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Doxorubicin (DOX) is a chemotherapeutic drug widely used for cancer

treatment, but its use is limited by cardiotoxicity. Although free radicals from

redox cycling and free cellular iron have been predominant as the suggested

primary pathogenic mechanism, novel evidence has pointed to topoisomerase

II inhibition and resultant genotoxic stress as the more fundamental

mechanism. Recently, a growing list of microRNAs (miRNAs) has been

implicated in DOX-induced cardiotoxicity (DIC). This review summarizes

miRNAs reported in the recent literature in the context of DIC. A particular

focus is given to miRNAs that regulate cellular responses downstream to DOX-

induced DNA damage, especially p53 activation, pro-survival signaling pathway

inhibition (e.g., AMPK, AKT, GATA-4, and sirtuin pathways), mitochondrial

dysfunction, and ferroptosis. Since these pathways are potential targets for

cardioprotection against DOX, an understanding of how miRNAs participate is

necessary for developing future therapies.
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Introduction

Doxorubicin (DOX) is an anthracycline (ANT) antibiotic that is widely used as a

chemotherapeutic agent against a variety of malignancies, namely breast cancer, prostate

cancer, small cell lung carcinoma, Hodgkin’s lymphoma, and others. Despite the high

efficacy, its use is significantly limited by its chronic cardiotoxicity. DOX-induced

cardiotoxicity (DIC) risk increases as the cumulative dose exceeds 400–700 mg/m2 for

adults and 300 mg/m2 for children (Renu et al., 2018). Patients with DIC could show

symptoms ranging from subclinical left ventricular (LV) dysfunction to congestive heart

failure (CHF) and death (Bansal et al., 2019). DOX-induced CHF could present acutely

(weeks after the onset of treatment) or chronically (decades later), with most cases seen in

the first year of therapy (Lipshultz et al., 2008; Cardinale et al., 2015). As DIC is

irreversible, dose monitoring and early detection are critical to minimize morbidity

and mortality. LV function can be monitored with speckle tracking echocardiography
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(STE) combined with serum biomarkers such as cardiac

troponins and natriuretic peptides to predict DIC risk (Kang

et al., 2013; Pudil et al., 2020).

Despite many decades of investigation, the mechanism of

DIC has not been completely understood (Mitry and Edwards,

2016). Free radical reactive oxygen species (ROS) generation due

to one-electron redox cycling by the quinone moiety of DOX and

increased free cellular iron are the most favored hypotheses in the

literature (Horenstein et al., 2000; Minotti et al., 2004; Šimůnek

et al., 2009). However, other mechanisms have also been

suggested, such as DNA damage due to topoisomerase II

inhibition and double-stranded breaks (DSBs) (Pommier

et al., 2010; Marinello et al., 2018), mitochondrial dysfunction

(Štěrba et al., 2011; Osataphan et al., 2020; Wallace et al., 2020;

Huang et al., 2022), altered calcium homeostasis (Wallace, 2007;

Shinlapawittayatorn et al., 2022), and others. Recently, the ROS

hypothesis has been questioned as the primary pathogenic

mechanism (Pointon et al., 2010; Zhang et al., 2012; Ghigo

et al., 2016; Kalyanaraman, 2020). Instead, inhibition of

topoisomerase IIβ (Top2B) in cardiomyocytes and the

downstream DNA damage response seems to be the

predominant mechanism for mitochondrial dysfunction and

ROS generation leading to DIC (Zhang et al., 2012; Vejpongsa

and Yeh, 2014). Dexrazoxane, the only drug used in clinics to

prevent DIC, has long been thought to achieve its effect through

iron chelation (Štěrba et al., 2013). However, more recent

evidence points to its interaction with Top2B, not its iron-

chelating function, as the primary mechanism for its

cardioprotective effect (Kaiserová et al., 2006; Lyu et al., 2007;

Deng et al., 2014; Kollárová-Brázdová et al., 2020; Jirkovská et al.,

2021; Jirkovský et al., 2021).

Although the understanding that connects DNA damage and

DIC is incomplete, certain pathways have been implicated to play

a role. Upon DNA damage such as DSBs, cells activate a group of

serine/threonine kinases sensitive to DSBs, known as ataxia

telangiectasia mutated (ATM), ATM- and RAD3-related

(ATR), and DNA-dependent protein kinase (DNA-PK). ATM/

ATR can stabilize p53, the master regulator of cell fate after DNA

damage (Jackson and Bartek, 2009). In DOX-treated

cardiomyocytes, both ATM and p53 are activated (L’Ecuyer

et al., 2006; Yoshida et al., 2009; Piegari et al., 2013).

Heterozygous p53 loss attenuated DOX-induced

cardiomyocyte apoptosis in vivo, suggesting p53 activation by

DOX contributes to DIC (Yoshida et al., 2009). Meanwhile,

DNA-PK is required for the non-homologous end joining

(NHEJ) of DSBs. DNA-PK can also activate the pro-survival

AKT via the mammalian target of rapamycin (mTOR) complex 2

(mTORC2) (Dragoi et al., 2005; Bozulic et al., 2008; Liu et al.,

2022). This DNA-PK-AKT axis activation has also been reported

in DOX-treated cardiomyocytes (Gratia et al., 2012). While AKT

activation may be beneficial for cardiomyocyte survival, in the

context of DIC, it is later followed by AKT inhibition (Lee et al.,

2006; Das et al., 2011; Sahu et al., 2019). Initial transient AKT

activation may rather exacerbate cardiomyocyte energy

deficiency and death in DIC by inhibiting AMP-activated

protein kinase (AMPK) signaling (Gratia et al., 2012). In

addition, the DNA-PK-AKT axis can stabilize p53 following

DNA damage, independent of ATM/ATR (Boehme et al.,

2008). In summary, DNA damage response in DOX-treated

cardiomyocytes likely converges on p53 and AKT/AMPK

signaling pathways that, in turn, regulate cell death. One of

the major downstream targets of these pathways is the

mitochondrion. Specifically, DOX-induced DNA damage and

p53 activation may trigger mitochondrial membrane potential

loss (L’Ecuyer et al., 2006; Sardão et al., 2009), mitochondrial

fragmentation (Samant et al., 2014; Tang et al., 2017; Catanzaro

et al., 2019), and impaired mitophagy (Hoshino et al., 2013; Li

et al., 2022) in cardiomyocytes, potentiating cell death.

