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The tumor suppressor p53 is the central hub of a molecular network, which

controls cell proliferation and death, and also plays an important role in the

occurrence and development of liver fibrosis. The abundant post-translational

processing andmodification endow the functional diversity of p53. Considering

the relationship between p53 and liver fibrosis, drug intervention targeting

p53 or management of p53 regulation might be effective strategies to treat

liver fibrosis. Here, we systematically discuss the regulation of p53 in different

liver cells (hepatocytes, immune cells, HSCs, etc) and the role of p53 in the

development of liver fibrosis, and propose possible interventions to prevent the

pathogenic processes of liver fibrosis.
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Introduction

Liver fibrosis is a complex fibrogenic and inflammatory process, characterized by the

accumulation of extracellular matrix (ECM), which distorts the hepatic architecture, and

potentiates risks for cirrhosis and even hepatocellular carcinoma. Liver fibrosis generally

results from chronic liver-damaging factors such as virus, alcohol, nonalcoholic

steatohepatitis (NASH), cholestasis, autoimmune diseases (e.g., primary biliary

cirrhosis, primary sclerosing cholangitis), drugs, parasitic infections, and genetic

mutations (Acharya et al., 2021). All these hepatocellular injuries can activate the

fibrogenic pathways and hepatic stellate cells (HSCs), and promote the differentiation

of ECM-producing myofibroblasts (MFBs). HSCs are considered the main effector cells of

liver fibrosis, quiescent HSCs reside in the Disse space and are the lipid storage cells,

whereas the activation of HSCs involves a host of phenotypic changes, including loss of

lipid droplets, trans-differentiation into MFBs, and expression of contractile fibers.

Physiologically, ECM is part of the boundary between blood flow and parenchyma,

and fibrogenesis is a normal wound healing response. During the reparative process, ECM

is made up of glycoproteins, proteoglycans, and non-fibrogenic type IV collagen, these

components form a lattice-like matrix to support the proper arrangement and function of

liver cells. However, upon various injuries, the synthesis of ECM is accelerated, and the

non-fibrogenic type IV collagen is replaced by fibrogenic type I and II collagen, and the

change of composition and density also alters the structure of the matrix and disrupt the

normal structure of the liver (Bataller and Brenner, 2001). If the injury is acute or self-

limiting, fibrogenic changes are transient and reversible. Once the primary disease is

controlled or tissue damage is reduced, the activated HSCs can return to a quiescent state

(Hernandez-Gea and Friedman, 2011; Seki and Brenner, 2015). Actually, spontaneous
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regression of liver fibrosis can be observed on day 28 after carbon

tetrachloride (CCl4) intraperitoneally injections (Iredale et al.,

1998). However, if the inflammatory response and the injury

persist, the liver parenchyma is gradually replaced by scar tissues,

which may further develop into cirrhosis and liver failure (Aydin

and Akcali, 2018).

Currently, specific antifibrotic agents to treat liver fibrosis are

still not available albeit several novel agents have entered the pre-

clinical stage. Presently, clinical practice guidelines for liver

fibrosis are only etiology-specific, to prevent progression and

target the cause of liver injuries, such as antiviral drugs, alcohol

withdrawal, treatment of metabolic disorders, and weight loss

(Yamada et al., 2018; Damiris et al., 2020). The pathogenesis of

liver fibrosis is rather complex, which involves cell-cell

communication (e.g., hepatocytes and HSCs, liver

macrophages and HSCs), activation and modulation of

different signaling pathways, and immune system and tissue

repair pathways among others. Therefore, understanding the

mechanisms is fundamental for developing practicable drugs for

liver fibrosis.

Since advanced liver fibrosis has the potential to progress into

hepatocellular carcinoma, liver fibrosis is also considered a

precancerous pathology. P53 is a well-known tumor

suppressor gene, locates on human chromosome 17 with a

relative molecular mass of about 53 kDa. Recent studies

revealed that p53 also plays an important role in the

development and progression of fibrosis. P53 interacts with

fibrogenesis and fibrinolysis pathways, and mice with

p53 deficiency spontaneously develop into liver fibrosis,

suggesting that p53 is an important regulator of liver fibrosis.

P53 is required for the anti-fibrosis
process

P53 gene (TP53) is crucial for maintaining genome integrity

and intracellular homeostasis via initiating the survival process of

cells such as cell cycle arrest, apoptosis, senescence, DNA damage

and differentiation (Kanapathipillai, 2018; Lv et al., 2018).

