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Exaggerated cold-induced vasoconstriction can precipitate a pathogenesis

called Raynaud’s phenomenon (RP). Interestingly, RP is significantly more

prevalent in females than age-matched men, highlighting the potential

implication of 17β-estradiol (E2) in the etio-pathogenesis of this disease.

Indeed, we have previously reported that E2 stimulates the expression of

vascular alpha 2C-adrenoceptors (α2C-AR), the sole mediator of cold-

induced constriction of cutaneous arterioles. This induced expression occurs

through the cyclic adenosinemonophosphate→ exchange protein activated by

cAMP→ Ras-related protein 1→ c-Jun N-terminal kinase→ activator protein-1

(cAMP/Epac/Rap/JNK/AP-1 pathway). On the basis that estrogen-induced rapid

cAMP accumulation and JNK activation occurs so rapidly we hypothesized that

a non-classic, plasmamembrane estrogen receptor was the mediator. We then

showed that an impermeable form of E2, namely E2:BSA, mimics E2 effects

suggesting a role for the membranous G-protein coupled estrogen receptor

(GPER) in E2-induced α2C-AR expression. Our current working hypothesis and

unpublished observations further cement this finding, as G1, a GPER agonist,

mimics while G15, a GPER antagonist, abrogates estrogen’s effect on the

expression of vascular α2C-AR. These, and other observations, highlight the

potential of GPER as a tractable target in the management of RP, particularly in

pre-menopausal women.
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Introduction

Cold-induced vasoconstriction is a normal physiological reflex

reaction taking place at the level of the extremities (Thompson-

Torgerson et al., 2007). It is precipitated when noradrenaline binds

to and activates α2C adrenergic receptors (α2C-AR) on cutaneous

arteriolar VSMCs (Chotani et al., 2000; Charkoudian, 2010). This

constriction results in blood redirection from the superficial

circulation to internal, more vital, body organs. However, when

this vasoconstriction becomes exceedingly exaggerated, a condition

termed Raynaud’s phenomenon (RP) could ensue (Herrick, 2012).

Patients with RP suffer from vasospastic attacks associated with

color change, puffiness, and ulcers at the level of the digits

(Gerbracht et al., 1985; Heidrich, 2010). More severe cases of RP

may cause necrosis and gangrene of the fingers (Saban et al., 1991).

Evidence linking estrogen to RP

Epidemiological studies show a much higher prevalence of RP

in females compared to age-matched males (Maricq et al., 1993;

Garner et al., 2015). The ratio of RP-affected premenopausal females

to affected age-matchedmalesmay reach 9:1 in some studies (Garner

et al., 2015; Fardoun et al., 2016). This reflects a gender-based, or

biased, factor in RP prevalence (Maricq et al., 1993). Indeed, it has

been reported that a female gender is among the risk factors of RP

(Garner et al., 2015). Particularly, premenopausal females are much

more affected than post-menopausal females (Greenstein et al.,

1996). Interestingly, post-menopausal females receiving unopposed

estrogen replacement therapy (ERT) are at a higher risk of RP than

post-menopausal women not receiving ERT (Mayes, 1999).

Furthermore, estrogen has been reported to increase vascular

responsiveness (Li et al., 2014), and that vascular responsiveness is

higher in young women or female rats of reproductive age as

compared to age-matched men or male rats, respectively (Li et al.,

2014). Moreover, supplementing male and female rats with estrogen

enhanced their vascular responsiveness (Li et al., 2014). Moreover, in

premenopausal females, noradrenaline-mediated vasoconstrictor

response is elevated during the mid-menstrual cycle (Chan et al.,

2001), a phase characterized by higher estrogen level compared to

other stages of the cycle. This vascular regulatory role of estrogen, in

addition to its thermoregulatory role (Charkoudian and Stachenfeld,

2016), highlight a potential involvement of estrogen in the etio-

pathogenesis of RP. These observations, along with other previously

discussed observations (Fardoun et al., 2016), suggest a positive

association between the female hormone, 17β-estradiol or

estrogen (E2), and RP (Flavahan, 2008).