In recent years, microRNA (miRNA) has garnered attention

as a novel therapeutic target for DIC (Holmgren et al., 2016;

Ruggeri et al., 2018; Skála et al., 2019; Pereira et al., 2020). In the

last few years, several experimental and clinical studies have

described changes in miRNAs induced by the cardiotoxic effect

of ANT with very controversial results (Ruggeri et al., 2018;

Pereira et al., 2020; Chen et al., 2021). However, the role miRNAs

play in the molecular pathways responsible for DIC is not wholly

understood.

This paper aims to give an integrated overview of the impact

of miRNAs on the early pathogenetic mechanism of DIC

development. Particular attention is paid to the role of the

DNA damage response, as it triggers various cellular changes.

When the DNA damage exceeds the extent of cellular repair, cells

commit themselves to regulated cell death (RCD), including

apoptosis and ferroptosis, likely contributing to cardiac

functional compromise (Christidi and Brunham, 2021). As a

part of RCD, pro-survival signals (e.g., AMPK, AKT, GATA-4,

and the sirtuin pathways) are inhibited, and mitochondria

become fragmented and accumulate iron within their matrix.

Multiple molecular pathways of this process are regulated by

miRNAs, raising the possibility of attenuating DOX-induced

RCD through targeting miRNAs.

miRNAs involved in p53 regulation

One of the primary pathways that leads to DOX-induced

apoptosis is the oxidative DNA damage-ATM-p53 pathway

(Kurz et al., 2004; Yoshida et al., 2009). DNA damage such as

DSB activates ATM. One of the most critical downstream targets

of ATM is p53, which is activated into a form with improved

DNA binding affinity and rapidly accumulates inside of the cell

to induce cell cycle arrest, DNA repair, and apoptosis (Lakin and

Jackson, 1999; Cheng and Chen, 2010). By causing DSBs and

increased ROS generation, DOX can activate this ATM-p53

pathway of DNA damage response (Kurz et al., 2004; Yoshida

et al., 2009). p53 was also identified as the critical transcriptome
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regulator of DIC in a study using transcriptomic profiling, with

p53-induced upregulation in death receptors potentially playing

a role in increased cardiomyocyte apoptosis (McSweeney et al.,

2019). However, the role p53 plays in DIC has also been reported

to be cardioprotective through its impact on mitochondrial DNA

(mtDNA) rather than apoptosis-inducing activity. Loss of

p53 function led to the exacerbation of DIC that can be

rescued by recovering mtDNA health (Li et al., 2019b).

The ATM-p53 axis induces themiR-34 family. Even without

DNA damage, a stagnant pool of mature miR-34 is present,

quickly activated upon DNA damage by ATM/Clp1-dependent

5′-phosphorylation and Ago2-loading (Salzman et al., 2016).

Later, p53 also initiates the transcription of miR-34 (Chang

et al., 2007; He et al., 2007; Raver-Shapira et al., 2007;

Hermeking, 2012). In humans, three members of miR-34

exist, namely, miR-34a from chromosome 1p36 and miR-36b/

c from chromosome 11q23. Among these three, miR-34a has

been particularly implicated in the p53 response, as it directly

targets TP53 and its inhibitorsMDM4, YY1, MTA2, HDAC1, and

SIRT1 (Yamakuchi et al., 2008; Kaller et al., 2011; Navarro and

Lieberman, 2015). This double-negative regulation of p53 by

miR-34a effectively serves as a positive feedback loop. Recently, a

mathematical bifurcation analysis has proposed an exciting

function for such a circuit regulating p53 dynamics (Gao

et al., 2020), producing limit cycle oscillations needed for

biochemical oscillators (Novák and Tyson, 2008; Gao et al.,

2020). Therefore, miR-34a can trigger p53 fluctuation via its

action on sirtuin 1 (SIRT1) mRNA. The amplitude of this

activated p53 oscillation is determined by the intensity of

DNA damage coded by the activated ATM level and the

power of SIRT1 inhibition by miR-34a. A moderate increase

in the intensity produces a sustained oscillation of p53 that

activates genes involved in cell cycle arrest and DNA repair.

However, a significant increase in intensity leads to a prolonged

high-level steady state that triggers pro-apoptotic genes (Gao

et al., 2020). This agrees with the current experimental data

describing how p53 dynamics differentially regulates cell

decision-making, between survival (cell cycle arrest, DNA

repair) and death (apoptosis), likely through the modulation

of its binding affinity to target genes. Pro-apoptotic genes have a

lower affinity for p53 than pro-arrest genes (Purvis et al., 2012;

Wu et al., 2017). Notably, p53 is not solely regulated by miR-34a

to generate an oscillatory pattern, as miR-34 loss did not impair

p53 function (Concepcion et al., 2012). Other mechanisms have

also been proposed to produce p53 pulses, such as the well-

studied p53-mouse double minute 2 homolog (MDM2) feedback

loop (Lev Bar-Or et al., 2000; Mihalas et al., 2000) and p53-wild-

type p53-induced phosphatase 1 (Wip1)-ATM/checkpoint

kinase 2 (Chk2) negative feedback loop (Fiscella et al., 1997;

Fujimoto et al., 2006; Shreeram et al., 2006; Boehme et al., 2008).

Interestingly, the p53 pulse regulatorWip1 is targeted by miR-16,

whose expression is under the regulation of p53 (Zhang et al.,

2010; Lezina et al., 2013). This p53-miR16-Wip1 positive

feedback loop may also impact cell fate decision (Issler and

Mombach, 2017).

Besides the modulation of p53, miR-34a also directly inhibits

G1/S transition by targeting c-Myc, n-Myc, CCND1, E2F, CDK4,

CDK6, and MET and induces apoptosis through anti-apoptotic

Bcl-2 and SIRT1 (Bommer et al., 2007; Yamakuchi et al., 2008;

Kaller et al., 2011; Chen and Hu, 2012). Therefore, in addition to

regulating cellular p53 dynamics, miR-34a directly impacts cell

fate and regulation to aid in p53 function.

