PLs play roles in NASH. (Kleiner et al., 2005) Iron

participates in the development of NASH. Importantly, the

Fenton reaction has been associated with the development of

NASH; this reaction can amplify the number of free oxygen

radical species involved in ferroptosis. (Matteoni et al., 1999)

Evidence from a wide range of sources suggests that the

balance of the oxidation-reduction system in hepatic cells is

disrupted in NASH. Considering these three characteristics,

we have discussed lipid-lowering agents, iron chelators, and

GSH for use in drug therapies for NASH. Furthermore, we

explored potential drug targets, such as bioactive iron in

mitochondria and DHODH inhibitors.

As the research into ferroptosis in NASH advances, we

believe significant progress will be made to show the future

relationship between ferroptosis and NASH, providing new ideas

and laying a foundation for identifying potential pharmacologic

targets for NASH.

Interestingly, accumulating evidence suggests that

mitochondria may play an important role in the progression

of NASH and potentially in ferroptosis. Considerable evidence

supports the idea that impaired mitochondrial function is

involved in NASH, as indicated by abnormal morphology,

gene expression, defective mitophagy, and depletion of mGSH.

Similar evidence is found for ferroptosis. Thus, a strong

association between NASH and ferroptosis seems possible.

With intensive ongoing research, a better understanding of

how mitochondria are involved in NASH and ferroptosis will

contribute to resolving the debate on whether mitochondria

regulate ferroptosis.
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