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Polycystic ovary syndrome (PCOS) is one of the most common endocrine

diseases in women of reproductive age and features complex pathological

symptoms and mechanisms. Existing medical treatments have, to some extent,

alleviated the deterioration of PCOS. However, these strategies only temporarily

control symptoms, with a few side effects and no preventive effect.

Phytochemicals extracted from medicinal herbs and plants are vital for

discovering novel drugs. In recent years, many kinds of research have

proven that phytochemicals isolated from traditional Chinese medicine

(TCM) and medicinal plants show significant potential in preventing,

alleviating, and treating PCOS. Nevertheless, compared to the abundance of

experimental literature and minimal specific-topic reviews related to PCOS,

there is a lack of systematic reviews to summarize these advancements in this

promising field. Under this background, we systematically document the

progress of bioactive phytochemicals from TCM and medicinal plants in

treating PCOS, including flavonoids, polyphenols, and alkaloids. According to

the literature, these valuable phytochemicals demonstrated therapeutic effects

on PCOS supported by in vivo and in vitro experiments, mainly depending on

anti-inflammatory, antioxidation, improvement of hormone disorder and insulin

resistance (IR), and alleviation of hyperinsulinemia. Based on the current

progress, future research directions should emphasize 1) exploring bioactive

phytochemicals that potentially mediate bone metabolism for the treatment of

PCOS; 2) improving unsatisfactory bioavailability by using advanced drug

delivery systems such as nanoparticles and antibody-conjugated drugs, as

well as a chemical modification; 3) conducting in-depth research on the

pathogenesis of PCOS to potentially impact the gut microbiota and its

metabolites in the evolution of PCOS; 4) revealing the pharmacological

effects of these bioactive phytochemicals on PCOS at the genetic level; and

5) exploring the hypothetical and unprecedented functions in regulating PCOS

by serving as proteolysis-targeting chimeras and molecular glues compared
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with traditional small molecule drugs. In brief, this review aims to provide

detailed mechanisms of these bioactive phytochemicals and hopefully

practical and reliable insight into clinical applications concerning PCOS.
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1 Introduction

Polycystic ovary syndrome (PCOS) is one of the most common

endocrine diseases with a heterogeneous genetic condition in

women of reproductive age (15–49 years) (Palomba et al., 2015;

Balen et al., 2016; Escobar-Morreale, 2018). Data from the Global

Burden of Disease (GBD) in 2019 showed that the incidence of

PCOS increased by 30.4% between 1990 and 2019, reaching

66 million cases globally in 2019 (Murray et al., 2020).

According to the authoritative Rotterdam criteria formulated by

the American Society for Reproductive Medicine (ASRM) and

European Society of Human Reproduction and Embryology

(ESHRE) in 2003 (Rotterdam ESHRE/ASRM-Sponsored PCOS

consensus workshop group), PCOS can be diagnosed with two

symptoms of the following three: 1) chronic oligo-anovulation or

anovulation; 2) clinical or biochemical hyperandrogenism; and 3)

polycystic ovarian morphology. With the development of clinical

research on POCS, according to recommendations from the

International Evidence-based Guideline for the Assessment and

Management of Polycystic Ovary Syndrome from 2018 (Teede

et al., 2018), PCOS has been further distinguished into four

phenotypes: phenotype A manifested as the excess of androgens,

ovulatory dysfunction, and polycystic ovary on ultrasound;

phenotype B manifested as the excess of androgens and

ovulatory dysfunction; phenotype C manifested as the excess of

androgens and polycystic ovary on ultrasound; and phenotype D

manifested as ovulatory dysfunction and polycystic ovary on

ultrasound. Although the guidelines mentioned above permit the

diagnosis of PCOS, the clinicalmanifestations of PCOS are complex

and reference multiple symptoms, such as ovarian enlargement

(Azziz et al., 2016; Escobar-Morreale, 2018), hyperandrogenism

(Rosenfield and Ehrmann, 2016; Ruth et al., 2020), insulin

resistance (Diamanti-Kandarakis and Dunaif, 2012; Azziz et al.,

2016), hyperinsulinemia (Housman and Reynolds, 2014;

Muscogiuri et al., 2015; Cai et al., 2022), menstrual irregularity

(Jayasena and Franks, 2014; Pena et al., 2020), anovulation

(Dewailly et al., 2016; Carson and Kallen, 2021) or oligo-

anovulation (Hickey et al., 2012; Tay et al., 2020), infertility

(Carson and Kallen, 2021), and others. At the same time, PCOS

significantly increases the risk of cardiovascular disease (Okoth

et al., 2020; O’Kelly et al., 2022), type 2 diabetes (Diamanti-

Kandarakis and Dunaif, 2012; Azziz et al., 2016; Zhu et al.,

2021), obesity (Lim et al., 2012; Lim et al., 2013; Sermondade

et al., 2019), and metabolic disorders (Rosenfield and Ehrmann,

2016; Escobar-Morreale, 2018).