Unsurprisingly, after DOX exposure, miR-34a levels increase

in rat cardiomyocytes, which is reversed by dexrazoxane (Zhu

et al., 2017). In a rat model, antimiR-34a suppressed

cardiomyocyte apoptosis via upregulating Bcl-2 and

SIRT1 and reduced DIC (Piegari et al., 2016, 2020).

SIRT1 prevents cardiac apoptosis by inhibiting the pro-

apoptotic p66shc, increasing mitochondrial ROS generation

(Zhu et al., 2017). Therefore, SIRT1 inhibition by miR-34a

can exacerbate DOX-induced cardiac oxidative stress via the

action of p66shc. Taken together, the miR-34 family, mainly

miR-34a, is induced in cardiomyocytes upon DOX-induced

DNA damage via the ATM-p53 axis. It acts synergistically

with p53 to induce cardiac cell cycle arrest and apoptosis,

contributing to DIC.

MiR-23a andmiR-128 are also associated with p53 in DOX-

induced cardiomyocyte apoptosis (Adlakha and Saini, 2013; Li

et al., 2015). MiR-23a is upregulated by DOX treatment and

exposure to hydrogen peroxide, and it promotes apoptosis by

binding to p53 (Li et al., 2015). Upon binding, the complex

associates with the miR-128 promoter region, increasing miR-

128 expression (Li et al., 2015). An increased miR-128 level was

reported in DOX-treated hearts (Zhang et al., 2021b). miR-128

promotes apoptosis by inhibiting SIRT1, resulting in increased

p53 acetylation and activity (Adlakha and Saini, 2013; Li et al.,

2015). Additionally, miR-128 also contributes to DIC by

targeting peroxisome proliferator-activated receptor γ (PPAR-

γ), a protective agent against cardiomyocyte oxidative stress and

apoptosis (Ren et al., 2009; Zhang et al., 2021b).

Another p53 target that seems to play a role in DIC is miR-

22. Upon DOX exposure, miR-22 is activated to target the cell

cycle regulator p21 (Tsuchiya et al., 2011), which is also activated

by p53 during stress conditions. It induces cell cycle arrest by

inhibiting various cyclin-dependent kinases, eventually leading

to cell senescence rather than apoptosis. However, under high

stress, p53 induces the transcription of both miR-22 and p21,

thereby suppressing p21 action and favoring apoptosis rather

than senescence (Tsuchiya et al., 2011). DOX also induces miR-

22 upregulation in murine cardiomyocytes (Xu et al., 2020). miR-

22 inhibition has recently been reported to counteract DIC via

directly targeting SIRT1 (Xu et al., 2020; Wang J et al., 2021).

SIRT1 deacetylates the peroxisome proliferator-activated

receptor gamma coactivator-1α (PGC-1α), a vital regulator of

mitochondrial mass and function (Tang, 2016). It has been

reported that when miR-22 is knocked out, SIRT1 suppression
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is removed, and the expression of PGC-1α and other

mitochondrial biogenesis or mitophagy regulators are

enhanced, alleviating mitochondrial dysfunction in DIC

(Wang R et al., 2021).

In addition to the miRNAs mentioned above, p53 activates

other miRNAs, such as miR-200, miR-15/16 family, miR-192/

194/215 family, miR-145, and miR-107, although whether they

play a role in DIC remains to be largely elusive (Hermeking,

2012). Another form of non-coding RNA, known as large

intergenic non-coding RNA-p21 (lincRNA-p21), is also

activated by p53 (Huarte et al., 2010). LincRNA-p21 might

compete with mRNA for miRNA binding at the miRNA

binding sites (MREs), functioning as competing endogenous

RNAs (ceRNAs) (Amirinejad et al., 2020). For example,

lincRNA-p21 can bind to the miR-181 family, miR-17-5p,

miR-1277-5p, and other miRNAs to regulate their levels

(Amirinejad et al., 2020). These downstream miRNA targets

of p53 might also be altered by DOX treatment in

cardiomyocytes.

Lastly, p53 can be therapeutically targeted by miR-146a,

which is upregulated by DOX treatment (Horie et al., 2010;

Pan et al., 2019). miR-146a directly inhibits TATA-binding

protein-associated factor 9b (TAF9b), a p53 coactivator and

stabilizer (Pan et al., 2019). Reduced p53 stability improves

autophagy and reduces apoptosis in DOX-treated

cardiomyocytes (Pan et al., 2019). MiR-146a also inhibits

cardiomyocyte death by targeting cyclophilin D, which can

otherwise trigger mitochondrial permeability transition pore

(mPTP) opening and necrosis (Su et al., 2021). Although this

mechanism of miR-146a action is not studied in DIC, since

cyclophilin D does seem to participate in DIC, the connection

is speculated (Dhingra et al., 2020). On the other hand, miR-

146a has also been reported to exacerbate acute DIC,

especially in patients simultaneously receiving trastuzumab

(an anti-ErbB2 monoclonal antibody) through targeting

ErbB4 (Horie et al., 2010). This is due to

ErbB4 participating in the neuregulin-1 (NRG-1)-ErbB2/

ErbB4-phosphoinositide 3-kinase (PI3K)-AKT-mTOR axis

that is protective against DIC (Fukazawa et al., 2003; Bian

et al., 2009).

miRNAs involved in the inhibition of
pro-survival signaling pathways

AMPK pathway

How DOX treatment affects cardiac AMPK activity has

been controversial. DOX treatment was reported to show

activation, no difference, and inhibition of AMPK and

autophagy (Koleini and Kardami, 2017; Christidi and

Brunham, 2021). One potential hypothesis explaining

conflicting observations might be that DOX initially

activates AMPK and thus autophagy but later inhibits

them. Nevertheless, it is generally accepted that DOX-

induced AMPK inhibition plays a role in DIC, and

therefore AMPK activation can be cardioprotective against

DOX (Gratia et al., 2012; Wang et al., 2012; Timm and Tyler,

2020; Russo et al., 2021). Dysregulated AMPK activity and

autophagy can lead to the accumulation of undegraded

autophagosomes/autolysosomes, further potentiating

cardiomyocyte deaths (Christidi and Brunham, 2021).

