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There has been an increased interest in pharmacokinetics and

pharmacodynamics (PKPD) of anti-tuberculosis drugs. A better

understanding of the relationship between drug exposure, antimicrobial kill

and acquired drug resistance is essential not only to optimize current treatment

regimens but also to design appropriately dosed regimens with new anti-

tuberculosis drugs. Although the interest in PKPD has resulted in an

increased number of studies, the actual bench-to-bedside translation is

somewhat limited. One of the reasons could be differences in

methodologies and outcome assessments that makes it difficult to compare

the studies. In this paper we summarize most relevant in vitro, in vivo, in silico

and human PKPD studies performed to optimize the drug dose and regimens

for treatment of tuberculosis. The in vitro assessment focuses on MIC

determination, static time-kill kinetics, and dynamic hollow fibre infection

models to investigate acquisition of resistance and killing of Mycobacterium

tuberculosis populations in various metabolic states. The in vivo assessment

focuses on the various animal models, routes of infection, PK at the site of

infection, PD read-outs, biomarkers and differences in treatment outcome

evaluation (relapse and death). For human PKPD we focus on early bactericidal

activity studies and inclusion of PK and therapeutic drug monitoring in clinical

trials. Modelling and simulation approaches that are used to evaluate and link

the different data types will be discussed. We also describe the concept of

different studies, study design, importance of uniform reporting including

microbiological and clinical outcome assessments, and modelling

approaches. We aim to encourage researchers to consider methods of

assessing and reporting PKPD of anti-tuberculosis drugs when designing
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studies. This will improve appropriate comparison between studies and

accelerate the progress in the field.
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tuberculosis, pharmacokinetics, pharmacodynamics, modeling and simulation, dose
optimization, anti-TB drugs

1 Introduction

After diagnosis, providing each tuberculosis (TB) patient with

the right drugs at the right dose for the right duration in the right

combination is important to effectively reduce transmission, prevent

relapse and control the risk of development of drug resistance

(Alffenaar et al., 2022). Following other fields in infectious

diseases there has been an increased interest in pharmacokinetics

and pharmacodynamics (PKPD) of anti-tuberculosis drugs. A better

understanding of the relationship between drug exposure and

antimicrobial kill and acquired drug resistance is essential not

only to optimize current standard of care regimen but also to

design more appropriate dosing regimens for new and

repurposed drugs with anti-tuberculosis activity (Peloquin and

Davies, 2021). PKPD studies can help to determine which drug

exposure indices is best associated with antimicrobial kill as well as

suppression of resistance development during the course of therapy.

As for any antimicrobial drugs the drug exposure indices associated

with the response ofMycobacterium tuberculosis to the drug are the

area under the unbound drug concentration-time curve over the

minimal inhibitory concentration (fAUC/MIC), the maximum

concentration over the MIC (Cmax/MIC) and the time the

unbound drug concentration exceeds the MIC (%fT > MIC).

There is a broad range in PKPD studies which are ideally

complementary in providing relevant data to optimize the drug

dose and regimens for treatment of TB.

In vitro studies are focused on MIC determination, static

time-kill kinetics and/or dynamic models that allow to mimic a

pharmacokinetic profile in vitro such as the hollow fibre infection

model (Gumbo and Alffenaar, 2018). These models can include

various metabolic populations and strains of Mycobacterium

tuberculosis (Goossens et al., 2021). Besides assisting in drug

development they are able to mimic specific real-life conditions

to explore effects on treatment response and acquired drug

resistance (Srivastava et al., 2011a). In vivo studies able to

reflect the pathophysiological conditions of the TB infections

study the effect of different drug dosages—exposure on treatment

outcome including relapse and drug resistance. Human PKPD is

characterized in phase 2a early bactericidal activity (EBA) studies

and should be part of Phase 2b-3 studies to further refine the

understanding of the exposure-response relationship (Martson

et al., 2021). In addition to clinical trials, studies under

operational research conditions are relevant to capture drug

dosing, exposure, and treatment response under programmatic

care (Alffenaar et al., 2020). Modelling and simulation

approaches are very helpful to 1) evaluate the population PK

of a TB drug in a population of interest, 2) characterize the

exposure-response relationship of TB drugs, 3) elucidate

exposure-safety profiles, and 4) can link the data from pre-

clinical and clinical studies to better understand the drug

exposure effect relationship (Märtson et al., 2020).

Although the interest in PKPD has resulted in an increased

number of PKPD studies, the actual bench-to-bedside translation

is somewhat limited. Firstly, current regimens have by necessity

been developed using “trial and error” approaches. This resulted

in practically relevant treatment regimens that have stood the test

of time but did not create data that would assist in validating

today’s new preclinical methods that must await further large

trials in humans that will determine the value of the predictions

made. Secondly, differences in methodologies and outcome

assessments make it difficult to compare the studies and link

preclinical finding to patient outcomes, which are further

complicated by organizational gaps that preclude consequent

utilization of pre-clinical data to optimally inform clinical trials.

For instance, preclinical combination experiments are carried out

with different combination partner drugs than those that are

used in clinical trials. Thirdly, costs of phase 3 clinical trials as

well as uptake of trials results in guidelines and subsequent

implementation in practice challenge the stakeholders’ capacity.