Estrogen receptors in RP

Estrogen exerts its biological effects by activating the classical

genomic pathway or the nongenomic rapid signaling pathway

(Pedram et al., 2002). The genomic pathway is mediated by the

cytoplasmic/nuclear estrogen receptors, ERα and ERβ
(Bjornstrom and Sjoberg, 2005; Prossnitz and Maggiolini,

2009). These receptors act as ligand-activated transcription

factors and bind to specific response elements in the

promoters of target genes, thus regulating their transcription

(Bjornstrom and Sjoberg, 2005; Prossnitz and Maggiolini, 2009).

On the other hand, the rapid nongenomic effect is mediated via

the non-classical G-coupled protein estrogen receptor, GPER

(Losel and Wehling, 2003; Bjornstrom and Sjoberg, 2005;

Prossnitz and Maggiolini, 2009). This rapid estrogenic effect

may also induce a cascade of signal transduction pathways that

ultimately regulate gene transcription (Bjornstrom and Sjoberg,

2005). Indeed, GPER plays a role in the rapid transcription of

several genes (Kanda and Watanabe, 2003; Maggiolini et al.,

2004; Hsieh et al., 2007), further implicating GPER in non-

canonical estrogen-induced ER-mediated cellular responses.

We previously showed that estrogen potentiates cold-

induced vasoconstriction by spatially and functionally rescuing

α2C-AR (Eid et al., 2007), the sole mediator of cold-induced

vasoconstriction (Chotani et al., 2000). This estrogenic effect was

attenuated by the pharmacological inhibition of cytoplasmic

estrogen receptors (ER), ERα and ERβ. However, bovine

serum albumin-conjugated E2 (E2: BSA), a cell impermeable

form of E2, was able to induce α2C-AR expression (Eid et al.,

2007). Furthermore, the stimulation of early downstream players

of α2C-AR expression signaling pathway in response to estrogen

was rapid (Eid et al., 2007; Fardoun et al., 2020). Together, these

findings suggest that the membrane GPER mediates, at least

partly, estrogen-induced α2C-AR expression.

Based on the above, we hypothesized that GPER is the major

driver for estrogen’s effect on α2C-AR-induced constriction of

cutaneous arterioles. Indeed, our unpublished observations

further cement this finding, since we found that G1, a GPER

agonist, mimics while G15, a GPER antagonist, abrogates

estrogen’s effect on the expression of vascular α2C-AR. These,
and other observations, highlight the potential of GPER as a

tractable target in the management of RP, particularly in pre-

menopausal women.

Discussion

It is important to stress that the cellular model we use for our

studies is the optimal model. Isolating and culturing primary

vascular smooth muscle cells (VSMCs) from human arterioles

have always been elusive. However, we succeeded in optimizing

the isolation and culture conditions of such a cell line (Fardoun

et al., 2020),. These human VSMCs were extracted by non-

enzymatic sprouting method from dermal arterioles of a post-

circumcision tissue of a newborn boy. Cell purity was verified

with flow cytometry using VSMC-specific markers (Fardoun

et al., 2020). Only cells between passages 6 and 11 were used
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in the experiments as the expression and regulation of α2C-ARs is
similar among these passages. Studies that employ VSMCs

isolated from larger arteries or veins cannot be safely used to

project clinically or even physiologically relevant conclusions.

This is especially important since the vascular bed from which

VSMCs are extracted greatly affects their response to estrogen

(Dehaini et al., 2018). Thus, estrogen-induced signaling pathways

identified in macro VSMCs may not necessarily be valid in micro

VSMCs.

A substantial amount of evidence supports the protective role of

GPER in the vasculature and in cardiac function. Contextually,

GPER-deficient mice show altered cardiac structure and

compromised cardiac function (Meoli et al., 2014; Wang et al.,

2017), such as enlarged ventricles and impaired systolic and diastolic

functions (Delbeck et al., 2011; Wang et al., 2017). Furthermore,

GPER activation in hypertensive female mRen2. Lewis rat

ameliorated myocardial relaxation and reduced cardiac

hypertrophy (Jessup et al., 2010). In vasculature, GPER plays a

blood pressure lowering and anti-atherogenic role. Deletion of

GPER in female mice resulted in elevated blood pressure and

increased atherosclerosis progression (Martensson et al., 2009).