Currently, oral contraceptives, antiandrogens, insulin

sensitizers, and ovulation-stimulating drugs are mainly used

to treat different symptoms of PCOS. However, these

treatments only temporarily control symptoms, with a few

side effects and no preventive effect. For example, oral

contraceptives aggravate insulin resistance while increasing

the risk of inflammation and coagulation disorders in women

with PCOS (Manzoor et al., 2019; Okoth et al., 2020).

Spironolactone, as a commonly used antiandrogen, plays an

antagonistic role by binding to the androgen receptor despite

potentially leading to menstrual irregularity and even feminizing

male fetuses (Happe et al., 2021; Rashid et al., 2022). Although

metformin is universally utilized as an insulin sensitizer in

clinical practice, side effects (such as nausea, vomiting, and

diarrhea) limit its extensive clinical application (Morley et al.,

2017). For infertility caused by PCOS, assisted reproductive

technology can be applied as an alternative method. However,

ovulation-stimulating drugs may induce poor ovarian response

and hyperstimulation syndrome, which limits the clinical

application of this technology (La Marca and Sunkara, 2014).

Therefore, it is urgent to discover drugs with novel mechanisms

and few side effects to solve clinical problems.

Phytochemicals extracted from medicinal herbs and plants

are a vital resource for discovering novel drugs (Choudhari et al.,

2020; Rahman et al., 2021; Khatoon et al., 2022). In recent years,

it has been found that phytochemicals isolated from traditional

Chinese medicine (TCM) and medicinal plants (Figure 1) can

improve symptoms of PCOS, such as oxidative stress, insulin

resistance, hyperinsulinemia, hyperandrogenism, abnormalities

in ovarian morphology and function, obesity, anovulation or

oligomenorrhea, miscarriage, infertility, and others. Further

mechanistic studies showed that these phytochemicals mainly

prevent, alleviate, and treat PCOS symptoms through multiple

mechanisms (Figure 2). Although the above research progress

has laid a critical research foundation for the discovery of new

drugs targeting PCOS, there is a lack of systematic reviews

(despite the abundance of experimental literature and tiny

specific-topic reviews (Mihanfar et al., 2021a) to summarize

these advancements in this rapidly developing and promising

field. In this context, this review systematically documents the

progress of bioactive phytochemicals from TCM and plants in

treating PCOS. For the convenience of readers, this review is

divided into three parts (flavonoids, polyphenols, and alkaloids)

according to the structural characteristics of these valuable

phytochemicals.
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FIGURE 1
Bioactive phytochemicals isolated from TCM and medicinal plants forward PCOS.
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2 The pathogenesis of polycystic
ovary syndrome

Although the specific pathological mechanism of PCOS

remains unclear, numerous studies have shown that oxidative

stress (Murri et al., 2013), insulin resistance (Diamanti-

Kandarakis and Dunaif, 2012), and androgen excess (Azziz

et al., 2016; Rosenfield and Ehrmann, 2016) play an essential

role in the occurrence and development of polycystic ovary

syndrome. PCOS can be considered a state of oxidative stress

(Merhi et al., 2019). Specifically, the antioxidant function in the

human body cannot deal with excessive reactive oxygen species

(ROS) (Sies and Jones, 2020; Cheung and Vousden, 2022), which

further exacerbates the clinicopathologic features of PCOS, such

as chronic oligo-anovulation or anovulation, clinical or

biochemical signs of hyperandrogenism, and polycystic

ovarian morphology in women. Meanwhile, high levels

aggravate the oxidative stress reaction and are often

accompanied by insulin resistance (Diamanti-Kandarakis and

Dunaif, 2012), worsening PCOS symptoms. In addition, many

factors, such as the maternal environment and genetics (Stener-

Victorin and Deng, 2021), have influenced the evolution of

PCOS. Namely, high prenatal maternal androgen levels cause

PCOS in female infants (Filippou and Homburg, 2017).