To improve the synthesis of PKPD information from

preclinical and clinical PKPD studies this review aims to

describe the concept of different studies, optimized study

design considering drug properties and study aims,

importance of uniform reporting including microbiological

and clinical outcome assessment, and possible modelling

parameters. The information on uniformed methods of

assessing and reporting PK/PD parameters of anti-tuberculosis

drugs should accelerate the translation to clinical practice.

2 Materials and methods

A non-systematic review of English literature was performed

in PubMed and Web of Science. Keywords included in vivo,

in vitro, early bactericidal activity, pharmacokinetics,

pharmacodynamics, tuberculosis, murine model,

pharmacometrics, limited sampling. Information retrieved was

summarized to describe the concept of different studies and

recommendations were provided on optimized study design

considering drug properties and study aims, importance of

uniform reporting including microbiological and clinical

outcome assessment, and possible modelling parameters.
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3 In vitro pharmacokinetics/
pharmacodynamics

Understanding the antimicrobial activity spectrum of the

drug is the first key step in preclinical PKPD. Using wide

concentration range MIC experiments are performed for

which broth micro-dilution is most commonly used and

recommended method (Wayne, 2018). By using a broad

variety of clinical strains, gathered from around the world, a

view on the MIC distribution is obtained. The next step involves

the determination of the efficacy and potency of the extent of the

drug by performing time-kill kinetic studies, either at static

concentrations in the test-tubes or fluctuating concentrations

using dynamic models. (de Steenwinkel et al., 2010) In the static

time-kill (STK) studies the drug concentration remains fixed over

time and the bacterial response are measured in terms change on

the optical density (ODA600) and/or colony forming units (CFU).

The STK studies are commonly performed using the actively

replicating logarithmic phase bacteria in cultures and based on

the extent of kill drugs are commonly classified as bactericidal or

bacteriostatic (Wald-Dickler et al., 2018).

However, in a lung lesion, M. tuberculosis can be present

under different metabolic states (Mitchison, 1979), such as

actively replicating extracellular bacteria, intracellular

bacteria inside the macrophage, slowly replicating bacteria

under acidic condition in the caseum, or non-replicating

persisters for which the exact location is hard to determine.

Since in the STK studies the drug concentrations do not

change over time as it is expected in vivo, dynamic models

had to be developed to allow for drug concentrations to be

actively changed over time. One such dynamic model is the

hollow fibre model system of tuberculosis (HFS-TB) (Gumbo

et al., 2004; Gumbo et al., 2005; Gumbo et al., 2007a; Gumbo

et al., 2007b; Srivastava and Gumbo, 2012). The HFS-TB

consist of a cartridge housing multiple hollow fiber

capillary tubes with pore size such that bacteria cannot

cross the membranes. This creates two compartments in

the cartridge; an intra-capillary compartment through

which drug and nutrients in the media flows across the

membrane, and an extra-capillary compartment where the

bacteria come into contact with drug containing media. The

drug is infused into the central compartment of the HFS-TB

via programable syringe pump, and the time-to-maximum

concentration (Tmax) can be varied to mimic human-like PK

as well as the dosing frequency. Further, the fresh media is

continuously infused into the systems using peristaltic pumps

and at the same time the media coming out of the cartridge is

pumped out using a second set of peristaltic pumps. The

dilution rate, using the peristaltic pumps, determines the half-

life of the drug in the HFS-TB. Multiple half-lives of the drugs

in a combination regimen can be achieved in the HFS-TB, by

adjusting the parameters on the programable syringe pumps

(Srivastava et al., 2011b; Deshpande et al., 2016). Another

dynamic model was developed making use of a central

compartment containing a liquid bacteria culture. In the

model developed by Vaddady et al. (2010), new medium

and/or drug in increasing concentration is added to the

central compartment while removing the medium with the

drugs is performed via a filter leaving the bacteria in place. In

both models a sampling port is available to monitor bacterial

count and drug concentration over 24 h to validate the

concentration-time profile of the drugs in the central

compartment, inside the cells (in case of studying

intracellular metabolic population), as well as intrabacterial

drug concentrations (Vaddady et al., 2010; Deshpande et al.,

2019b). Thus, the dynamic models offer an advantage over the

STK experiments in terms of precise control of drug

concentration-time profiles to which M. tuberculosis is

exposed as well as longer study duration, this permits to

study development of drug resistance during the therapy.

However, the dynamic models are limited by relatively low

through-put and often unavailable human PK data to set the

model parameters correctly.

Given that physical barriers to drug penetration to the

anatomical sites (Dheda et al., 2018) and physiological

conditions (e.g., pH; attributed to activity of pyrazinamide

(McDERMOTT and TOMPSETT, 1954) and recently

contradicted (Gumbo et al., 2009; Srivastava et al., 2016b;

Lanoix et al., 2016) can affect the efficacy of the drug, the

HFS-TB can also be used the PKPD relationship against

different M. tuberculosis metabolic populations (Gumbo et al.,

2009; Srivastava et al., 2011b; Srivastava et al., 2016b; Srivastava

et al., 2021b; Ruth et al., 2022). Moreover, it is the non-protein

bound (free) drug concentration that exerts the antimicrobial

effect. Although highly protein bound drugs may have low

unbound concentrations in plasma, accumulation of these

drugs at the site of infection as well as intracellularly results

in concentrations which are high enough to kill M. tuberculosis.