Treatment of postmenopausal mice with the synthetic small

molecule GPER-selective agonist G-1 attenuated atherosclerosis

(Meyer et al., 2015). In addition, intravenous infusion of G-1

resulted in decreased blood pressure of normotensive

Sprague–Dawley rats and in acute dilation of preconstricted

resistance arteries of the same animal model (Haas et al., 2009).

These results suggest a vasodilatory effect of GPER. In fact, genetic

linkage studies in humans showed that the GPER gene maps to

chromosome 7p22.3. Notably, this region is implicated in arterial

hypertension, suggesting a role of GPER in regulating blood pressure

(Lafferty et al., 2000).

In the context of α2C-AR expression and RP, we previously

showed that estrogen induced JNK activation within minutes

(Fardoun et al., 2020), suggesting that this activation is a rapid

non-genomic effect of estrogen. We also demonstrated that

estrogen potentiated cold-induced α2C-AR translocation via JNK

activation (Fardoun et al., 2020), suggesting that JNK involvement

in this translocation is a result of rapid nongenomic effect of

estrogen (Fardoun et al., 2020). Our unpublished observations

show that GPER activation induces JNK within the same

duration confirming that this estrogen-induced JNK activation is

mediated by GPER and thus it is indeed a nongenomic estrogenic

response. In addition, this result further confirms that this estrogen-

potentiated translocation of α2C-AR occurs via a GPER-activated

JNK-mediated mechanism. Interestingly, activation of GPER by its

agonist or by estrogen evokes vasoconstriction in basal renal

perfusion pressure (Kurt and Buyukafsar, 2013). However, this

vasoconstriction was mediated by a cascade of effectors including

p38-mitogen-activated protein kinase (p38-MAPK) and

extracellular signal-regulated kinase (ERK1/2) but not JNK (Kurt

and Buyukafsar, 2013). It is worth mentioning that GPERmediates

estrogen-induced recruitment of the AP-1 to different nucleosomes

in promoter of target genes, thus inducing their expression (Li et al.,

FIGURE 1
Activation of GPER by estrogen initiates a signaling cascade leading to α2C-AR upregulation. GPER mediates estrogen-induced elevation of
cAMP level. This elevation is sensed by cAMP downstream effector, Epac. Epac then switches on its target, Rap. Activated GTP-bound Rap induces
JNK, which in turn leads to the formation of activator protein (AP-1) by the dimerization of the c-Fos and c-Jun. AP-1 binds to AP-1 site in the α2C-AR
promoter, initiating its transcription. (α2C-AR, alpha 2C-adrenoceptors; cAMP, cyclic adenosine monophosphate; Epac, exchange proteins
activated by cAMP; Rap, Ras-related protein 1; JNK, c-Jun N-terminal kinase; AP-1, activator protein-1; GPER, G-protein coupled estrogen receptor;
VSMC, vascular smooth muscle cell).
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2010). This becomes more important in light of the fact that we

previously showed that estrogen acts through AP-1 to induce

expression of vascular α2C-AR (Fardoun et al., 2020) (Figure 1).

Collectively, these studies introduce GPER as a key player in the

signaling pathway mediating RP. Thus, despite the aforementioned

cardio- and vasculo-protective roles of GPER, its selective inhibition

appears to be a promising therapeutic approach to attenuate RP.

Further research is, however, warranted to ensure efficiency and

safety of this approach. This is especially important since most of

the studies above were either performed in vitro (human cells) or in

ex vivo animal vessels. Owing to the technical and ethical difficulty

of isolating and obtaining human arterioles that can be utilized for

functional (e.g. myography) studies, the results and hypothesis

above will need studies in human arteries before they can be

cemented.
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