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Cholestasis, characterized by disturbance of bile formation, is a common

pathological condition that can induce several serious liver diseases. As a kind of

trigger, estrogen-induced cholestasis belongs to drug-induced cholestasis.

Paeoniflorin is the most abundant bioactive constituent in Paeonia lactiflora Pall.,

Paeonia suffruticosa Andr., or Paeonia veitchii Lynch, a widely used herbal medicine

for treating hepatic disease over centuries in China. However, the pharmacologic

effect and mechanism of paeoniflorin on estrogen-induced cholestasis remain

unclear. In this experiment, the pharmacological effect of paeoniflorin on EE-

induced cholestasis in rats was evaluated comprehensively for the first time.

Ultra-high-performance liquid chromatography coupled with Q-Exactive orbitrap

mass spectrometer was used to monitor the variation of bile acid levels and

composition. It was demonstrated that paeoniflorin alleviated 17α-ethinylestradiol
(EE)-induced cholestasis dose-dependently, characterized by a decrease of serum

biochemical indexes, recovery of bile flow, amelioration of hepatic and ileal

histopathology, and reduction of oxidative stress. In addition, paeoniflorin

intervention restored EE-disrupted bile acid homeostasis in enterohepatic

circulation. Further mechanism studies using western blot, quantitative Real-Time

PCR, and immunohistochemical showed that paeoniflorin could upregulate hepatic

efflux transporters expression but downregulate hepatic uptake transporter

expression. Meanwhile, paeoniflorin reduced bile acids synthesis by repressing

cholesterol 7α-hydroxylase in hepatocytes. Paeoniflorin affected the above

transporters and enzyme via activation of a nuclear receptor, farnesoid X

receptor (FXR), which was recognized as a vital regulator for maintaining bile acid

homeostasis. In conclusion, paeoniflorin alleviated EE-induced cholestasis and

maintained bile acid homeostasis via FXR-mediated regulation of bile acids

transporters and synthesis enzyme. The findings indicated that paeoniflorin might

exert a potential therapeutic medicine for estrogen-induced cholestasis.
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1 Introduction

Cholestatic liver disease is a clinically pathological condition

characterized by abnormal bile flow, always accompanied by the

accumulation of intrahepatic and extrahepatic bile acids

(Fernandez-Murga et al., 2018). Many factors can evoke

cholestasis, including hepatitis, gene mutations, metabolic

disorders, and drugs (Gijbels et al., 2019). As a drug-induced

cholestasis, estrogen-induced cholestasis mainly occurs in

vulnerable women taking oral contraceptives or receiving

postmenopausal hormone replacement therapy (Bach et al.,

2020). 17α-ethinylestradiol (EE), one of the synthetic estrogen

derivatives, is extensively employed in research on estrogen-

induced cholestasis (Marrone et al., 2016). Ursodeoxycholic acid

(UDCA) is the most widely prescribed medicine for cholestasis,

gallstones, and fatty liver disease (Li et al., 2016). However, about

40% of patients with cholestasis show poor responses to UDCA

treatment (Hirschfield et al., 2015). Consequently, it is essential

to develop novel therapeutic medicine for cholestasis.

During cholestasis development, bile excretion disorder is themost

intuitive pathological manifestation, along with the variation of

endogenous bile acids composition and proportion (Hirschfield

et al., 2010). In hepatocytes, primary bile acids are synthesized from

cholesterol through enzymatic reactions (Šarenac and Mikov, 2018)

and subsequently excreted by transporters on the membranes of

hepatocytes (Phelps et al., 2019). After being transported to the

capillary duct between hepatocytes and combined with amino acids

(Hua et al., 2021), the primary bile acids enter the small intestine

through the bile duct with bile flow (Bogatyrev et al., 2020). Primary

bile acids are converted to secondary bile acids by the action of

intestinal flora (Jiao et al., 2018). Most of the bile acids in the

intestine are absorbed into the portal circulation through bile acid

transporters distributed on intestinal epithelial cells (Tiratterra et al.,

2018), and then enter the hepatocytes through uptake transporters on

the hepatocytemembrane (Bowman et al., 2019), a process also known

as the enterohepatic circulation of bile acids (Sun et al., 2021b).

Normally, the composition and proportion of bile acids are in a

stable state (Setchell et al., 1997), but when homeostasis is disrupted,

various pathological disorders in the hepatoenteric system may occur,

including cholestasis (Zhang et al., 2008). Bile discharge disorders also

lead to the accumulation of toxic bile acids (Oizumi et al., 2017).

Therefore, targeting endogenous bile acids contributes to

understanding the influence of cholestasis and medicine treatment

on bile acid homeostasis.