(Srivastava et al., 2020) The HFS-TB offers a controlled

environment where the hollow fiber membrane material can

be changed as per the drugs physicochemical properties and the

protein content in the media can be adjusted to minimize the

drug binding. Thus, the concentration used in each HFS-TB

experiments represent the free drug concentrations. This means

that after appropriate adjustments even highly protein bound

drugs like bedaquiline can be successfully studied in the HFS-TB.

Finally, to determine the optimal clinical dose to achieve

the HFS-TB PK/PD parameter optimized drug exposure and

determine the susceptibility breakpoint, in silico Monte-Carlo

clinical trial simulations are used (D’Argenio and Schumitzky,

1997; D’Argenio et al., 2009). A systemic analysis of the

published HFS-TB studies concluded that this dynamic

model in combination with in silico simulations could

predict the clinical outcomes of dose optimization and

target attainment in combination regimens fairly accurately

(Cavaleri and Manolis, 2015; Chilukuri et al., 2015) and these
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findings were also included in the recently published WHO

technical report (World Health Organization, 2018) as well as

clinical standard for tuberculosis (Alffenaar et al., 2022). In

summary (Table 1), dynamic pre-clinical models are useful in

the tuberculosis drug development space with the ability to

inform future clinical trial design by providing PKPD based

proof-of-concept for developing drugs as a single agent or in

combination where each drug dose is selected to achieve the

pharmacodynamic target (Cmax/MIC, AUC/MIC, %T > MIC)

of the drugs in the regimen. In addition, data from static and

dynamic hollow-fibre infection models can be used to develop

model-based PKPD relationships linked to human population

PK models to support dose selection for first-in-man studies

and/or selection of optimized drug combinations. (Wicha

et al., 2018)

4 In vivo pharmacokinetics/
pharmacodynamics

In vivo studies can be performed in sequentially or

simultaneously with in vitro studies. A reasonable strategy

that considers animal welfare, minimizes complexity and

saves cost is to move only compounds with good in vitro

activity further to in vivo studies (Nuermberger, 2017).

Relapse studies in mice, requiring sacrificing the animals are

often performed later while in vivo PKPD with biomarkers can

be run in parallel with in vitro studies (Margaryan et al., 2022).

The complexity and costs of in vivo studies are the main reason

to continue only with the compounds that show good activity in

the in vitro analysis. The in vivo models range from the high-

throughput, low-cost zebrafish, via the medium-throughput,

medium cost mice, to the very low-throughput and expensive

non-humane primates (Williams and Orme, 2016). Within this

proposal for standardization of methodology, we have chosen

only to address the murine models of the TB and the possible

role they can play within the PK/PD evaluation. This is done,

because the more rudimental in vivo models such as the

(embryo) zebrafish can provide different steady state

exposure results, but the limited duration of the experiments

and the completely different PK, makes these models

complementary to the mouse TB models (Ali et al., 2011)

but not the ideal model for PKPD analysis, which is the

focus of this overview.

TABLE 1 HFS-TB derived drug exposure target and susceptibility breakpoint MIC of drugs with antimycobacterial activity.

Drug PK/PD target Susceptibility
breakpoint (mg/L)

References

Amikacin Cmax/MIC >10.13 Srivastava et al. (2016a)

Cefazolin %T > MIC = 46.76 1–2 Srivastava et al. (2021c)

Cefdinir AUC0-24/MIC = 578.86 Srivastava et al. (2021d)

Ceftriaxone %T > MIC = 68 Srivastava et al. (2020)

Cycloserine %T > MIC = 30 Deshpande et al. (2018a)

Delamanid AUC0-24/MIC = 195 Mallikaarjun et al. (2021)

Ertapenem %T > MIC >40 2 van Rijn et al. (2017)

Ethambutol Cmax/MIC >0.51 4 Srivastava et al. (2010)

Ethionamide AUC0-24/MIC >56.2 2.5 Deshpande et al. (2018c)

Faropenem %T > MIC >62 Deshpande et al. (2016)

Gatifloxacin AUC0-24/MIC >184 0.5 Deshpande et al. (2018d)

Isoniazid AUC0-24/MIC >567 0.0312 Gumbo et al. (2007c)

Levofloxacin AUC0-24/MIC >146 0.5 Deshpande et al. (2018b)

Linezolid AUC0-24/MIC >119 2 Srivastava et al. (2017)

Minocycline AUC0-24/MIC = 71.58 8 Deshpande et al. (2019b)

Moxifloxacin AUC0-24/MIC >56 1 Gumbo et al. (2004)

Penicillin %T > MIC >65 Deshpande et al. (2018e)

Pyrazinamide AUC0-24/MIC >209 50 Gumbo et al. (2009)

Rifampin AUC0-24/MIC >1,360 0.0625 (Gumbo et al., 2007a; Gumbo, 2010)

Tedizolid AUC0-24/MIC >200 0.5 Srivastava et al. (2018)

Thioridazine AUC0-24/MIC = 50.53 Musuka et al. (2013)

Tigecycline AUC0-24/MIC >42.3 Deshpande et al. (2019a)

Vancomycin AUC0-24/MIC = 2,954 Srivastava et al. (2021a)

Drugs are arranged in alphabetical order. MIC, minimum inhibitory concentration; Cmax, peak concentration; AUC, area under the concentration-time curve; %T >MIC, percentage of

time drug concentration persist above MIC.
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First of all, it should be clear that mice and man are very

different and that PKPD findings in mice should consider the

transitional value in the preclinical drug-development. Within

murine models of TB, we can study the PKPD relationship and

assess the dose- or time dependent nature of the PKPD

relationship trough dose fractionation studies. Essential in

these studies is that besides dose, the actual drug

concentration, preferably at the site of infection, is considered.