P53 protein locates on human chromosome 17 with a relative

molecular mass of about 53 kDa. Physiologically, p53 protein is

unstable and maintained at low levels under the action of

negative regulatory factors in cells (Brooks and Gu, 2006;

Blandino and Di Agostino, 2018) (Figure 1). However,

TP53 is extremely susceptible to mutating all cancer types

(Zhu et al., 2015; Sabapathy and Lane, 2019), it undergoes a

variety of mutations such as point mutation, deletion, frameshift

and rearrangement (Wu et al., 2020). When TP53 is mutated, the

encoded P53 protein obtains a prolonged half-life and strong

stability, which continuously accumulates in the nucleus and

FIGURE 1
The function of p53 in physiological and pathological conditions of the liver. The p53 gene (TP53) is an important regulator in maintaining
cellular homeostasis and can control cellular survival processes such as cell cycle arrest, apoptosis, senescence, DNA damage and differentiation.
The effects of p53 on the liver are varied at different stages of liver injury. During the initial stage of p53 activation, it has anti-inflammatory and anti-
fibrotic properties. In the presence of chronic liver injury, p53 activation and senescence in HSCs promote HSC accumulation, leading to the
development of liver disease. Mutated p53 acquires carcinogenic properties, and contributes to the development of cancers.
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loses its monitoring functions (Itahana and Itahana, 2018).

Mutated p53 acquires carcinogenic properties, including cell

proliferation, chemoresistance, disruption of tissue structures,

promotion of migration, invasion and metastasis (Blandino and

Di Agostino, 2018).

The transforming growth factor beta (TGF-β) pathway

determines the synthesis and degradation of ECM during the

process of fibrosis (Muthuramalingam et al., 2020). TGF-β binds
to its receptors and recruits smooth muscle actin (Smad) and

P53 to form transcriptionally-active multi-protein complexes. It

is reported that increased p53S15 phosphorylation accelerates

renal damage and compromised organ function in

experimental renal injury animals (Muthuramalingam et al.,

2020). Tubular-specific p53 ablation or p53 inactivation in

mice prevents epithelial G2/M arrest, reduces the secretion of

fibrotic effectors, and attenuates the transition from acute to

chronic kidney injury (Yang et al., 2010). In the presence of

hypoxia, HIF-1α up-regulates p53 and activates TGF-β and

CTGF-mediated signaling pathways, leading to ECM

formation and renal fibrosis (Liu et al., 2019). Active TGF-β1
and p53 signaling pathways can be also observed during

myocardial fibrosis in the heart tissue of dilated

cardiomyopathy patients with ventricular tachycardia

(Haywood et al., 2020). The use of Bleomycin can aggravate

the process of pulmonary fibrosis by upregulating the expression

of P53 and P21 in A549 human alveolar epithelial cells

(Muthuramalingam et al., 2020). In response to silica,

upregulation of p53 activates the RMRP/miR122 signaling

pathway and promotes epithelial-mesenchymal transition

(EMT), leading to the progression of pulmonary fibrosis in

BALB/c mice (Li et al., 2021). Accordingly, the lung tissue

damage and collagen deposition in p53 deficient mice are

significantly reduced compared with wild-type mice,

suggesting that inhibition of p53 expression could delay the

progression of lung fibrosis (Wu et al., 2020).

The development of liver fibrosis attributes to HSC activation

as well as the pathological change of hepatocytes and liver

macrophages among others. Growing research suggests

p53 accumulation in hepatocytes of several fibrotic liver

diseases, such as NASH, viral hepatitis and primary biliary

cirrhosis. The expression of the pro-apoptotic protein p53 is

increased while anti-apoptotic protein Bcl-2 is inhibited with the

enhancement of the inflammatory response in non-alcoholic

fatty liver disease (NAFLD) patients (Panasiuk et al., 2006).

Overexpression of p53 can be observed in 35% of samples in

liver biopsies in patients with non-neoplastic liver disease,

steatohepatitis and chronic hepatitis (Akyol et al., 1999). A

study of p53 expression in the liver of patients with HCV

infection showed that p53 was overexpressed in 7 of

40 patients (17.5%), indicating that overexpression of p53 may

occur in the early stages of HCV-related liver disease (Rektorova

et al., 2003). Liver macrophages includes the resident Kupffer

cells and recruited liver macrophages. The crosstalk of

hepatocytes, macrophages and HSCs can be triggered and

facilitated by a range of chemical mediators, of which

transforming growth factor beta (TGF-β) plays a prominent

role (Poli, 2000).