Bile acids can act as ligands to activate various nuclear receptors,

including the farnesoid X receptor (FXR, NR1H4), which belongs to

a subclass of metabolic receptors within the nuclear receptor

superfamily (Keitel et al., 2019). FXR is mainly located in the

liver and intestine (Sun et al., 2021a) and plays a vital role in

regulating bile acids homeostasis (Trauner et al., 2017). Activation of

FXR has been shown to inhibit cholesterol 7α-hydroxylase
(CYP7A1), a key rate-limiting enzyme in the classical bile acid

synthesis pathway (Chiang and Ferrell, 2020). FXR could induce

transporters, such as multidrug resistance-associated protein 2

(MRP2) and bile salt export pump (BSEP), to reinforce bile acids

efflux while inhibiting Na+-dependent taurocholate cotransporter

(NTCP) from reducing bile acids uptake by hepatocytes (Stofan and

Guo, 2020). Targeting FXR activity has emerged as a novel strategy

to treat cholestasis and other hepatic diseases (Kowdley et al., 2018;

Hirschfield et al., 2019; Trauner et al., 2019). Some FXR agonists,

such as obeticholic acid, have been approved by the FDA for the

treatment of primary biliary cirrhosis in patients who are intolerant

to or non-responsive to first-line therapy (van Golen et al., 2018).

Paeoniflorin (Supplementary Figure S1A) is the most

abundant bioactive constituent in Paeonia lactiflora Pall.,

Paeonia suffruticosa Andr., or Paeonia veitchii Lynch, which is

one of the most widely used herbal medicine for hepatic disease

over 2,000 years in China (Ma et al., 2020). It has been well

established that paeoniflorin has numerous pharmacological

effects on hepatic diseases, such as hepatic ischemia/

reperfusion alleviation (Xie et al., 2018), cholestasis alleviation

(Wei et al., 2020), hepatic fibrosis attenuation (Wang et al., 2021),

nonalcoholic fatty hepatic disease prevention (Ma et al., 2016),

and so on. Crucially, paeoniflorin has been shown to remarkably

alleviate alpha-naphthylisothiocyanate (ANIT)-induced

cholestatic hepatitis (Zhao et al., 2017; Zhou et al., 2017; Chen

et al., 2021). However, the pharmacology effect of paeoniflorin on

EE-induced cholestasis has not been thoroughly evaluated.

The present study explored whether paeoniflorin had a

valuably alleviated effect on EE-induced cholestasis in rats and

further clarified whether this effect is related to the regulation of

bile acid transporters via FXR, which affected endogenous bile

acid homeostasis. The findings prove that paeoniflorin might

become a potential candidate for cholestasis.

2 Materials and methods

2.1 Materials

Paeoniflorin (Lot: CFN99544) was obtained from ChemFaces

(Wuhan, China), and the purity was proven to be over 98%. EE

(Lot: E2014109), UDCA (Lot: I2016160), and standard for

taurodeoxycholic acid (TDCA) (Lot: K1922115) were purchased

from Aladdin Biochemical Technology (Shanghai, China).

Standards for cholic acid (CA) (Lot: 100,078–201415), deoxycholic

acid (DCA) (Lot: 110,724–200207), UDCA (Lot: 110,755–201704)

chenodeoxycholic acid (CDCA) (Lot: 110,806–201507),
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hyodeoxycholic acid (HDCA) (Lot: 100,087–201411), taurocholic acid

(TCA) (Lot: 110,815–201510), tauroursodeoxycholic acid (TUDCA)

(Lot: 110,816–201509), and taurochenodeoxycholic acid (TCDCA)

(Lot: 110,846–201007)were obtained fromNational Institutes for Food

andDrugControl (Beijing, China). Standards for β-muricholic acid (β-
MCA) (Lot: 700233P-1MG-A-010) and tauro-β-muricholic acid (T-β-
MCA) (Lot: 700244P-1MG-B-010) were purchased from Avanti®

Polar Lipids (AL, United States). The standard for lithocholic acid

(LCA) (Lot: FCB055902) was acquired from Fluorochem (Derbyshire,

United Kingdom). The standard for internal standard (IS),

dehydrocholic acid (dhCA) (Lot: 3CMJG-S), was purchased from

TCI (Tokyo, Japan). Antibodies directed against FXR, NTCP,

CYP7A1, MRP2, and β-actin were acquired from Bioss (Beijing,

China), BSEP was purchased from Santa Cruz Biotechnology (CA,

United States), and liver X receptor α (LXRα, NR1H3) was purchased
from Abcam (Cambridge, United Kingdom). All chemical reagents

were analytical or HPLC grade.

2.2 Animal experiments

Male Sprague-Dawley rats (5 weeks, 220 ± 20 g) were acquired

from the Experimental Animal Center of Anhui Medical University

(Hefei, China). Rats were housed in standard conditions of

temperature and humidity. All animal experimental procedures

were implemented in keeping with international guidelines and

approved by the Institutional Animal Care and Use Committee,

Anhui University of Chinese Medicine.