Measuring the concentration of the (parent drug) compound and

the (active) metabolites, via a chromatography based

bioanalytical methods, the contribution of PKPD parameters

can be made.

Preclinical murine TB models come in many different forms.

The route of infection (e.g., intravenous, inhalation, or

instillation) (de Steenwinkel et al., 2011), the inoculum size

(de Steenwinkel et al., 2011), the mycobacterial strain used

(Mourik et al., 2017), the pathology of TB in the specific

model (Nuermberger, 2017), the treatment-free period before

starting therapy and the mouse strain used, are all features that

can be changed and tweaked to provide different models. There is

no such thing as ‘the best murine TB model’, all models come

with their own advantages and disadvantages. Thus, it seems

reasonable to combine a set of preclinical models to inform the

design of clinical trials. Broadly speaking there are acute, chronic

and latent murine TB models to assess the effect of a treatment

regimen. Acute models are informative on EBA and PKPD

relationship, whereas the more chronic models assess the

efficacy of therapy (prevention of relapse). Models for latent

TB fall outside the scope of this paper (Zhang et al., 2011).

Regarding the PD (effect side) of the PKPD relationship,

there are different outcome parameters that can be used.

Traditionally, the number of colony forming units (CFU) are

counted to the determine the mycobacterial load at specific that

time-points and used as a biomarker to assess the PD in different

organs. PD can also be assessed by time-to-positivity (TTP)

measurement, using liquid cultures and automated hourly

detection of growth or molecular load determination targeting

rRNA, as read-out (de Knegt et al., 2017). Irrespectively of the

method used to determine the PD or the type of animal model

used, determination of the PK is essential to assess the PK/PD

and thus the ability link the different phases of drug-

development.

In order to conduct an adequate PKPD analysis using the in

vivo experimental data, there should be gained insight in the

exposure of the parent compound and the different metabolites

and subsequently the contribution to the effect of these

metabolites should be assessed. Although activity of

metabolites has been tested in vitro experiments, the in vivo

studies add additional information as in these studies activity of

metabolites is included by nature. Given the different mode of

action of the different compounds, the different metabolic states

within which the different Mycobacteria are and the different

immunological reactions to this infection, the diversity and

complexity of these in vivo models are one step closer to that

of TB patients. Bundling of the information of the different in

vivo models in a model-based analysis is essential to strengthen

the translational value of the different in vivomodels (Margaryan

et al., 2022; Mudde et al., 2022). In addition, the different animal

models contribute with different information with respect to

bactericidal and sterilizing drug efficacy.

Ideally, the outcomes of PKPD in vivo TB studies are

informative in the way that human efficacy can be predicted

for different drugs and regimens using model-based approaches

for PKPD where information from human PK studies is linked to

pre-clinical information about PKPD relationships and drug

combinations (Wicha et al., 2018; Susanto et al., 2020; Mudde

et al., 2022). This phase of the pipeline forms an essential

biological bottleneck to increase the success rate of

compounds or regimens to be entering the clinical development.

5 In human pharmacokinetics/
pharmacodynamics: Early
bactericidal activity

Early bactericidal activity (EBA) studies have been

conducted since the landmark publication of Jindani et al.

(1980), who tested a multitude of then available single agents

and combinations over the first 14 days of treatment in small

numbers of patients (Jindani et al., 1980). This study

established EBA, defined as the fall in colony forming units

(CFU) per ml of sputum over time, as a new method to

quantify early drug effects. It also provided new insights

into the clinical use of agents. Isoniazid (INH), for

instance, was clearly the strongest drug in the first 2 days

of treatment. Any treatment containing INH reduced the

bacterial burden by 95% in 2 days, thereby lowering the

risk of transmission (Mitchison, 2000). Its strong 2-day

EBA is believed to make INH a good protector of

companion drugs from acquisition of resistance because it

can quickly eradicate any fast-growing mutants escaping

control by other agents in a regimen (Mitchison, 2000).

It is generally accepted that patients with active pulmonary

TB harbor a spectrum of bacterial phenotypes ranging from

metabolically very active, fast growing, extracellular bacteria

expectorated in sputum to more dormant, intracellular

bacteria situated within granulomatous lesions. This requires

different antibiotics with complementary characteristics to be

part of a successful treatment regimen that can kill all these

phenotypes (Dartois and Rubin, 2022). In the absence of the

preclinical tools that we have available today, it was speculated at

the time that strong 2-day activity would predestine a drug for

killing mainly active, extracellular bacteria in the early stages of

treatment, while other agents with more notable late EBA, such

as rifampicin and pyrazinamide, would be sterilizing and

contribute to curing patients (Mitchison, 2000).
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The role of 14-day EBA studies in the clinical evaluation of

novel antibiotics today is to determine whether a drug is active in

humans, and to establish relationships between dose, drug

exposure and bactericidal activity in small groups of patients

(Diacon and Donald, 2014). EBA studies also give an early

indication of safety and tolerability of new drugs and allow an

indication of the combined effect of drugs given together.