Mutant p53R172H is associated with spontaneous liver

inflammation and steatosis when combined with the loss of

IL27 signaling (IL27RA), and mice develop microscopic and

macroscopic steatosis, hepatocyte necrosis, immune cell

infiltration and fibrosis with age (Dibra et al., 2016).

P53 contributes to fibrotic disease progression by

downregulating sirtuins in the liver, leading to telomere

dysfunction. By inhibiting p53, mitochondrial function and

liver fibrosis can be improved to some extent (Amano et al.,

2019). IL-10 gene therapy can alleviate liver fibrosis in rats upon

CCL4 injection by restoring HSC senescence in the fibrotic liver,

however, the effect is abrogated in p53 knockout rats, indicating

p53 is required for the anti-fibrosis effect of IL-10 (Guo et al.,

2021). Collectively, these studies suggested that the increase of

p53 in response to various liver stimulation might a stress

reaction to prevent disease progression, and p53 is involved

and required in the anti-fibrosis process.

P53 interacts with fibrosis signaling

The stressed environment of the liver often leads to the

activation of p53, resulting in changes in metabolic pathways and

inducing apoptosis (Charni et al., 2014). Mdm2 is a protein that

promotes p53 degradation, hepatocyte-specific Mdm2 knockout

mice present endogenous p53 protein accumulation, which

further upregulates connective tissue growth factor (CTGF)

and formation of spontaneous liver fibrosis (Kodama et al.,

2011). P14 Cdk1Liv−/− mice mimic the lack of division ability

of hepatocytes in chronic hepatitis C (CHC) patients, and

enhanced p53 signaling can be observed in the liver,

accompanied by the progression to liver inflammation and

fibrosis (Dewhurst et al., 2020). In methionine-and choline-

deficient diet-fed mice, serum IGF-1 levels decreased with the

progression of simple steatosis to NASH, and the expression of

p53 and its downstream target gene p21 in the liver also

increased, which might be involved in initiating cell apoptosis

and enhance clearance of damaged hepatocytes (Farrell et al.,

2009). P53 can directly regulate the expression of specific

microRNAs, the most significant of which is the miR-34 site,

including miR-34a, miR-34b, and miR-34c (Vousden and Prives,

2009). MiR-34a/SIRT1/p53 signaling pathway is activated in

hepatocytes of CCL4-induced fibrotic rats, leading to

hepatocyte apoptosis, thereby activating hematopoietic stem

cells and participating in the process of liver fibrosis (Tian

et al., 2016). Levels of collagen markers in serum and the

expression of p53 in liver tissue are positively correlated with

serum miR-34a in CHC patients (Li et al., 2020). Triclosan

induces liver injury in zebrafish by triggering the abnormal
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expression of miR-125 that is mediated by the MAPK/

p53 signaling pathway (Guo et al., 2021).

Monocytes and macrophages are known sources of TGF-β,
and upon chronic liver injury, the secretion of TGF-β is

significantly increased, which has a specific stimulatory effect

on collagen formation. Experiments demonstrate that Kupffer

cells isolated from alcoholic fibrosis rat liver express and release

TGF-β, and Smad and p53 protein complexes synergistically

activate TGF-β-induced transcription. P53 promotes the

activation of multiple TGF-β target genes during embryonic

development in Xenopus. In mammalian cells, TGF-β requires

p53 for complete transcriptional activation of CDK inhibitor

p21WAF1, and p53 deficient cells show impaired cellular

inhibitory responses to TGF-β signaling (Cordenonsi et al.,

2003). Loss of type II TGF-β receptor inactivated TGF-β
signaling synergizes with inactivated p53 to promote

hepatocellular carcinoma (Morris et al., 2012).

Hepatocyte apoptosis induced by p53 may lead to

inflammatory cell infiltration, liver cirrhosis, and even liver

cancer in the long term (Charni-Natan et al., 2019). In

primary hepatocytes, TGF-β treatment increased the

p53 and p66Shc signaling pathways, leading to excessive

accumulation of reactive oxygen species (ROS) and

apoptosis. The liver p53 and p66Shc signaling pathways are

enhanced in a mouse model of NASH, and p53 deletion can

inhibit the enhanced p66Shc signaling, reduce hepatic lipid

peroxidation and the number of apoptotic hepatocytes, and

improve the progression of nutritional steatohepatitis. The

expression levels of p53, p21, and p66Shc are significantly

elevated in liver specimens from NAFLD patients (Tomita

et al., 2012). In primary rat hepatocytes, TGF-β1 trans-

activates E2F-1, leads to Mdm-2 degradation and increases

the expression of p53, and the levels of BAX protein and

mRNA are significantly increased to induce hepatocyte

apoptosis (Sola et al., 2003). Activation of p53 and TGF-

β1/Smads signaling pathways leads to 10% fructose-induced

epithelial-mesenchymal transition in rat hepatocytes, leading

to liver fibrosis (Song et al., 2019).