Moreover, recent studies disclose that multiple genes are

highly related to PCOS, and data analysis shows that 241 gene

mutations are involved in the etiology of PCOS (Joseph et al.,

2016). These pathological factors indicate that PCOS is a

comprehensive disease referring to multiple signaling

pathways and targets.

Recent studies have found that the process of chronic

inflammation plays an essential role in the pathogenesis of

PCOS (Rudnicka et al., 2021). Numerous studies have shown

that PCOS patients have higher inflammatory markers, such as

TNF-α, IL-6, IL-1β, IL-18, and C-reactive protein (CRP) (Ganie

et al., 2019; Liu et al., 2021). The nuclear factor κB (NF-κB)
pathway and phosphatidylinositol 3-kinase (PI3K)/AKT serine

(Akt) pathway are associated with high levels of inflammatory

FIGURE 2
Therapeutic mechanisms of bioactive phytochemicals in PCOS.
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TABLE 1 Therapeutic effects of flavonoids on PCOS.

Compound Detail Cell lines/model Dose Application Ref

Quercetin Reduced the activity of
steroidogenic enzyme 3β-HSD
and/or 17β-HSD

Letrozole-induced PCOS rats
model

25 mg/kg In vivo Hong et al. (2018)

Inhibited PI3K pathway to
decrease the expression of CYP17;
Cyp17a1 gene

Testosterone propionate-
induced PCOS rats model

150 mg/kg In vivo Shah and Patel,
(2016)

Affected the combination of AR
with specific sequences of CNP
and NPR2 gene promoters

DHEA-induced PCOS rats
model

100 mg/kg In vivo (Zheng et al.,
2022)

4 mg/kg (intraperitoneal
injection)

Reduced the expression of
aromatase and the estrogen level
and increased the expression of
Nesfatin-1 and AdipoR1 genes

DHEA-induced PCOS rats
model

15 mg/kg In vivo Khorchani et al.
(2020)

Restored the activities of HK and
GK in the liver and increased the
GLUT4 and the ERα gene

DHEA-induced PCOS rats
model

15 mg/kg (0.5 ml 10%
ethanol)

In vivo Neisy et al. (2019)

Activated the adiponectin pathway
and AMPK in PBMC

Women with PCOS 1000 mg clinical study Rezvan et al.
(2018)

Activated the expression of
AMPK-SIRT-1 protein

Letrozole-induced PCOS rats
model

100 mg/kg (CMC 0.5%) In vivo Mihanfar et al.
(2021b)

Enhanced the levels of SOD, CAT,
GPX, GST, GSH, and GR

Menopausal female Sprague‒
Dawley (SD) rats

12.5, 25, 50 mg/kg In vivo (Wang et al., 2018)

Immature female SD rats’
granulosa cells

5, 20, 50 μM In vitro

Regulated the OX-LDL/TLR-4/
NF-κB pathway and reduced the
levels of inflammatory cytokines
IL-1β, IL-6, and TNF-α

DHEA-induced PCOS rats
model

100 mg/kg In vivo (Wang et al.,
2017)

Soy Isoflavones Reduced the TOS and
inflammatory cytokines IL-6, IL-
12, IL-1β, TNF-α and increased
the TAC

EV-induced PCOS rats model 50, 100 mg/kg In vivo Farkhad and
Khazali, (2019)

Inhibited NF-κB pathway Letrozole-induced PCOS rats
model

100 mg/kg In vivo Ma et al. (2021)

Increased aromatase activity to
decrease the level of testosterone

Letrozole-induced PCOS rats
model

50, 100 mg/kg In vivo Rajan et al. (2017)

Reduced the BMI, blood glucose,
insulin resistance markers (such as
insulin), total testosterone in
serum, SHBG, FAI, triglyceride,
VLDL-cholestero, and MDA

Participants with PCOS aged
18–40 years

50 mg clinical study Jamilian and
Asemi, (2016)

Naringenin Reduced the activities of
steroidogenic enzyme 3β-HSD and
17β-HSD

Letrozole-induced PCOS rats
model

20 mg/kg In vivo Hong et al. (2019)

Activating the AMPK/SIRT-1/
PGC-1α signal pathway and
regulating the composition of gut
microbiota