Fourteen days of monotherapy has been shown not to cause

clinically relevant resistance (Kayigire et al., 2017). Extended

EBA studies with strong combinations are limited by the reduced

availability of viable bacteria for drug effect quantification. Even

though all agents of our current first-line standard treatment

regimens have significant 14-day activity it is not clear if and how

EBA studies can predict the efficacy of combination regimens, at

least not with the current standard biomarkers CFU and TTP.

Quantification of viable bacteria by CFU counting is hazardous,

laborious, costly and relatively slow. Besides the recent introduction

of TTP in liquid media, which is easier to standardize and more

sensitive than CFU (Diacon et al., 2012b), a range of novel, not

culture-based biomarkers are currently under investigation to better

understand early drug effects (Heyckendorf et al., 2022). Analysis of

EBA trials has historically been very diverse and not standardized,

which has made it difficult to compare study results. Today, linking

dosage, PK and PD data from multiple biomarkers creates an

abundance of data and requires innovative analysis techniques.

Accordingly, a novel, model-based analysis methodology for

EBA trials has recently been developed. Traditionally EBA was

assessed as the observed difference in log10 CFU per ml of sputum

between two study days (Jindani et al., 1980). Most commonly

reported are 0-2-, 2-14- and 0–14-day intervals (Chan et al., 1992;

Jindani et al., 1980; Sirgel et al., 1993). With liquid cultures, EBA is

expressed as an increase in TTP over the same intervals (Diacon

et al., 2012a). TTP is nowadays the preferred primary variable for

EBA, with CFU as the secondary variable. Although CFU and TTP

are highly correlated (Diacon et al., 2012b), EBA assessed with TTP

can be followed for longer than with CFU. This is due to CFU only

quantifying multiplying bacteria whereas TTP is thought to, in

addition, capture the metabolism of non-growing bacteria and

having a lower limit of detection.

Human studies are costly and thus missing information on an

individual level through contamination or drop-out of patients can

critically reduce the available information for calculating EBA from

groups as small as 12–15 patients. Non-linear mixed effects

modeling, in contrast, uses data pooled from all subjects, enabling

all observations to contribute to the mathematical model. Missing

information can be optimally handled. An innovative, standardized

and model-based analysis methodology for analyzing EBA trials,

accounting for known co-variates, has recently been developed and

was used in the analysis of the EBA trial by De Jager (de Jager et al.,

2022). From the model, predicted EBA intervals can be predicted,

both on an individual level and population level but this is seen as a

post hoc step in the approach. Instead, treatment differences for an

EBA design with different regimens are evaluated on the model

parameter TTP slope which is the parameter that describes the

decline in TTP over time. The TTP slope can take on any function

where a mono-exponential decline is the simplest. In order to assess

the difference between two regimens, themodel with no difference in

TTP slope is compared for statistical difference to a model where

there is a difference in slope between two regimen arms. This can be

done for two arms or several arms. In addition to a point estimate in

TTP, an imprecision in the EBA difference is obtained. The TTP

model approach is therefore also suitable for assessment of efficacy in

longer studies, for example seamless and adaptive Phase 2B/C studies

where an early and informed decision is needed for potentially

dropping arms in a study.

The standardized EBA modeling approach is also suitable for a

PKPD approach where a PK summary variable such as AUC or

Cmax is used as a covariate. If there is high between-patient variability

in PK, patients might be exposed to the same drug concentration

even if they were given different doses or they may be exposed to

different drug concentrations while receiving the same dose.

Neglecting to collect PK data for such a drug in an EBA study

may result in no difference in EBA if only the dose instead of drug

exposure is used to evaluate differences in EBA. (Diacon et al., 2011).

Optimization of dosage for a single drug has been done for

rifampicin where different monotherapy doses were studied over a

14-day period in order to determine the PK and assess EBA (Boeree

et al., 2017; Svensson et al., 2018a; Svensson et al., 2018b). The dose

optimization was mainly driven by the lack of PKPD evaluation of

rifampicin during the clinical drug development. (van Ingen et al.,

2011) However, EBA studies with regimens in addition to

monotherapy arms, rather than only monotherapies are

warranted in order to speed up clinical trial development as they

are able to demonstrate synergistic effect between drugs which

would otherwise go unnoticed (Diacon et al., 2012a). As such,

the dose optimization and clinical trial prediction using

preclinical information should rely on model-informed drug

discovery and development (MID3)methods (Marshall et al., 2016).

6 Clinical pharmacokinetics/
pharmacodynamics and therapeutic
drug monitoring

In addition to the EBA studies there are several studies where

PK/PD is used to answer specific questions related to drug exposure

and treatment response. Clinical observations often provide the

rationale for these studies and relate to treatment problems like slow

response, relapse and acquired resistance. As in the clinical setting

the source of these problems can bemultifactorial, thus the design of

a study needs to accommodate for all the potential sources that may

contribute to the problem. When evaluating response to treatment

low drug concentrations, drug resistance, non-adherence, and poor

clinical condition and co-morbidities of the patient at the start of

treatment all can explain the slow response (Alffenaar et al., 2022).