The mechanism connecting DOX treatment and AMPK

modulation remains elusive, but oxidative and genotoxic stress

are likely essential players. In response to DNA damage, DNA-

PK can transiently activate the pro-survival AKT pathway, which

can at least partially inhibit AMPK (Lee et al., 2006; Gratia et al.,

2012). DOX-induced AMPK inhibition may further exacerbate

genotoxic stress and cardiomyocyte apoptosis by

p53 accumulation and reduced SIRT1 activity due to reduced

NAD+/NADH ratio (Wang et al., 2012). Through AMPK

inhibition, DOX may also attenuate mitochondrial biogenesis

and oxidative metabolism via PGC-1α, reduce autophagy/

mitophagy via ULK1, and increase fibrosis via TGF-β
signaling, i.e., all factors that could contribute to DIC (Timm

and Tyler, 2020). AMPK inhibition can at least partially explain

metabolic alterations in DOX-treated cardiomyocytes, namely

reduced fatty acid oxidation and oxidative phosphorylation,

accompanied by persistent glycolysis, potentially culminating

in energetic failure (Russo et al., 2021).

miR-451 might be involved in DOX-induced AMPK

inhibition, potentially contributing to DIC (Li et al., 2019a).

In DOX-treated mouse cardiomyocytes, the level of miR-451 was

significantly enhanced, and the inhibition of miR-451 suppressed

cardiomyocyte death and functional compromise (Li et al.,

2019a). miR-451 attenuates AMPK signaling, and AMPK

inhibition abolishes benefits obtained by miR-451 (Li et al.,

2019a). These results indicate that DOX-induced miR-451

upregulation contributes to AMPK inhibition and DIC.

Mechanistically, miR-451 might inhibit AMPK signaling by

targeting MO25, a component of the upstream kinase of

AMPK (Chen et al., 2012).

Another miRNA significantly upregulated by DOX that may

alter AMPK signaling is miR-25. Recently, it was reported that

miR-25 could exacerbate DOX-induced cardiac cell apoptosis

and ROS production via targeting phosphatase and tensin

homolog deleted on chromosome 10 (PTEN) (Li et al.,

2020d). PTEN is a negative regulator of AKT signaling, and

its loss in the heart leads to impaired AMPK signaling (Roe et al.,

2015). Therefore, DOX-induced miR-25 upregulation might

attenuate AMPK signaling via targeting PTEN. However, as

mentioned in the next section, PTEN inhibition and AKT

activation have also been reported to be cardioprotective

against DIC (Yu et al., 2020; Meng and Xu, 2022). Further

testing is required to determine whether the harmful effect of

miR-25 depends on the alteration of AMPK or AKT pathways.
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AKT pathway

DOX treatment can initially (2–8 h after treatment)

transiently activate and later inhibit the pro-survival PI3K/

AKT pathway (Lee et al., 2006; Das et al., 2011; Sahu et al.,

2019). There is abundant evidence that suggests upregulating

AKT signaling can ameliorate cardiomyocyte apoptosis in DIC

(Taniyama and Walsh, 2002; Das et al., 2011; Maruyama et al.,

2011; Guo et al., 2013; Cao et al., 2014; Sahu et al., 2019; Zhang

et al., 2019; Li et al., 2020a; Zhang et al., 2020; Liao et al., 2022).

AKT inhibition can be achieved by p53, which can

transcriptionally activate PTEN, the AKT inhibitor (Feng

et al., 2007). p53 has also been reported to inhibit mTOR

signaling, a primary downstream target of AKT, which could

lead to the loss of myocardial mass in DOX-treated hearts (Zhu

et al., 2009). Interestingly, DOX-induced AKT inhibition can also

be mediated by two miRNAs upregulated by DOX,miR-143 and

miR-375 (Li et al., 2020b; Liu et al., 2020b). miR-143

upregulation exacerbates oxidative stress and cardiomyocyte

apoptosis by inhibiting AKT (Li et al., 2020c). miR-375

upregulation was similarly associated with oxidative stress and

cardiomyocyte apoptosis by directly targeting 3-

phosphoinositide-dependent protein kinase 1 (PDK1), an

AKT activator (Liu et al., 2020b). Inhibition of miR-143 or

miR-375 attenuates cardiomyocyte apoptosis in an AKT-

dependent fashion (Liu et al., 2020b; Li et al., 2020c).

Meanwhile, some miRNAs have been reported as AKT

activators and may counteract DIC. These are, for example,

miR-495-3p, miR-17-5p, and miR-21 (Tong et al., 2015; Yu

et al., 2020; Meng and Xu, 2022). MiR-495-3p expression is

downregulated in DOX-treated hearts, and it targets PTEN to

activate AKT signaling (Meng and Xu, 2022). Unlike miR-25, this

PTEN inhibition attenuated DOX-induced oxidative stress and

DIC. Similarly, miR-17-5p also targets PTEN (Yu et al., 2020).

MiR-17-5p may partially be responsible for the cardioprotective

effect of dexrazoxane against DOX-induced apoptosis, as miR-

17-5p is upregulated by dexrazoxane treatment (Yu et al., 2020).

Meanwhile, the expression of miR-21 is increased in

cardiomyocytes after DOX treatment. It targets PTEN and

B cell translocation gene 2 (BTG2), another negative regulator

of the AKT pathway (Yang et al., 2014; Tong et al., 2015).

GATA-4 pathway

DOX treatment inhibits GATA-4 activity, another critical

survival factor that resists DIC (Kim et al., 2003; Kobayashi et al.,

2010; Lenčová-Popelová et al., 2014). GATA-4 enhances anti-

apoptotic Bcl2 expression, leading to reduced apoptosis and

suppressing deleterious DOX-induced autophagy. (Aries et al.,

2004; Kobayashi et al., 2010). GATA-4 also plays a role in cellular

senescence, activated by ATM and Rad3-related (ATR) upon

DNA damage (Kang et al., 2015). This can indicate that GATA-4

action might lead to cardiac senescence and functional

impairment. Whether GATA-4 activation is a viable

therapeutic strategy remains elusive.

DOX-induced GATA-4 suppression can be mediated by p53,

which suppresses CBF/NF-Y binding to the CCAAT box of the

promotor region of GATA-4 (Park et al., 2011). It could also be

given by miR-208a upregulation, directly targeting GATA-4

(Tony et al., 2015). Hence, miR-208a silencing counteracts

such DOX-induced functional compromise (Tony et al.,

2015). However, contradicting reports exist regarding miR-

208a expression after DOX treatment. Vacchi-Suzzi et al.

described downregulation in rat hearts rather than

upregulation (Vacchi-Suzzi et al., 2012). Meanwhile, miR-

199a-3p is another miRNA that directly targets GATA-4, but

its level was attenuated in cardiomyocytes by DOX treatment

rather than increased (Xia et al., 2021). miR-199a-3p attenuated

cardiomyocytes’ senescence and promoted cell proliferation,

indicating a potential therapeutic effect in DIC (Xia et al., 2021).