P53 mediates the function of HSC

After an acute injury, activated HSCs can support hepatocyte

proliferation and tissue repair, and as injury continues, activated

HSCs migrate and accumulate at tissue repair sites, tans-

differentiated into MFBs to secrete large quantities of ECM

and initiate the liver fibrosis process (Bataller and Brenner,

2005; Passino et al., 2007). Therefore, inhibiting HSC

activation and inducing the cell death of HSC are equally

important in the anti-fibrosis process (Figure 2). Hepatocyte

death and inflammation are reduced after neddylation inhibition,

which may partially explain the reduction in HSC activation

(Author Anonymous., 1989). As aforementioned, p53 is an active

regulator of TGF-β1 secretion from hepatocytes and immune

cells, and the quantity and stability of p53 in HSCs are necessary

to block the development of fibrosis.

FIGURE 2
P53 in regulating different liver cells during the development of liver fibrosis. Hepatocytes, liver macrophages (Kupffer cells and recruited
monocyte-derived macrophages) secrete a variety of intracellular metabolites, cytokines, chemokines, reactive oxygen species, etc., and activate
HSCs through a variety of p53-related pathways. These pathological stimulations could promote the trans-differentiation of HSCs into MFBs, and
subsequently lead to liver fibrosis.
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Promoting apoptosis is a promising strategy for fibrosis (Xue

et al., 2022). As a well-known cancer suppressor, p53 is actively

involved in cell apoptosis, ferroptosis, and senescence of cells.

Activation of the p53/Bax/Bcl-2 signaling pathway promotes cell

apoptosis, inhibits cell proliferation and migration, and reduces

the production of ECM. In addition, increased p53 is associated

with ROS production, which might further enhance cell

apoptosis. P53 also ferroptosis to eliminate damaged cells (Wu

and Prives, 2018; Stein et al., 2019). BRD7 directly binds to the

N-terminal transactivation domain to promote mitochondrial

translocation of p53, which in turn forms a complex with

SLC25A28 to enhance the activity of SLC25A28, resulting in

abnormal accumulation of redox-active iron and electron

transfer chain hyperfunction, enhanced ferroptosis in HSCs

and improved the degree of liver fibrosis in mice (Zhang

et al., 2020). P53 is an upstream molecule that promotes

artemether-induced ferroptosis in HSCs, and inhibits HSC

activation accordingly. In CCL4-induced liver fibrosis,

artemether significantly downregulated many markers of HSC

activation, including α-SMA, Col1a1, and fibronectin, and

inhibited profibrotic receptors such as TGF-βR1, PDGF-βR
and epidermal growth factor receptor (Wang et al., 2019).

Senescent cells also contribute to the generation of ECM and

fibrotic scars during liver injury (Kim et al., 2013). In mice

lacking key regulators of aging, HSCs obtain a sustaining

proliferation and cause subsequent liver fibrosis.

Transcriptomic analysis of senescent and apoptotic cells

revealed that LY6D expression is enhanced in senescent cells

in a p53-dependent pattern (Hu et al., 2022). P53 promotes

senescence of activated HSCs during acute liver injury,

simultaneously, decreased ECM and downregulated ECM-

degrading enzymes can be observed. Natural killer (NK) cells

are reported to preferentially clear senescent HSCs in vitro and in

vivo, thereby protecting the liver from excessive fibrotic

responses (Krizhanovsky et al., 2008). P53 can restrict

malignant transformation by triggering cell-autonomous

programs of cell-cycle arrest and cellular senescence. It is

reported that ablation of a p53-dependent senescence program

in HSCs increases liver fibrosis and cirrhosis, and enhances the

progression to hepatocellular carcinoma (Lujambio et al., 2013).