Confounding factors can either be listed as exclusion criteria or can
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be appropriately quantified and documented to be included in the

analysis of the study. Studies can be of observational nature

explaining a specific outcome based on PK/PD or can be

interventional of nature. In the latter one, dose optimization

measures like dose escalation are studied and linked to the

treatment outcome. In preparing both types of studies it is

important to make use of available PK/PD data in conjunction

with relevant clinical and microbiological information to guide a

sample size calculation (Martson et al., 2020).

When and how PK should be assessed is guided by the

hypothesis of the study or clinical question in routine care. For

example, early assessment of PK is important when time to sputum

culture conversion is assessed but also when studying acquired

resistance. When the bacterial load is high, and bacteria are actively

replicating there is a higher chance of development of resistance. In

routine care, therapeutic drug monitoring (TDM) is used to assess

the drug exposure and adjust the dose in individual patients.

TDM is a strategy that allows for dose individualization based

on the measurement of drug concentrations in order to improve the

efficacy of the treatment. The procedure includes identification of a

patient that potentially benefits from TDM, collection of the

appropriate timed samples to estimate the drug exposure, sample

analysis, reporting and interpretation of the result, subsequent action

which can be dose increase, decrease or decision to maintain the

dose the same. Appropriate follow-up TDM needs to be scheduled

to evaluate if the dose change has resulted in achieving the

predefined target concentration. As the intention of TDM is to

intervene where needed, the TDM cycle needs to be completed in a

time manner. In TDM, the PK/PD index is compared to an

established target where the dose can be increased if the PK/PD

index is lower than the target or increased if the PK/PD index is

higher than the target. (Alffenaar et al., 2022) From a traditional

TDM point of view a sample collected 2 h and 6 h after drug intake

are the relevant measures of drug exposure. (Alsultan and Peloquin,

2014) Using a sample collected 2rh after drug intake as surrogate for

Cmax is not sufficient as several studies have demonstrated that the

time the Cmax is achieved has a range of several hours (Sturkenboom

et al., 2016). For example, the observed median Tmax for rifampicin

was 2.2 h, ranging from 0.4 h to 5.7 h, underpinning that multiple

samples are required to capture the Cmax (Sturkenboom et al., 2015).

Model-informed precision dosing (MIPD) is an approach where

information from a population pharmacokinetic (POPPK) or

physiology-based pharmacokinetic (PBPK) model in combination

with individually observed plasma drug concentrations is utilized to

forecast the dose that leads to the most optimal exposure in an

individual patient (Darwich et al., 2017; Wicha et al., 2021) Further,

MIPD can incorporate not only PK but also efficacy and safety aspects

in the individual dose prediction, i.e. predict the dose given not only a

POPPK or PBPK model, but also given PKPDmodels. When MIPD

is used to perform TDM the drug exposure measures like AUC, Cmax

and Cmin are relevant to calculate AUC/MIC, Cmax/MIC and %T >
MIC. To be able to calculate these appropriate sampling schedules

have to be designed. For the assessment of the AUCmultiple samples

are required. To adequately calculate an AUC using non-

compartmental analysis 6-8 samples are required during the

dosing interval (Gillespie, 1991; Gabrielsson and Weiner, 2012).

Using a MIPD approach, flexible and different sampling schemes

can be used and different exposure indicines (AUC, Cmax, drug

concentration). When using population PK models in

combination with a limited sampling strategy, 1-3 samples result

in adequate accuracy of the AUC calculation (Sturkenboom et al.,

2021). It is especially useful for drugs that exhibits large variability in

exposure between occasions where it correctly can handle the

between-occasion variability in exposure (Svensson et al., 2019a;

Keutzer and Simonsson, 2020a). The MIPD approach can also be

incorporated into mobile health solutions (Keutzer and Simonsson,

2020b; Keutzer et al., 2020).

The opportunities in routine care to assess the PD are often

limited as bacteriological read outs are collected less frequently as in

EBA studies. PD include sputum smear and sputum culture. In high

incidence setting sputum is performed at start of treatment, after

2 months and close to the end of treatment. If sputum culture is

performed, it is often limited to start of treatment and occasionally

during treatment when suboptimal treatment is suspected. This

limits the opportunity to assess the effect of differences in drug

exposure on treatment response. The most frequently used PD

endpoints are sputum culture conversion after 2 months of

treatment (drug susceptible TB), and 6 months of treatment (drug

resistant TB). Time to sputum conversion is relevant as it presents the

same datamore continuously than the fixed time points.When using

the TTP, the bacterial load can be accounted for as well. The end of

treatment is used to quantify treatment outcome (cure, failure,

relapse, death, lost to follow-up). Subsequently the PK/PD

parameter, taking into account drug exposure and pathogen

susceptibility, are then correlated with the outcome measures. The

simplest analysis includes the analysis of differences in treatment

response between the different quartiles of drug exposures. Due to the

limited sample size a statistically significant difference between the

first and fourth quartile is often considered a proof of principle. More

sophisticated regression methods like classification and regression

tree analysis (CART) allow for the determination of thresholds

associated with better (or worse) treatment outcomes (Zheng

et al., 2021, 2022). It is important to account for differences in

patient characteristics as earlier work identified a hard-to-treat

patient phenotype which showed substantial lower cure rate and

which may require longer treatment time compared to the easy to

treat patients (Imperial et al., 2018).