Sirtuin pathways

Sirtuins are a family of highly conserved NAD+-dependent

deacetylases and ADP-ribosyltransferases that play an essential

role in metabolic regulation and DNA damage repair. There are

currently seven members in this family, denoted SIRT1-7,

localized in the cytoplasm (SIRT1, 2) or mitochondria (SIRT3,

4, 5) or the nucleus (SIRT1, 2, 6, 7) (Matsushima and Sadoshima,

2015; Mei et al., 2016). Sirtuins could serve a pro-survival role in

cardiomyocytes, and at least the involvement of SIRT1, 2, 3, and

6 have been implicated in counteracting DIC (Christidi and

Brunham, 2021; Li et al., 2021).

SIRT1 expression is downregulated by DOX exposure in

neonatal rat cardiomyocytes, a change associated with

increased oxidative stress and apoptosis (Ruan et al.,

2015). SIRT1 overexpression or pharmacological

activation attenuates DIC through various downstream

targets. Specifically, pro-apoptotic p53, as well as p38MAPK

and p66shc, are inhibited by SIRT1, while the

cardioprotective AMPK is activated by SIRT1 via liver

kinase B1 (LKB1) and sestrin 2 action (Zhang et al.,

2011; Ruan et al., 2015; Wang et al., 2017, 2022; Wu

et al., 2019). In addition to the AMPK pathway,

SIRT1 activates cardioprotective PGC-1α and nuclear

factor erythroid 2-related factor 2 (NRF2). It inhibits

NOD-like receptor family pyrin domain-containing

protein 3 (NLRP3) inflammasome and nuclear factor

kappa-light-chain-enhancer of activated B cells (NF-κB)
(Wang(a) et al., 2021). PGC-1α increases mitochondrial

biogenesis, while NRF2 transcriptionally activates

antioxidant enzymes, thereby contributing to the

attenuation of oxidative stress and the alleviation of DIC

(Li et al., 2014b; Guo et al., 2014; Zhang et al., 2021a).
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Meanwhile, NLRP3 inflammasome induces pyroptosis,

exacerbating DIC (Meng et al., 2019; Sun et al., 2020).

DOX may inhibit this pro-survival SIRT1 pathway

downstream to DNA damage. For example, p53 may

inhibit SIRT1 via activating hypermethylation in cancer 1

(HIC1) (Wales et al., 1995; Chen et al., 2005). DNA damage-

induced poly(ADP-ribose) polymerases (PARPs) activation

can deplete NAD+, which compromises SIRT1 function (Pillai

et al., 2005; Khadka et al., 2018). In addition to these pathways,

at least a part of the mechanism involves miRNAs activated by

p53 to target SIRT1, namely miR-34a, miR-22, and miR-128

(Adlakha and Saini, 2013; Zhu et al., 2017; Xu et al., 2020;

Wang J et al., 2021). As previously mentioned, DNA damage

by p53 can activate these miRNAs, which regulate p53 activity

via SIRT1, or target other apoptosis genes. Interestingly,

genotoxic stress has been reported to induce ATM-

dependent activation of SIRT1, which, by deacetylating

histones H1 and H4, promotes the recruitment of DNA

repair machinery (Mei et al., 2016). Therefore,

SIRT1 inhibition in the DOX-treated hearts may impair

DNA repair and potentiate the cell towards apoptotic death.

SIRT2 might also serve a cardioprotective function via

attenuating oxidative stress by deacetylation/activation of

forkhead box O3a (FOXO3a), which upregulates manganese

superoxide dismutase (MnSOD) (Matsushima and Sadoshima,

2015). As reported by Zhao et al., the SIRT2 expression is

attenuated by DOX treatment and Nrf2 by the action of miR-

140-5p in cardiomyocytes, thereby leading to increased oxidative

stress (Zhao et al., 2018).

SIRT3 suppresses Bcl-2-like 19 kDa-interacting protein 3

(Bnip3), a critical contributor to DIC, by promoting

mitophagy and apoptosis (Dhingra et al., 2014; Saito and

Sadoshima, 2015; Du et al., 2017). Although no studies

report miRNAs targeting SIRT3 in the context of DIC, to

our knowledge, miR-195 may be a candidate. MiR-195 is

upregulated in human cardiomyocyte cell lines by DOX

treatment, and it might promote cardiomyocyte apoptosis

targeting Bcl-2 and SIRT3 (Zhang et al., 2018; Chen et al.,

2019a).

SIRT6 attenuates DIC by upregulating endogenous

antioxidant levels and attenuating apoptosis (Wu et al., 2021).

The latter is achieved by SIRT6 interaction with p53, which leads

to the repression of p53 transcription and binding to the Fas/FasL

promotor region to reduce apoptotic signaling (Wu et al., 2021).

SIRT6 also enhances GATA-4 chromatin binding capacity via

TIP60 recruitment, counteracting DOX-induced apoptosis (Peng

et al., 2020). SIRT6 is targeted by miR-330-5p, upregulated in

DOX-treated cardiomyocytes (Han et al., 2020). MiR-330-5p

exacerbates DIC by inhibiting SIRT6 and the anti-apoptotic

survivin and sarcoplasmic reticulum Ca2+-ATPase 2a

(SERCA2a) (Han et al., 2020). The miR-330-5p sponge

circular RNA ITCH (CircITCH) prevents DIC (Han et al., 2020).

miRNAs involved in DOX-induced
mitochondrial fission and mitophagy

DIC is also caused by altered mitochondrial dynamics

(Osataphan et al., 2020). Specifically, DOX treatment leads to

dynamin-related protein 1 (Drp1)-dependent mitochondrial

fission, resulting in enhanced apoptosis propensity (Catanzaro

et al., 2019). Indeed, when mitochondrial fission is inhibited

through Drp1 knockdown or by the mitochondrial division

inhibitor (mdivi-1), it attenuates cardiac cell death and DOX-

induced functional compromise (Gharanei et al., 2013;

Catanzaro et al., 2019).