Management of p53 is a promising
strategy for liver fibrosis

Currently, eliminating irritation or ameliorating the cause of

chronic liver diseases, such as the use of antiviral drugs, alcohol

withdrawal, treatment of fatty liver disease and weight loss, are

the common strategies for preventing liver fibrosis (Trautwein

et al., 2015). However, in cases of advanced fibrosis, liver

transplantation remains the only effective option (Taymouri

and Taheri, 2016). As p53 is required for the anti-fibrosis

process, management of p53 is a promising strategy.

Post-translational processing and modification determines

the stability and transcriptional activity of p53 protein, and

contribute to functional diversification. Phosphorylation is the

most common post-translational modification of p53, which

variously occurs at the N-terminus, DNA binding domain,

C-terminus of p53, etc. Phosphorylation enhances the

stabilization and transcriptional activity of p53 (Nguyen et al.,

2014; Lv et al., 2018). Ubiquitination of p53 is mediated by

E3 ubiquitin ligase (Cubillos-Rojas et al., 2017), ubiquitination

and degradation of p53 disrupt p53-dependent transcription, and

affect p53-promoted cell growth inhibition, G1 block and

apoptosis (Sun et al., 2009; Sun et al., 2011). Multiple lysines

at the carboxy terminus are major targets for the regulation of

p53 acetylation (Gu and Roeder, 1997; Vaziri et al., 2001).

Acetylation of p53 can increase the stability of p53 and play

an important role in the activation of downstream target genes.

Acetylated p53 (Ac-p53) improves the ability of p53 to bind to

DNA, regulates the separation and distribution of p53 between

the cytoplasm and nucleus, and promotes the recruitment of

coactivators (Oda et al., 2000; Hofmann et al., 2002).

P53 can inhibit cell proliferation or induce apoptosis in

tumor cells, as a key inhibitor of p53, Mdm2 has a high

affinity to p53 protein. Overexpression of Mdm2 effectively

inhibits the function of p53, and Mdm2 and its homolog

Mdm4 are commonly overexpressed in human tumors (Grier

et al., 2006). The use of potent and selective small molecule

Mdm2 antagonists can disrupt the p53-Mdm2 interaction and

activate the p53 pathway in cancer cells, resulting in cell cycle

arrest, apoptosis, and inhibition of human tumor growth in nude

mice (Vassilev et al., 2004). In addition to Mdm2, some ubiquitin

ligases such as PIRH2 and COP1 can also promote the

degradation of p53 (Collavin et al., 2010). Pifithrin -α, an

inhibitor of p53, can reduce the level of nuclear p53 and

reduce the activity of caspase3, thus alleviating apoptosis and

necrosis (Schafer et al., 2003). Ursodeoxycholic acid (UDCA)

specifically inhibits the E2F-1/p53 apoptosis pathway, reduces

the stability of p53, decreases NF-κB degradation and

downregulates Bcl-2, and alleviated TGF-β1-induced
hepatocyte apoptosis in rats (Sola et al., 2003).

Conclusion and perspectives

Here we reviewed the pathogenesis of liver fibrosis and the

research progress of tumor suppressor p53 in liver fibrosis.

During fibrosis, the interaction between parenchymal cells and

non-parenchymal cells, the activation of different immune cells

and signaling pathways, and the release of various inflammatory

mediators lead to the occurrence of inflammation, then activate

HSCs, lead to the accumulation of ECM, and fibrosis scarring.

P53 plays an inhibitory role in various tumor diseases, and

mutated or modified p53 is endowed with different functions.

In addition to its important role in the occurrence and
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development of tumors, p53 is involved in fibrosis of different

organs such as the liver, kidney, lung and heart, and management

of p53 is found to be beneficial for all kinds of fibrosis.

Despite significant progress in basic research on liver fibrosis,

the anti-fibrotic activity of many compounds has been

demonstrated in vitro and in animal models (Trautwein et al.,

2015), however, sensitive and specific biomarkers as non-invasive

diagnostic tools and effective anti-fibrosis drugs have not yet

been developed. The tumor suppressor 53 can regulate the

fibrogenic process and potentiate a promising perspective for

liver fibrosis. Each member of the P53 family has slightly

different roles in tumors, so whether they also play different

roles in the development of liver fibrosis is also worthy of further

study. P53 regulates lipid metabolism, inflammation, and adipose

tissue metabolism, indicating that metabolic-associated liver

fibrosis might be more specific for p53 regulation. Therefore,

a comprehensive understanding of the relationship between

p53 and liver fibrosis is of great significance for the

development of target drugs for the treatment of liver fibrosis.
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