After one week of adaptive feeding, rats were randomly

divided into seven groups (n = 8 per group): control group,

only paeoniflorin (200 mg/kg) administration group, model (EE)

group, paeoniflorin-treated (100, 200, 400 mg/kg) groups, and

UDCA-treated (100 mg/kg) group as the positive control. As

shown in Supplementary Figure S1B, rats were orally

administrated with paeoniflorin, UDCA, or normal saline

twice daily for seven consecutive days. Since the 3rd day,

model, paeoniflorin-treated (100, 200, 400 mg/kg), and

UDCA-treated groups were subcutaneously injected with EE

(10 mg/kg), while control and only paeoniflorin

administration groups were subcutaneously injected with

vehicle (propylene glycol) once a day for five consecutive

days. After overnight fasting, all rats were sacrificed on the 7th

day. Serum, liver, and ileum were collected.

2.3 Bile flow measurement

Before the experimental operation, rats were anesthetized with

3% pentobarbital sodium (30 mg/kg body weight). For bile flow

measurement, rats were received a middle abdominal incision, and

then the common bile duct was cannulated with PE-10 polyethylene

tubes at 37°C for 1 h to collect the bile. Later, the bile volume was

gravimetrically determined with a 1.0 g/ml density.

2.4 Serum biochemical analyses

The serum levels of alanine aminotransferase (ALT),

aspartate aminotransferase (AST), alkaline phosphatase

(ALP), total bile acid (TBA), total bilirubin (TBIL), direct

bilirubin (DBIL), and γ-glutamyl transferase (γ-GT) were

determined by commercial kits which were purchased

from Jiancheng Bioengineering Institute (Nanjing,

China). The practice was according to the manufacturer’s

guidelines.

2.5 Measurement of oxidative stress
indexes in rat livers

Liver tissues were ground to homogenize with 0.9% saline

(1:9, w:v) on ice, then the homogenate was transferred to the

centrifugation (3,000 rpm, 20 min, 4°C), and the supernatant

was retained. The involvement of oxidative stress was

assessed by measuring the levels of malondialdehyde

(MDA) and superoxide dismutase (SOD) in liver

homogenate, using rat-specific enzyme-linked

immunosorbent assay (ELISA) kits obtained from Dogesce

(Beijing, China).

2.6 Histopathology

Samples from liver and ileum tissues were fixed in formalin,

embedded in paraffin, sectioned, and then stained with

hematoxylin and eosin (H&E). Images were captured by

Olympus microscope (Tokyo, Japan) to evaluate tissue

structural changes.

2.7 Quantitative profiling of bile acids in rat
serum, bile, and liver using ultra-high-
performance liquid chromatography
coupled to hybrid orbitrap mass
spectrometry system

2.7.1 Sample preparation
For serum samples, 500 μl acetonitrile was added to 50 μl rat

serum which was accurately spiked with 10 μl dhCA (IS). The

mixture was vortexed and centrifuged at 12,000 rpm and 4°C for

10 min. The upper layer was collected and evaporated to dryness

under a vacuum. The residue was redissolved in a 200 μL mobile

phase, vortexed for 3 min, and centrifuged at 12,000 rpm and 4°C

for 10 min. The supernatant was transferred to another tube and

centrifuged again, and then it was collected and filtered through a

0.22 μmmembrane. An aliquot (2 μL) was injected into the ultra-

high-performance liquid chromatography (UHPLC) system for

analysis.
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For bile samples, 10 μl rat bile was diluted with 490 μl

deionized water and mixed well. Then, a 50 μl diluted bile

sample was accurately spiked with 10 μl IS, followed by the

addition of 500 μL acetonitrile. Subsequent treatment was the

same as that of the serum samples.

For liver samples, 50 mg of rat liver samples were

homogenized in 500 μl normal saline. 100 μl of liver

homogenate was accurately spiked with 10 μl IS, and 1 ml of

acetonitrile was added. Subsequent treatment was the same as

that of the serum samples.

2.7.2 Ultra-high-performance liquid
chromatography coupled to hybrid orbitrap
mass spectrometry system conditions

Liquid chromatography was carried out by a Dionex

Ultimate 3000 XRS UHPLC system (Thermo Fisher

FIGURE 1
Hepatoprotective effects of paeoniflorin on EE-induced cholestatic hepatic injury. (A) Trends of body weight change during the seven days of
administration. (B) Liver index. The serum levels of (C)ALT, (D) AST, (E) ALP, and (F) γ-GT in each group. (G) The images of liver and ileum sectionswith
H&E (× 200 magnification). Yellow arrows indicate the aggregation of inflammatory cells, black arrows indicate hepatocyte pyknosis and necrosis,
green arrows indicate the disordered arrangement of the hepatic cords, and blue arrows indicate structural defects of intestinal villi or glands.
Data are expressed as the mean ± SD. (n = 8). *p < 0.05, **p < 0.01, versus control group; #p < 0.05, ##p < 0.01, versus EE group.
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Scientific). Separation was performed on a Hypersil GOLD™

C18 column (2.1*100 mm, 1.9 μm, Thermo Fisher Scientific),

and the column oven temperature was kept at 30°C. The mobile

phase consists of ultrapure water with 5 mM ammonium acetate

(solvent A) and methanol (solvent B). A gradient elution

procedure was used as follows: 0–2 min, 60% B; 2–18 min,

60%–64% B; 18–19 min 64%–95% B; 19–21 min, 95% B;

21–22 min, 95%–60% B; 22–24 min, 60% B. The constant flow

rate was set at 0.2 ml/min. The injection volume was 2 μl. Typical

chromatograms are shown in Supplementary Figure S2.