Mitochondrial fission can be induced by p53, which can

transcriptionally activate Drp1 (Li et al., 2010). This process is

counteracted by miR-30 and miR-499-5p, two cardioprotective

miRNAs downregulated in the heart after DOX treatment (Li

et al., 2010; Roca-Alonso et al., 2015; Wan et al., 2019). miR-30

family downregulates p53 expression, reducing Drp1-mediated

mitochondrial fission and apoptosis (Li et al., 2010). Of note,

miR-30 can also counteract DIC by targeting β1-and β2-
adrenoceptors (β1AR, β2AR) and Giα-2 of the β-Adrenergic

signaling pathway, as well as the pro-apoptotic BNIP3L/NIX

(Roca-Alonso et al., 2015). Furthermore, miR-30a and miR-30e

target Beclin-1 to preserve cardiomyocyte autophagy and avoid

DOX-induced apoptosis (Lai et al., 2017; Zhang et al., 2021c).

Meanwhile, miR-499-5p directly targets p21 and both α- and β-

Isoforms of the calcineurin subunits, which favor mitochondrial

fission by increasing Drp1 dephosphorylation and accumulation

in mitochondria (Wang et al., 2010; Wan et al., 2019).

Interestingly, miR-499 expression is transcriptionally

suppressed by p53 (Wang et al., 2010). To summarize, DOX

treatment downregulates miR-30 while also causing DNA

damage, leading to p53 activation. p53, in turn, suppresses

miR-499-5p as well as transcriptionally activating Drp1,

resulting in increased mitochondrial fission and apoptosis.

DOX-induced mitochondrial fragmentation is also mediated

by miR-532-3p, miR-23a, and miR-140 (Li et al., 2014a; Wang

et al., 2015; Du et al., 2019). miR-532-3p is upregulated by DOX

and targets apoptosis repressor with caspase recruitment domain

(ARC), a critical negative regulator of mitochondrial fission and

apoptosis (Wang et al., 2015). This miR-532-3p-ARC axis of

DOX-induced apoptosis was reported to be present only in

cardiomyocytes but not in cancer cells. In addition to the pro-

apoptotic role via binding to p53, DOX-induced miR-23a

expression favors mitochondrial fission and cardiomyocyte

apoptosis by directly targeting PGC-1α, an inhibitor of

Drp1 phosphorylation and activation (Du et al., 2019).

Meanwhile, miR-140, another miRNA upregulated by DOX

in cardiomyocytes, targets and downregulates the pro-fusion

protein mitofusin 1 (Mfn1) rather than manipulating

Drp1 activity, aiding in mitochondrial fission and

cardiomyocyte apoptosis (Li et al., 2014a).
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Another aspect of mitochondrial dysfunction in DIC is

dysregulated mitophagy. Mitophagy refers to mitochondrial

autophagy, or the selective engulfment of damaged

mitochondria into autophagosomes for lysosomal degradation

(Bravo-San Pedro et al., 2017). Impairing mitophagy leads to the

accumulation of damaged mitochondria and compromises

cellular bioenergetics. In cardiomyocytes, two significant

pathways induce mitophagy: PTEN-induced kinase 1

(PINK1)/Parkin pathway and Bnip3/NIX pathway (Koleini

and Kardami, 2017). While Bnip3/NIX-dependent

mitophagy’s role in DIC is elusive, contradictory findings have

been reported for the PINK1/Parkin pathway in DIC. Some of

them described that DIC is due to DOX attenuating Parkin-

dependent mitophagy (Hoshino et al., 2013), while others the

opposite (Yin et al., 2018; Catanzaro et al., 2019). Hoshino et al.

(2013) showed that DOX upregulates cytosolic p53, which

directly binds to Parkin and prevents its translocation to

mitochondria. They, therefore, suggest that increased

mitophagy may be therapeutic for DIC. In contrast, Yin et al.

(2018) and Catanzaro et al. (2019) reported DOX activates

Parkin-mediated mitophagy, and inhibition of mitophagy by

mdivi-1 or Parkin knockdown mitigated DIC. The

discrepancies may be due to differences in experimental

conditions.

Reports on the role of miRNA in DOX-induced mitophagy

are scarce. One recent study showed that miR-147-y may

counter DOX-induced cardiomyocyte death by augmenting

mitophagy (Gao et al., 2022). miR-147-y achieves its effect by

targeting Raptor, a subunit of mTOR complex 1 (mTORC1)

and a potential negative regulator of mitophagy (Gao et al.,

2022). Another recent article found that DOX suppresses

mitophagy by reducing miR-152-3p expression via DNA

methyltransferase 1 (DNMT1) (Deng et al., 2022). When

DNMT1 is inactive, miR-153-3p enhances mitophagy by

targeting E26 transformation specific-1 (ETS1) (Deng et al.,

2022). Both studies seem to support the idea that DOX

suppresses cardiac mitophagy.

miRNAs involved in DOX-induced
ferroptosis

The close relationship between cardiac iron

accumulation and DIC has been widely discussed in the

literature. DOX quinone moiety redox cycling and

inactivation of iron regulatory proteins (IRP1/2) have

been reported as the primary mechanistic connection

(Minotti et al., 2001; Xu et al., 2005; Šimůnek et al., 2009;

Gammella et al., 2014). More recently, DIC has been mainly

linked to mitochondrial iron accumulation (Ichikawa et al.,

2014). Mechanistically, the dysfunction of the mitochondrial

iron exporter ABCB8 correlates with mitochondrial iron

level, cellular ROS, and DIC severity (Ichikawa et al.,

2014; Menon and Kim, 2022). Impaired ABCB8 function

could be induced by iron overload, resulting in increased

DOX accumulation in the mitochondria (Menon and Kim,

2022). Mitochondrial iron exacerbated DIC independently

on Top2B.

Iron overload is associated with cardiomyocyte ferroptosis

(Sumneang et al., 2020). Ferroptosis is a relatively recently

discovered mechanism of RCD, and it involves intracellular

iron-dependent accumulation of lipid peroxides and impaired

antioxidant activity of glutathione peroxidase 4 (GPx4) (Dixon

et al., 2012; Li et al., 2020a). It was recently reported that DOX

downregulates GPx4 in addition to forming a complex with iron

in the mitochondria to promote lipid peroxidation, culminating

in mitochondria-dependent ferroptosis (Tadokoro et al., 2020).