Letrozole-induced PCOS rats
model

20 mg/kg In vivo (Wu et al., 2022)

Blocked the mTORC1/
mTORC2 signal

Insulin + hCG-induced PCOS
rats model

200 mg/kg (CMS, 1% w/v) In vivo (Yang et al., 2022)

Baicalin Destroyed the binding of the
HSD3B2 gene to promoter

NCI-H295R cells 25 μmol/L, 24 h In vivo (Yu et al., 2019)

(Continued on following page)
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markers. It has been validated that the upregulation of these

pathways is related to the mechanism of PCOS (Zhao et al.,

2015). The higher activity of proinflammatory processes in

adipocytes is related to insulin resistance (Zatterale et al.,

2020). Therefore, obesity, inflammatory factors, and insulin

resistance will jointly affect the occurrence and development

of PCOS. Obesity is a symptom most PCOS patients face (de

Zegher et al., 2018), and overweight and obese women have lower

ovulation rates, conception rates, pregnancy rates, and live birth

rates (Gao et al., 2021). Moreover, obesity can promote the

molecular mechanism of androgen expression, which may be

the cause of obesity leading to PCOS (Rangel et al., 2021). In

addition, the latest studies have revealed that the gut microbiota

is also connected with the pathogenesis of PCOS (Qi et al., 2019).

Studies have shown that the abundance of Firmicutes and

Bacteroides in the gut microbiota of PCOS patients is

changed. As beneficial bacteria, Lactobacilli and Bifidobacteria

can regulate the levels of sex hormones, manage the synthesis and

secretion of insulin, and reduce the production of

proinflammatory cytokines (He and Li, 2020; He et al., 2020;

Yurtdas and Akdevelioglu, 2020). All these studies prove that

restoring the abundance of some gut microbiota can be used as a

new strategy to relieve PCOS symptoms.

3 Flavonoids

Flavonoids are a class of essential and valuable compounds

frequently found in nature and demonstrate a variety of

physiological activities, such as anti-inflammatory (Choy et al.,

2019; Maleki et al., 2019), antioxidation (Shen et al., 2022),

hypoglycemic (Shamsudin et al., 2022), antiviral (Ninfali et al.,

2020; Badshah et al., 2021), and antitumor (Sun et al., 2022)

activities. This part mainly summarizes the pharmacological

effects of quercetin, soy isoflavones, naringenin, baicalin,

apigenin, luteolin, rutin, and anthocyanins on PCOS (Table 1).

TABLE 1 (Continued) Therapeutic effects of flavonoids on PCOS.

Compound Detail Cell lines/model Dose Application Ref

GATA1 and reduced the
expression of ovarian HSD3B2

DHEA-induced PCOS rats
model

20 mg/kg (normal saline)

Increased AMPK to inhibit PI3K/
Akt signal pathway and reduce the
protein level of 5α-R1

DHEA-induced PCOS rats
model

50 mg/kg (injected) In vivo (Wang et al.,
2019)

Apigenin Reduced levels of testosterone,
estrogen, and LH/FSH
Reduced the expression of the NF-
κB transcription factor gene to
reduce the levels of TNF-α and
IL-6

EV-induced PCOS rats model 20, 40 mg/kg (1 mg/ml in
DMSO)

In vivo Darabi et al.
(2020)

Decrease the TOS and increase the
TAC and the activities of SOD,
CAT, POD, NADPH, and GR

DHEA-induced PCOS rats
model

20 mg/kg (0.5%
carboxymethyl cellulose)

In vivo Peng et al. (2022)

Luteolin Regulated PI3K/Akt transduction Letrozole-induced PCOS rats
model

25, 50, 100 mg/kg
(intraperitoneal injection)

In vivo Huang and Zhang,
(2021)

Activated Nrf2 to promote the
expression of Hmox1 and NQO1

Rutin Enhanced the activity of insulin-
dependent receptor kinase and
increases the expression of GLUT4

Letrozole-induced PCOS rats
model

100, 150 mg/kg In vivo Jahan et al. (2016)

Activated BAT to increase the
expression of UCP1 and
upregulates the expression of
adiponectin

DHEA-induced PCOS rats
model

100 mg/kg In vivo Hu et al. (2017)

Reduced the expression of GnRH
and the secretion of LH and
testosterone

5α-DHT-induced PCOS rats
model

150, 300 mg/kg
(intraperitoneal injection)