Mass spectrometry (MS) detection was implemented on a

high-resolution hybrid quadrupole Q-Exactive Orbitrap MS

(Thermo Fisher Scientific), preceded by heated electrospray

ionization (HESI). The mass spectrometer was operated in

parallel reaction monitor (PRM) mode. The sheath gas flow

rate, auxiliary gas flow rate, and sweep gas flow rate were set to

45 psi, 15 psi, and 1 psi, respectively. The heater and capillary

temperature were both set at 350°C, and the spray voltage for

negative ionization was 3.1 kV. The PRM transitions and MS

parameters for individual bile acids and IS in the Q-Exactive

Focus Orbitrap MS method are shown in Supplementary

Table S1.

Regression equations, correlation coefficient, and linear

ranges for individual bile acids are shown in Supplementary

Table S2.

2.8 Quantitative Real-Time PCR assay

Total RNA from rat liver samples was extracted by TRIzol

reagent (Ambion, Austin, United States). 1 μg of total RNA in each

sample was reverse-transcribed into cDNAusing SPARKscript ⅡRT
Plus Kit (With gDNA Eraser) (Sparkjade, Qingdao, China). The

mRNA expression of the target gene was quantified by 2 ×SYBR

Green qPCR Mix (With ROX) (Sparkjade, Qingdao, China). The

expression of rat β-actin was used as the internal reference. Relative

gene expression was detected in triplicate using the ABI StepOne

Plus system (Applied Biosystems, CA, United States). The primer

sequences used in the present study are listed in Supplementary

Table S3.

2.9 Western blot analysis

Total protein samples in the liver tissues of rats were

extracted by RIPA lysis buffer (Beyotime Biotechnology,

China). The protein concentration was measured using a BCA

protein assay kit (Beyotime Biotechnology, China). 30 μg protein

in each liver sample was resolved using 6%–12% SDS-PAGE and

then transferred onto nitrocellulose filter membranes.

Membranes were blocked and then incubated with primary

antibodies directed against FXR, LXRα, NTCP, BSEP, MRP2,

CYP7A1, and β-actin overnight at 4°C. After rinsing with TBST,

the membranes were subsequently incubated with horseradish

peroxidase-conjugated goat anti-rabbit/mouse secondary

antibody for 1.5 h at room temperature. Protein bands were

detected on Amersham Imager 600 (GE Healthcare,

United States) or BLT GelView 6000Plus (Guangzhou Biolight

Biotechnology, Ltd., China) with enhanced chemiluminescence

detection reagents (Thermo, United States).

2.10 Immunohistochemistry

The protein expression of FXR in liver and ileum tissues were

detected by immunohistochemistry. Paraffin sections were

pretreated with antigen retrieval and then immersed in 3% H2O2

for 20 min at room temperature. The sections were incubated with

primary antibody directed against FXR (1:200) for 60 min at 37°C.

Subsequent operations followed the laboratory routine procedures.

Images were captured by an Olympus microscope (Tokyo, Japan).

2.11 Statistical analysis

The data were expressed as the mean ± standard deviation

(SD). Statistics were implemented using the GraphPad Prism

8 software with additional analysis in IBM SPSS Statistics 25.

Differences between the two groups were analyzed by unpaired

student’s t-test, and multiple group comparisons were performed

using one-way analysis of variance. Statistical significance was set

to p < 0.05.

3 Results

3.1 Paeoniflorin protected against EE-
induced hepatotoxicity

As shown in Figure 1A, the body weight of the control and

only paeoniflorin-treated group gradually increased, while that of

EE-treated rats fell. After treatment with paeoniflorin, the growth

retardation caused by EE was reduced in a dose-dependent

manner. As shown in Figure 1B, liver index (Liver weight/

body weight) showed an opposite tendency compared to body

weight gain. Administration of paeoniflorin and UDCA relieved

EE-induced hepatomegaly.

Compared to the control group, the serum levels of ALT, AST,

ALP, and γ-GT were significantly higher in EE-treated groups.

However, as illustrated in Figures 1C–F, high-dose paeoniflorin

(400 mg/kg) could significantly decrease the abnormal ALT, AST,

ALP, and γ-GT levels in EE-induced cholestatic rats. Medium-dose

paeoniflorin (200 mg/kg) could significantly reduce the abnormal

AST ALP, and γ-GT levels in cholestatic rats, but has no significant

effect on ALT. Low-dose paeoniflorin (100 mg/kg) had no

significant effect on hepatotoxicity biochemical indicators.
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Besides, administration of UDCA, the positive control in the study,

reduced body weight loss and down-regulated serum biochemical

indexes in EE-treated rats.