Significantly, the inhibition of ferroptosis by ferrostatin-1

combined with the inhibition of apoptosis by zVAD-FMK

prevented DOX-induced cardiomyocyte death, while using

either one only achieved partial prevention (Tadokoro et al.,

2020). Since ferrostatin-1 alone or zVAD-FMK alone both seem

to account for a significant fraction of DOX-induced

cardiomyocyte death, both ferroptosis and apoptosis appear to

be the primary forms of cell death in DIC (Tadokoro et al., 2020).

Ferroptosis could also be potentiated by p53, although the

interaction is complex, with some p53 downstream targets

favoring and others inhibiting ferroptosis (Liu et al., 2020a;

Liu and Gu, 2022). Part of the pro-ferroptosis mechanism

concerns p53’s impact on cysteine metabolism. Cysteine is an

essential component of glutathione (GSH), the main antioxidant

required for GPx4 activity. Therefore, a lack of intracellular

cysteine leads to the potentiation of ferroptosis (Badgley et al.,

2020; Poltorack and Dixon, 2022). Specifically, p53 represses the

expression of SLC7A11, a cystine/glutamate transporter, leading

to reduced cystine (Jiang et al., 2015). p53 also represses

ELAVL1 expression, stabilizing the posttranscriptional level of

LINC00336, an endogenous sponge for miR-6852 (Wang et al.,

2019). miR-6852 targets cystathionine-β-synthase (CBS) mRNA,

which codes the enzyme converting homocysteine to

cystathionine reducing intracellular cysteine. Furthermore,

p53 also induces the long noncoding RNA (lncRNA) PVT1,

an endogenous sponge for miR-214 (Lu et al., 2020; Olivero et al.,

2020). miR-214 attenuates ferroptosis via directly targeting

transferrin receptor 1 (TfR1), PVT1, and p53 (Lu et al., 2020).

However, others report that miR-214-3p enhances ferroptosis by

targeting activating transcription factor 4 (ATF4) (Bai et al.,

2020). AFT4 is a transcriptional activator that counteracts

ferroptosis through its downstream targets, namely

SLC7A11 and heat shock protein family A member 5

(HSPA5), which is a GPx4 activator (Chen et al., 2017b; Chen

et al., 2017a; Chen et al., 2019b). The role of these miRNAs is yet

to be reported in the context of DOX-induced ferroptosis, a topic

that awaits future studies.

NRF2 might be another target of regulation by miRNAs in

DOX-induced cardiomyocyte ferroptosis. NRF2 is a
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transcriptional activator of antioxidant proteins, and its action

counteracts ferroptosis by preventing lipid peroxidation and free

iron accumulation (Dodson et al., 2019). In addition to this anti-

ferroptotic effect, NRF2 can also ameliorate DIC by maintaining

autophagy (Li et al., 2014b). NRF2 action is enhanced by miR-

152, which directly targets Keap1, the inhibitor of NRF2 (Zhang

et al., 2021a). miR-152 ameliorates DIC by attenuating oxidative

stress and apoptosis, potentially preventing ferroptosis (Zhang

et al., 2021a). Furthermore, miR-152 may suppress ferroptosis by

targeting TfR1 (Kindrat et al., 2016). Interestingly, NRF2 also

transcriptionally represses miR-214, disinhibiting AFT4 and

preventing ferroptosis (Gao et al., 2016).

The miRNA regulation of DOX-induced ferroptosis is a

poorly understood topic, and the significance of the miRNAs

mentioned above is speculative. One miRNA that has been

reported to participate in DOX-induced ferroptosis is miR-7-

5p. DOX treatment upregulates methyltransferase-like 14

(METTL14), which stabilizes lncRNA KCNQ1OT1, a miR-7-

5p sponge (Zhuang et al., 2021). Since miR-7-5p directly targets

TfR1, KCNQ1OT1 action disinhibits TfR1, contributing to iron

accumulation and ferroptosis. Indeed, miR-7-5p mimic

prevented DOX-induced iron accumulation and lipid ROS

generation (Zhuang et al., 2021).

MiRNA-based therapeutics for cancer

Increasing evidence shows that altered miRNA expression

profiles and unique miRNA signaling pathways are present in

different types of cancers. Some miRNAs can function as

oncogenes (known as oncomiRs) or tumor suppressors (TS-

miRs) during tumor development and progression (Garzon

et al., 2009; Lee and Dutta, 2009; Ventura and Jacks, 2009;

Wang and Wu, 2012; di Leva et al., 2014). OncomiRs such as

the miR-17–92 cluster, miR-21, miR-106a, miR-155, miR-372,

and miR-373 target and inhibit various tumor suppressor genes,

thereby enhancing cancer survival and proliferation (Zhang et al.,

2007; Wang and Wu, 2012). It is not surprising that some of

them, such as miR-17-5p and miR-21, also favor cell survival and

mitigate DIC in the heart (Tong et al., 2015; Yu et al., 2020). On

the other hand, TS-miRs such as miR-15a/16-1, Let-7, and miR-

34a counter cell proliferation and favor apoptosis (Zhang et al.,

2007; Lee and Dutta, 2009; Ventura and Jacks, 2009; Wang and

Wu, 2012). Some of them, such as miR-34a, may also exacerbate

cardiomyocyte apoptosis (Piegari et al., 2016, 2020). In the recent

decade, anti-oncomiRs and TS-miR mimics have emerged as

novel therapeutic strategies to normalize the gene regulatory

network and signaling pathways and reverse the phenotype in

FIGURE 1
Overview of potential miRNA involvement in DIC. DOX treatment increases apoptosis and ferroptosis in cardiomyocytes. Rather than oxidative
stress, DOX inhibition of Top2B and subsequent DNA damage response may be the primary contributor to cardiomyocyte death. miRNAs may aid in
the regulation of molecular pathways that connect DNA damage response and apoptosis/ferroptosis.
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TABLE 1 List of miRNAs potentially involved in DIC.

miRNA After DOX
treatment

Organism/cell Targets References

miR-34a Upregulated Rat cardiomyocytes SIRT1, Bcl-2, TP53, MDM4, YY1, MTA2,
HDAC1, c-Myc, n-Myc, CCND1, E2F,
CDK4, CDK6, MET