Implementing TDM or MIPD poses significant challenges for

programmatic care as measurements of drug concentrations need to

be made available in a timely manner (Alffenaar et al., 2020). Multi-

analyte assays are likely to be the most cost-effective approach when

LC-MS/MS is used (Veringa et al., 2016; Kuhlin et al., 2019).

However, as LC-MS/MS is not readily available in most high

burdened settings alternative assessments can be of value. Dried

blood spots are typically more stable and easier to transport to a

central laboratory (Vu et al., 2011), but don’t solve the long turn-
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around time.More recently point-of-care tests using saliva (Alffenaar

et al., 2021; Kim et al., 2021) or urine (Szipszky et al., 2021) have been

developed to measure the drug exposure. When using targets from

HFS-TB it is important that protein binding as well as drug

susceptibility testing procedures are taking into account as MIC

results may differ based on medium used. (Alffenaar et al., 2022)

Likewise, when using saliva or urine are used for TDM targets in

these alternative matrices need to be established or they need to

reflect the corresponding plasma/serum target using a correction

factor. For example, if the concentration in saliva is 80%of the plasma

concentration the target concentration is 80% of the plasma target

concentration or the saliva concentration needs to be multiplied by

1.25 to reflect the corresponding plasma concentration.

7 Modeling and simulation

Modelling and simulations are frequently used in the

preclinical and clinical development, evaluation and

optimization of therapeutic regimens and dosing schedules

(Marshall et al., 2016; Wilkins et al., 2022).

Firstly, modelling approaches are used to characterize the PK of

a TB drug in a population of interest. Thereby, pharmacometric

approaches are increasingly used compared to conventional

methods (two-stage approach, non-compartmental analysis) as

they come with several advantages: pharmacometric models can

handle sparse and/or imbalanced data. Thereby even PK data

generated in routine TB care can be leveraged (van der Laan

et al., 2021; Tietjen et al., 2022). Moreover, pharmacometric

models allow to separate PK variability into different sources

(e.g., within-patient, between patient, between dosing occasion,

etc.,). Separation of PK variability, and in particular knowledge

about potentialinter-occasion variability is key when the models

should be used to calculate personalized doses using model-

informed precision dosing, e.g., as shown for rifampicin by

Keutzer et al. (Keutzer and Simonsson, 2020a). Likewise, patient

covariates can be tested if they explain (parts of) the observed

variability in PK. Pharmacometric models including patient

covariates can be exploited for simulations. For TB, such

approaches have specifically facilitated the evaluation of TB

dosing regimens in children, where the impact of body weight

and organ maturation is included (Zvada et al., 2014). Also,

pharmacometric models have an important role in the evaluation

of drug interactions, e.g., with anti-retroviral drugs (van der Laan

et al., 2021) in the co-treatment of HIV and TB.

Secondly, modelling approaches are used to characterize the

exposure-response relationship of TB drugs (Wilkins et al., 2022).

For this purpose, traditionally CFU or TTP are utilised, but

biomarkers such as the molecular bacterial load (MBL) are also

considered (Honeyborne et al., 2011). Modelling approaches have

proven useful to define the links between different biomarkers, e.g.

for MBL and TTP in liquid culture (Svensson et al., 2019b).

Exposure-response analyses are challenging in TB since TB drugs

are only used as monotherapy in dose-ranging EBA studies for a

short duration up to 2 weeks (Te Brake et al., 2021). Phase 2b/c trials

typically place novel TB drugs into a combination treatment, which

makes exposure-response analyses challenging. Moreover, the

relationship between relapse and the biomarkers that are

detectable only in the early phase of treatment is not conclusively

understood. Non-etheless, for example for bedaquiline, using an

integrative pharmacometricmodel that characterized the population

PK as well as comprised a time-to-event model to characterize the

TTP, Svensson et al. successfully described bedaquilines’ exposure-

response relationship in data from a phase 2b trial (Svensson and

Karlsson, 2017).Modelling of previously acquired clinical data could

also help to streamline the design of future phase 2b studies. For

example, Gewitz et al. (2021) analysed data from two phase 2b

studies on rifapentine. The authors did not only describe the

exposure-response of rifapentine in these data, but also

performed a sensitivity analysis, which revealed that significant

exposure-response and covariate relationships could be detected

using truncated TTP data as early as 6 weeks from start of treatment,

suggesting alternative phase 2b designs.

In case of safety concerns, pharmacometric models can quantify

relationships between a variable that quantifies the side effect and PK.

For example, Tanneau et al. (2021) investigated the link between the

QTc interval, transaminase levels and bedaquiline exposure in phase

2b clinical data. The concentrations of the bedaquiline

M2 concentrations were found to be responsible for the drug-

related QTc increase, whereas no exposure-safety relationship was

found with transaminase levels despite previous reports of higher

levels in patients treated with bedaquiline. In another very illustrative

example, Imperial et al. (2022) developed a pharmacometric model

based on the Nix-TB trial (NCT02333799) including the

toxicodynamics of linezolid. The authors identified links between

linezolid exposure and the frequency of thrombocytopenia,

neuropathy and anaemia and defined practical markers to guide

dose adjustments in the treatment course.