As shown in Figure 1G, the H&E staining results

indicated that EE induced hepatocyte pyknosis and

necrosis, inflammatory cells aggregation, hepatic cord

arrangement disorder, hepatic sinus dilatation and

hyperemia. The hepatic structure disorder was improved

in rats treated with paeoniflorin or UDCA. On the other

hand, defective intestinal mucosal epithelium, villi, and

gland structure were observed in the EE-treated

group. There were also clusters of inflammatory cells in

certain areas of the ileum. The structure of ileum was

improved after treatment with medium- or high-dose

paeoniflorin and UDCA.

3.2 Paeoniflorin ameliorated bile flow and
biochemical indicators of cholestasis

Bile flow in rats was observed over 60 min. As reported,

EE-treated rats showed significant bile flow obstruction.

Medium- and high-dose paeoniflorin administration

remarkably increased bile flow rates compared to the

model group (Figure 2A). As shown in Figures 2B–D, the

serum TBA, TBIL, and DBIL were increased in EE-treated

group compared to the control group. In contrast, these

biochemical indicators of cholestasis were all reduced by

high-dose paeoniflorin treatment. Medium-dose

paeoniflorin significantly decreased the levels of TBA

and TBIL, while low-dose paeoniflorin only had effect

on TBA.

FIGURE 2
Paeoniflorin attenuated EE-induced cholestasis in rats. (A) The bile flow rates over 1 h. The serum levels of (B) TBA, (C) TBIL, and (D)DBIL in each
group (mean ± SD, n = 8). Levels of (E) SOD and (F)MDA in liver tissue homogenate (mean ± SD, n = 6). *p < 0.05, **p < 0.01, versus control group;
#p < 0.05, ##p < 0.01, versus EE group.
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3.3 Paeoniflorin improved EE-induced
oxidative stress

Oxidative stress is an important driving force in

promoting cholestasis. The level of hepatic SOD, the

antioxidant enzyme, was decreased in EE-treated rats

(Figure 2E), while the level of hepatic MDA, the

biomarker for oxidative damage, was increased

(Figure 2F). However, paeoniflorin and UDCA treatment

significantly reversed these trends. These findings

collectively prove that paeoniflorin improved EE-induced

oxidative stress.

3.4 Paeoniflorin maintained bile acid
homeostasis in cholestatic rats

The concentrations of free and taurine-conjugated bile acids

in serum, bile, and liver samples were determined by the

UHPLC-Orbitrap MS method.

3.4.1 Effect of paeoniflorin on bile acid levels in
serum

Free bile acids accounted for more than 85% of the TBA in

serum. As shown in Figure 3A, EE treatment significantly

increased the serum levels of CA, DCA, LCA, TCA, T-β-

FIGURE 3
Paeoniflorin improved EE-induced abnormal serum bile acid levels and composition. (A) Concentrations of individual bile acids in serum of
different groups (Mean ± SD, n = 6). *p < 0.05, **p < 0.01, versus control group; #p < 0.05, ##p < 0.01, versus EE group. (B) Bile acids composition in
serum (Mean/Total×100%, n = 6).
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MCA, and TDCA compared to the control group. The

proportion of the above bile acids were increased in the EE-

treated group, while β-MCA, UDCA, and HDCA were decreased

(Figure 3B). Compared to the EE-treated group, the serum levels

of CA, DCA, UDCA, CDCA, LCA, TCA, T-β-MCA, and TDCA

were significantly decreased after paeoniflorin intervention. The

proportion of bile acid components in the paeoniflorin

intervention group was closer to the level of the control group

except for UDCA, CDCA and T-β-MCA. When UDCA was

given to rats, the proportion of UDCA in serum elevated rapidly

to about 50%, while the proportion of other bile acids declined.

The concentrations of UDCA and TUDCA were significantly

increased while CA, DCA, TCA, T-β-MCA, and TDCA were

decreased considerably.

3.4.2 Effect of paeoniflorin on bile acid levels in
bile

The bile acids in bile were mainly conjugated type, taurine-

conjugated bile acids accounted for more than 92% in each group

in the current study. As shown in Figure 4A, compared to the

control group, the concentrations of CA, β-MCA, DCA, and

TCA in the model group were significantly decreased. For the

composition, the proportion of CA and TCA was decreased,

while the proportion of T-β-MCA and TCDCA was elevated

FIGURE 4
Paeoniflorin improved EE-induced abnormal bile acid levels and composition in bile. (A) Concentrations of individual bile acids in bile of
different groups (Mean ± SD, n = 6). *p < 0.05, **p < 0.01, versus control group; #p < 0.05, ##p < 0.01, versus EE group. (B) Bile acids composition in
bile (Mean/Total × 100%, n = 6).
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(Figure 4B). That is, when cholestasis occurs, the CA and TCA

secreted by bile are significantly reduced, indicating that these

bile acids may be stored in the liver. Compared to the EE-treated

group, the concentrations of CA, β-MCA, TCA, T-β-MCA, and

TDCA in the paeoniflorin intervention group were significantly

increased. Regarding bile acid composition, the proportion of bile

acid was closer to the level of the control group in the

paeoniflorin administration group except for CA. When

UDCA was given to rats, the proportion of TUDCA was

remarkably increased. The concentrations of β-MCA, UDCA,

and TUDCA were significantly elevated after UDCA

intervention, while the level of TCA was decreased.