Bommer et al. (2007), Yamakuchi et al. (2008),
Kaller et al. (2011), Chen and Hu (2012),
Navarro and Lieberman (2015), Piegari et al.
(2016), Piegari et al. (2020)

miR-23a Upregulated Rat cardiomyocytes, primary neonatal
rat ventricular myocytes

PGC-1α, (Complexes with p53 to increase
miR-128 expression)

Li et al. (2015), Du et al. (2019)

miR-128 Upregulated Mouse cardiomyocytes SIRT1, PPAR-γ Ren et al. (2009), Zhang et al. (2021b)

miR-22 Upregulated Human colon cancer cells p21 Tsuchiya et al. (2011)

Mouse cardiomyocytes SIRT1 Xu et al. (2020), Wang R et al. (2021)

miR-146a Upregulated Mouse cardiomyocytes ErbB4, TAF9b, cyclophilin D Horie et al. (2010), Pan et al. (2019), Su et al.
(2021)

miR-451 Upregulated Mouse cardiomyocytes MO25 Chen et al. (2012), Li et al. (2019a)

miR-25 Upregulated Mouse cardiomyocytes, H9c2 rat
cardiomyoblasts

PTEN Li et al. (2020d)

miR-143 Upregulated Mouse cardiomyocytes AKT Li et al. (2020c)

miR-375 Upregulated Mouse cardiomyocytes, H9c2 rat
cardiomyoblasts, adult murine
cardiomyocytes

PDK1 Liu et al. (2020b)

miR-
495-3p

Downregulated Mouse cardiomyocytes PTEN Meng and Xu (2022)

miR-17-5p Downregulated Mouse cardiomyocytes PTEN Yu et al. (2020)

miR-21 Upregulated Mouse cardiomyocytes, H9c2 rat
cardiomyoblasts

PTEN, BTG2 Yang et al. (2014), Tong et al. (2015)

miR-208a Upregulated Mouse cardiomyocytes GATA-4 Tony et al. (2015)

Downregulated Rat cardiomyocytes Vacchi-Suzzi et al. (2012)

miR-
199a-3p

Downregulated Mouse cardiomyocytes, human-
induced pluripotent cell-derived
cardiomyocytes

GATA-4 Xia et al. (2021)

miR-
140-5p

Upregulated Rat/mouse cardiomyocytes, H9c2 rat
cardiomyoblasts

Nrf2, SIRT2 Zhao et al. (2018)

miR-195 Upregulated AC16 human cardiomyocytes Bcl-2, SIRT3 Zhang et al. (2018), Chen et al. (2019a)

miR-
330-5p

Upregulated Human-induced pluripotent cell-
derived cardiomyocytes

SIRT6, survivin, SERCA2a Han et al. (2020)

miR-30 Downregulated Adult rat ventricular cardiomyocytes,
H9c2 rat cardiomyoblasts, neonatal rat
cardiac cells

β1AR, β2AR, (Downregulates p53) Li et al. (2010), Roca-Alonso et al. (2015)

miR-30a Downregulated Rat cardiomyocytes Beclin-1 Lai et al. (2017), Zhang et al. (2021c)

miR-30e Downregulated Rat cardiomyocytes Beclin-1 Lai et al. (2017)

miR-
499-5p

Downregulated Mouse cardiomyocytes, H9c2 rat
cardiomyoblasts

p21, α-/β-isoforms of calcineurin subunits Wang et al. (2010), Wan et al. (2019)

miR-
532-3p

Upregulated Neonatal rat and mouse
cardiomyocytes

ARC Wang et al. (2015)

miR-140 Upregulated Neonatal rat cardiac cells Mfn1 Li et al. (2014a)

miR-147-y — Freshly isolated neonatal pig
cardiomyocytes

Raptor Gao et al. (2022)

miR-
152-3p

Downregulated H9c2 rat cardiomyoblasts, rat heart ETS1 Deng et al. (2022)

miR-6852 — A549 and H358 lung cancer cells CBS Wang et al. (2019)

miR-214 — Human and mouse brain TfR1, PVT1, p53 Lu et al. (2020)

miR-152 Downregulated Mouse cardiomyocytes Keap1, TfR1 Kindrat et al. (2016), Zhang et al. (2021a)

miR-7-5p Inhibited AC16 human cardiomyocytes, neonatal
rat ventricle cardiomyocytes

TfR1 Zhuang et al. (2021)
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cancer cells (Forterre et al., 2020). For example, the TS-miR miR-

34a is considered to be a potential tumor marker and a promising

cancer therapeutic candidate (Kalfert et al., 2020). Although the

phase 1 study of MRX34, a liposomal miR-34a mimic, in patients

with advanced solid tumors was closed early, miRNA-based gene

therapy provides an attractive anti-tumor approach for

integrated cancer therapy (Hong et al., 2020). If these

therapeutics were to be combined with DOX, specific anti-

cancer miRNAs might simultaneously exacerbate DIC. On the

other hand, miRNAs that may mitigate DIC can also enhance

cancer cell survival. Therefore, it is crucial to develop a highly

specific delivery system that minimizes unintentional miRNA

effects.

Conclusion

DNA damage response is increasingly recognized as the

essential pathogenic mechanism of DIC, which should be

reflected in our current understanding of the role of miRNAs.

Increasing evidence points to the hypothesis that excess

genotoxic stress in the heart due to DOX treatment may alter

miRNA expression to promote RCDs, mainly apoptosis and

ferroptosis. We have reviewed evidence suggesting miRNAs

may impact RCDs via directly modulating p53 dynamics and

various pro-survival signaling pathways (Figure 1; Table 1).

Counteracting RCD-promoting miRNA changes, therefore,

may prevent DIC. Certain aspects of this hypothesis, such as

the mutual regulation between p53 and miRNAs in DIC, still

require further experimental confirmation.

It is also necessary to highlight the effects of the same miRNA in

proliferating cancer cells and non-proliferating cardiomyocytes.

Although the role of miRNAs in carcinogenesis is relatively well

understood, the data about the DIC are inconsistent. Furthermore,

mice and rat models are currently predominant in the literature, so

confirming the findings in human patients would be ultimately

required for clinical translation.
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