Thirdly, modelling approaches are by no means limited to

clinical data and are increasingly used to quantitatively

characterize data stemming from pre-clinical TB studies.

Indeed, in particular in vitro studies using time-kill curve

studies, or the hollow-fiber infection model allow for a

detailed characterisation of the PK/PD of TB drugs alone and

in combination. For example, Clewe et al. (2016) developed the

multi-state TB pharmacometric (MTP) model to quantify the

effect of rifampicin on fast-, slow- or non-growing mycobacteria.

Coupled to PK data and accounting for system-specific variables,

the MTP could be used to predict across different preclinical

systems up to EBA studies for rifampicin (Wicha et al., 2018),

and/or isoniazid (Susanto et al., 2020) in addition to describing

semi-mechanistic PKPD relationships in humans (Svensson and

Simonsson, 2016; Faraj et al., 2020). Also, the study by Kim et al.

(2022) defined the effect of clofazimine in combination with

pretomanid, bedaquiline or linezolid against various growth

states of TB and profiled their potential for synergistic
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interactions. Modelling approaches can also provide quantitative

insights into data originating from mouse models (Chen et al.,

2017; Wagh et al., 2021). For example, for spectinamide 1810,

modelling helped to characterize the PK/PD indices of this new

drug candidate and a model accounting for the post-antibiotic

effect was developed, which might help to select adequate dosing

regimens for future efficacy studies (Wagh et al., 2021). In

addition, correlation between treatment length and treatment

outcome is an important aspect of in vivo studies (Mudde et al.,

2022), which is required to efficiently estimate a regimens’

treatment-shortening potential. Mourik et al. (2018) developed

a new design for in vivo relapse studies together with a

pharmacometric approach for prediction of probability of cure

given different treatment lengths of regimens (Pieterman et al.,

2021; Mudde et al., 2022).

In summary, modelling approaches to characterize PK are

already highly standardized whereas the model-based

characterization of the PK/PD needs to be tailored to the

research question and system of interest. Non-etheless,

modelling and simulations provides the opportunity to

integrate data along the drug development pathway (Bartelink

et al., 2017; Wicha et al., 2018; Radtke et al., 2021), which may

help to better understand the PK/PD from a quantitative

perspective and bridge the translation from pre-clinical to

clinical research.

8 Conclusion

In this review we provided an overview of pre-clinical and

clinical methods to assess the PKPD of anti-TB drugs (Table 2). By

in-depth discussion of design of in vitro, in vivo, and human studies

and subsequent strategies to appropriately integrate the data from

these studies using mathematical models, we contribute to debate

how to accelerate the translation of findings to clinical practice. In

vitro static time-kill experiment and dynamic models are to be used

for early identification of PKPD relationships and favorable drug

regimens. Similarly, simple in vivo models (zebra fish) can be used

for drug screening studies while rodent models can help to

understand PKPD relationships of the drugs in relation to

treatment outcome and relapse. Results from adequate in vitro

and in vivo studies can help to guide dose selection for 14-day

EBA studies. These studies will determine drug activity and PKPD

relationships and safety in humans. Further confirmation of PKPD

in large scale phase 3 studies will help to create a better

understanding of variability in drug exposure and implications

for treatment outcome and hence can contribute to further dose

optimization in subpopulations or personalized dosing via TDM or

MIPD. Modelling and simulations provide the opportunity to

integrate data from in vitro, in vivo and clinical studies, which

contributes to a better understanding of the PKPD of a drug and has

the opportunity to accelerate the clinical development pathway.
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TABLE 2 Key aspects of PKPD studies.

Study Study design TB Participants PK PD Application

In vitro Intracellular H37Ra H37Rv
Clinical
isolates

cells Sampling of system (multiple) CFU *Define PKPD parameters for
optimal kill, prevention of resistanceExtracellular

In vivo Balb/c animals 1 sample/animal, different
time points different animals

CFU *Define PKPD parameters for cure,
prevention of resistance, relapseC3Heb/Fej

EBA Selected TB patients with
drug susceptible TB

Clinical
isolates

patients Full PK curve CFU, TTP Confirm activity in humans,
confirm PKPD relationship, define
dose for phase 2b

Daily for 14 days

Phase
2/3

Selected TB patients with
drug susceptible or drug
resistant TB

Clinical
isolates

patients Limited samples in all
participants, Full PK curve in
subset of the patients

Culture conversion,
treatment outcome

Define dose for regulatory approval

TDM Clinical practice Clinical
isolates

patients Ranging van limited samples
to full PK curve

Successful treatment
of individual
patients

Define subpopulations, situations
where standard dose is likely not
effective or toxic

TB, tuberculosis; PK, pharmacokinetics; PD, pharmacodynamics; CFU, colony forming units; TTP, time to positivity; TDM, therapeutic drugmonitoring; *TheMIC of the strain used in the

in vitro/in vivo study should be determined before each experiment as well as theMIC of the clinical strains to determine if the given clinical dose could achieve the PK/PD exposure target in

patients.
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