3.4.3 Effect of paeoniflorin on intrahepatic bile
acid levels

Intrahepatic bile acids were mainly conjugated type, and

taurine-conjugated bile acids accounted for more than 70% in

each group in this experiment. As shown in Figure 5A, compared

to the control group, the concentrations of CA, β-MCA, DCA,

and TCA in the model group were significantly increased, while

concentration of TDCA was decreased. For bile acid

composition, the proportion of CA, β-MCA, and TCA was

increased, while the proportion of CDCA, HDCA, T-β-MCA,

TDCA, and TCDCAwas decreased (Figure 5B). Compared to the

model group, intrahepatic concentrations of CA, β-MCA, DCA,

FIGURE 5
Paeoniflorin improved EE-induced abnormal intrahepatic bile acid levels and composition. (A) Concentrations of hepatic individual bile acids in
different groups (Mean ± SD, n = 6). *p < 0.05, **p < 0.01, versus control group; #p < 0.05, ##p < 0.01, versus EE group. (B) Hepatic bile acids
composition (Mean/Total × 100%, n = 6).
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LCA, TCA, and TUDCA in the paeoniflorin intervention group

were significantly decreased, while the concentration of TDCA

was significantly increased. In terms of composition, the

proportions of β-MCA and TCA were decreased significantly,

while CDCA, HDCA, T-β-MCA, TDCA, and TCDCA were

elevated. Besides, the proportions of bile acids were closer to

the level of the control group except for CA. When UDCA was

administered to rats, the level and proportion of TUDCA were

remarkably increased. The concentrations of CA, β-MCA, DCA,

and TCA were significantly descended after UDCA intervention,

while the level of TUDCA was increased.

3.5 Paeoniflorin activated FXR and LXRα
expression in cholestatic rats

Liver nuclear receptor FXR plays a crucial role inmaintaining

intrahepatic bile acids homeostasis via mediating synthesis,

FIGURE 6
Paeoniflorin restored the expression of FXR and LXRα. (A) The mRNA expression of nuclear receptor Fxr, was normalized to β-actin. (B) The
western blot images of FXR and LXRα. The protein expression of (C) FXR, and (D) LXRα, were normalized to ß-actin. (E) Representative
immunohistochemical images of FXR in rat liver. (F) Representative immunohistochemical images of FXR in rat ileum. Data are expressed as the
mean ± SD. (n = 3 for mRNA and protein expression; n = 6 for FXR expression in immunohistochemical images). *p < 0.05, **p < 0.01, versus
control group; #p < 0.05, ##p < 0.01, versus EE group.
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metabolism, and transport of bile acids. As shown in Figure 6A,

compared to the control group, the quantitative real-time PCR

assay (qRT-PCR) results showed that EE-treated group

significantly reduced the mRNA expression of FXR, and

paeoniflorin treatment significantly reversed this effect.

Western blot analysis further confirmed the effects of

paeoniflorin (Figures 6B,C). Administration of UDCA also

showed an up-regulation with mRNA and protein expression

of FXR.

Immunohistochemical staining demonstrated that expression of

hepatic and intestinal FXR was suppressed by EE induction, while

improved by high-dose paeoniflorin administration. This suggested

that paeoniflorin administration could activate both hepatic and

intestinal FXR expression (Figures 6E,F).

In addition to FXR, LXRα is another nuclear receptor

proven as a physiological regulator of cholesterol and lipid

metabolism, which disturbed sensitivity to bile acid toxicity

and cholestasis. Compared to the control group, the protein

FIGURE 7
Paeoniflorin promoted bile acid efflux transporters, while reduced bile acid influx transporter and bile acid synthesis enzyme in rats. Relative
mRNA expression of (A) Mrp2, (B) Bsep, and (C) Ntcp, were normalized to β-actin. (D) The western blot images of MRP2, BSEP, NTCP, and ß-actin.
The protein expression of (E) MRP2, (F) BSEP, and (G) NTCP, were normalized to ß-actin. (H) The protein expression of CYP7A1 was determined by
western blot and normalized to ß-actin. Data are expressed as the mean ± SD. (n = 3). *p < 0.05, **p < 0.01, versus control group; #p < 0.05,
##p < 0.01, versus EE group.
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expression of LXRα was decreased in the EE-treated group

(Figures 6B,D). Treatment with medium- and high-dose

paeoniflorin significantly increased LXRα expression.

However, the positive control, UDCA, did not considerably

affect LXRα expression.

3.6 Paeoniflorin regulated the expression
of hepatobiliary bile acids transporters and
bile acids synthetic enzyme

To illustrate the mechanism of paeoniflorin mitigating

cholestasis, the present study determined the mRNA and

protein expression of hepatobiliary bile acid transporters,

including BSEP, MRP2, and NTCP. These above

transporters are proven as downstream targets of FXR in

previous reports. As shown in Figures 7A–C, EE treatment

significantly decreased the mRNA expression of Bsep and

Mrp2, both of which play critical roles in hepatic bile acid

efflux. High-dose paeoniflorin intervention significantly

increased the mRNA expression of these transporters.

Besides, the mRNA expression of Ntcp, which is known as

a basolateral uptake transporter, showed a similar downward

trend after EE-induced cholestasis. However, the mRNA

expression of Ntcp was further reduced by high-dose

paeoniflorin administration. Western blot analysis further

confirmed these qRT-PCR results (Figures 7D–G). Besides,

administration of UDCA increased the mRNA and protein

expression of BSEP and MRP2. In contrast, it suppressed the

protein expression of NTCP but had no statistically significant

effect on the mRNA expression of Ntcp.

CYP7A1 is a critical rate-limiting enzyme in the

conversion process from cholesterol to bile acids. As shown

in Figure 7H, compared to the EE-treated group, both 200 and

400 mg/kg paeoniflorin administration dose-dependently

down-regulated CYP7A1 expression, contributing to a

decrease in bile acid synthesis. The positive drug, UDCA,

also decreased the protein expression of CYP7A1.

4 Discussion

Endogenous and exogenous estrogens, including their

metabolites, would result in intrahepatic cholestatic liver injury in

susceptive women who exhibited abnormal bile flow and hepatitis

(Padda et al., 2011). As a hepatotoxic substance, EE has been widely

applied in rodents to explore underlining mechanisms of estrogen-

induced cholestatic hepatic diseases, which belongs to drug-induced

cholestatic hepatic disorders (Yang et al., 2019; Ming et al., 2021).

Previous reports have proven that EE injection reduced bile flow and

FIGURE 8
The possible mechanisms of paeoniflorin on alleviating estrogen-induced cholestasis.
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led to cholestasis via the FXR-meditated Extracellular regulated

protein kinases (ERK)-Liver kinase B1 (LKB1)-Adenosine5′-
monophosphate-activated protein kinase (AMPK) pathway

(Li et al., 2017). To illuminate the pharmacological activity of

paeoniflorin on EE-induced cholestasis and explore whether the

effect is relevant to FXR, the current study adopted a rodent

model in Sprague-Dawley rats injected with EE once daily for five

successive days. In this animal model, EE-induced cholestasis with a

defect of pivotal canalicular solute transporters of bile acids, including

BSEP, MRP2, and NTCP (Marrone et al., 2016). Currently, UDCA is

the first-line clinical medicine for cholestasis, so it is applied as the

positive control in the current study. Previous reports have fully

demonstrated the improved effect of UDCA administration on

EE-induced cholestatic liver injury (Li et al., 2016;DiGuida et al., 2018).

Paeoniflorin is the primary active component in Paeonia

lactiflora pall, which is extracted from the dried root of the plants.

Previous studies have demonstrated that paeoniflorin exerted

effectively protective effects on various hepatic diseases (Tu et al.,

2019), including ANIT-induced cholestasis (Zhao et al., 2013;

Chen et al., 2015; Chen et al., 2021) and bile duct ligation-

induced cholestatic liver injury (Wei et al., 2020). This study fully

elucidated that paeoniflorin showed an alleviative effect on EE-

induced hepatotoxicity for the first time, as characterized by

significant reduction of hepatotoxicity biochemical serum

markers, including ALT, AST, ALP, and γ-GT, which were

elevated by EE induction. Moreover, ameliorative hepatic and

ileal histopathology was observed in paeoniflorin-treated group.

Cholestasis is mainly manifested as decelerated bile flow. In

this study, injection of EE significantly decreased bile flow and

elevated cholestatic biochemical indicators, including TBIL,

DBIL, and TBA. Administration of paeoniflorin or UDCA

could significantly improve these trends. In the development

of cholestasis, oxidative stress is an important driving force that

cannot be ignored. The results indicated that the MDA level was

elevated while the SOD level was declined in the liver of EE-

treated rats, indicating that oxidative stress was activated. The

present study showed that paeoniflorin could restore indicators

of oxidative stress. Overall, paeoniflorin alleviated EE-induced

cholestasis, which was characterized by increasing bile flow,

decreasing serum biomarkers, ameliorating hepatic and ileal

histopathology, and improving oxidative stress.

Bile acid is one of the major ingredients in bile. In the

enterohepatic system, bile acids can facilitate the assimilation of

lipids, fat-soluble vitamins, and cholesterol in the intestine (Lee et al.,

2020). Destabilization of bile acid homeostasis may trigger various

pathological changes, including cholestasis (Fickert and Wagner,

2017). Moreover, when cholestasis occurs, the body accumulates a

large quantity of bile, leading to hepatocellular necrosis with the

turbulence of phospholipids, unsaturated fatty acids, and

sphingolipids metabolism, which further aggravates hepatic

diseases (Lin et al., 2019). Compared to the control group, the

levels of key bile acids in serum were markedly elevated after EE

induction, indicating that the uptake function of bile acid by

hepatocytes was damaged. Meanwhile, the levels of CA, TCA, β-

MCA, and DCA were significantly increased in the liver while

considerably decreased in the bile, indicating that the function of the

bile acid efflux transporter on the hepatocyte membrane is

disturbed, leading to the reduction of bile acids efflux into bile

and accumulation in the liver. Among bile acids with abnormal

levels, LCA and DCA are considered hepatotoxic, and their

accumulation exacerbates hepatocyte injury caused by cholestasis

(Chen et al., 2014; Li et al., 2016). Administration of paeoniflorin in

cholestatic rats couldmaintain sensitive endogenous bile acids in the

serum, bile, and liver at relatively stable levels, indicating that the bile

acid homeostasis wasmaintained when bile excretion was promoted

by paeoniflorin. Since bile acid homeostasis is mainly regulated by

bile acid transporters on the hepatocyte membrane, it can be

speculated that paeoniflorin has a regulatory effect on bile acid

transporters, which is inseparable from the influence of upstream

nuclear receptors of the transporters.

Nuclear receptors have been demonstrated to regulate target gene

expression in numerous metabolic processes, including bile acid

synthesis and conjugation, through ligand-activated transcription

(Beuers et al., 2015). FXR is a crucial regulator in the

maintenance of bile acid homeostasis (Gomez-Ospina et al.,

2016), as FXR activation restores the levels and metabolic

abnormalities of bile acids pool and exerts therapeutic effects on

cholestasis in rodents (Dong et al., 2019). In contrast, specific FXR

deficiency would lead to the reduction of bile flow. Nowadays, several

FXR agonists are undergoing clinical trials for various types of

cholestasis treatment (Kowdley et al., 2018; Trauner et al., 2019).

The present experiment explored whether FXR was involved in the

alleviation of paeoniflorin against EE-induced cholestasis. The results

illustrated that EE induced a significant decrease in FXR expression,

and paeoniflorin administration could restore themRNAand protein

expression of FXR in a dose dependent manner. As a weak FXR

agonist, UDCA administration upregulated EE-suppressed FXR

expression at both mRNA and protein levels.

LXRα is distributed in the liver, kidney, and intestine, known as

metabolically active receptor. Both FXR and LXRα can form

heterodimers with the retinoid X receptors and heterodimers in

the active state bound to the response element on the DNA in the

basal state (Hiebl et al., 2018). According to the analysis of

mammalian one-hybrid and transient transfection reporters,

paeoniflorin has been found to activate LXRα in HepG2 cells

(Lin, 2013). In this study, it was observed that EE injection down-

regulated LXRα expression while over 200mg/kg paeoniflorin could

markedly increase LXRα expression at the protein level. In contrast,

UDCA intervention showed no significant influence on LXRα.
Bile acid transporters and metabolic enzymes are essential for

maintaining bile acid homeostasis. As two crucial bile acid transporters

on the hepatocyte membrane, BSEP and MRP2 regulate the transport

of free and conjugated bile acids into bile. EE treatment significantly

decreased the mRNA and protein expression of BSEP and MRP2,

leading to bile flow obstruction and bile acids accumulation. BSEP and

MRP2 expression were significantly increased by paeoniflorin
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administration, promoting hepatic bile acid efflux. NTCP regulates the

transition of conjugated bile acid uptake into hepatocytes from the

portal venous blood. The expression of NTCP was reduced in EE-

induced cholestasis, which contributed to the relief of cholestasis.

Previous studies have shown that estrogen-induced cholestasis

reduced basolateral organic anion-transporting polypeptides, such as

NTCP and OATPs (Geier et al., 2003). Nonetheless, the decreases of

BSEP and MRP2, which are mainly responsible for canalicular

secretion of bile acids, played dominant roles in EE-induced

cholestasis. Paeoniflorin and UDCA administration further reduced

NTCP expression, contributing to the improvement of cholestatic liver

injury.

As a bile acid synthetic enzyme, CYP7A1 plays a crucial role

in bile acid synthesis. By activating the hepatic small heterodimer

partner, FXR can repress CYP7A1 to reduce bile acid synthesis in

hepatocytes (Chiang et al., 2000). The present study revealed that

paeoniflorin down-regulated the protein level of CYP7A1 in a

dose-dependent manner. Nonetheless, decreased bile acid

synthesis enzyme in cholestatic rats might be an adaptive

response to reduce drug-induced hepatotoxicity.

5 Conclusion

In summary, the present study demonstrated that paeoniflorin

dose-dependently alleviated EE-induced cholestasis and maintained

bile acid homeostasis in rats. Moreover, the results also indicated a

correlation between nuclear receptors, bile acid transporters, synthetic

enzyme, and bile acid homeostasis with the alleviation effect of

paeoniflorin on EE-induced cholestasis. The impact of paeoniflorin

against cholestasis may account for the activation of the FXR-

mediated bile acid homeostasis signaling pathway, which

contributes to upregulation of bile acids efflux and downregulation

of bile acids uptake and synthesis (Figure 8). The present study

suggested that paeoniflorinmay become a potential therapeutic agent

for estrogen-induced cholestasis.
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