In vivo Gao et al. (2020)

Saffron petal
anthocyanins

Restored the levels of LH, FSH,
and steroid hormones

Testosterone enanthate-induced
PCOS mice model

20, 40, 80 mg/kg In vivo Moshfegh et al.
(2022)

Reduced the mRNA levels of
inflammatory genes and restored
the NF-κB and IκB
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3.1 Quercetin

Quercetin (3,5,7,3′,4′-pentahydroxyflavone) is a common

dietary flavonoid in vegetables and fruits. In recent years,

quercetin has been widely studied because of its antioxidation,

anti-inflammatory, antitumor, hypoglycemic, cardiovascular

protection, and other effects in regulating ovarian function

and protecting ovarian morphology. Through network

pharmacology and bioinformatics, Li et al. found that

quercetin, as the core ingredient of the Kuntai capsule (a

proprietary Chinese medicine), overlaps with potential

therapeutic targets in treating PCOS (Li et al., 2022). Hong

et al. speculated that the phenolic ring B of quercetin reduced

the activity of steroidogenic enzyme 3β-hydroxysteroid
dehydrogenase (3β-HSD) and/or 17β-hydroxysteroid
dehydrogenase (17β-HSD), thus effectively relieving the

symptoms of the metabolic disorder (Hong et al., 2018). In

addition, quercetin decreases the expression of the 17α-
hydroxylase/C17-20-lyase (CYP17; Cyp17a1) gene to reduce

the activity of its enzyme (the critical enzyme that converts

progesterone to androgens) (Shah and Patel, 2016) and

regulates the state of androgen receptor (AR) binding to the

specific sequence of C-type natriuretic peptide (CNP)/natriuretic

peptide receptor 2 (NPR2) gene promoters (Zheng et al., 2022),

thereby restoring the normal meiosis of oocytes and improving

the state of high androgen and anovulation in patients with

PCOS. In addition to high androgen levels, Khorchani et al.

found that the overexpression of aromatase is associated with an

increase in estrogen levels. In contrast, estrogen inhibits the

secretion of gonadotropin-releasing hormone (GnRH) and

follicle-stimulating hormone (FSH) through negative feedback,

leading to decreased oogenesis (Khorchani et al., 2020).

Quercetin, functionally similar to estradiol, can reduce the

expression of aromatase and the estrogen level, effectively

increasing oogenesis (Khorchani et al., 2020). Estrogen

receptor α (ERα) plays a vital role in fertility. Neisy et al.

found that the ERα gene can be increased by quercetin.

Compared with the control group, the expression of the ERα
gene reached five times higher in the rats treated with quercetin,

which provided a method for treating infertility caused by PCOS

(Neisy et al., 2019).

Obesity is one of the crucial factors attributed to PCOS.

Khorchani et al. reported that low expression of the Nesfatin-1

and AdipoR1 genes was associated with obesity, and treatment

with quercetin increased the expression of the Nesfatin-1 and

AdipoR1 genes, showing a good effect on weight loss and other

symptoms caused by obesity (Khorchani et al., 2020).

Adiponectin is an essential human adipose factor controlled

by the receptors AdipoR1 and AdipoR2, which can metabolize

glucose and fatty acids by stimulating AMP-activated protein

kinase (AMPK) (Rezvan et al., 2018). The level of adiponectin is

low in PCOS with or without adiposity. Clinical data showed that

quercetin (1 g daily for 12 weeks) improved adiponectin-

mediated IR and metabolic disorder by increasing total

adiponectin and high molecular weight adiponectin and

reducing resistin, which promoted IR and hyperinsulinemia

(Khorshidi et al., 2018). Furthermore, Rezvan et al. revealed

that by activating the adiponectin pathway and AMPK in

peripheral blood mononuclear cells (PBMCs), quercetin

improved the metabolic pathway and the expression of

adipokines (Rezvan et al., 2018). Moreover, the imbalance of

AMPK-SIRT-1 (as a metabolic sensor) is highly related to IR,

weight gain, and fat formation. Mihanfar et al. reported that

quercetin could activate the expression of AMPK-SIRT-

1 protein, thus increasing insulin sensitivity and improving

other symptoms of PCOS (Mihanfar et al., 2021b).

Oxidative stress is another prominent pathological feature of

PCOS. Research has found that quercetin enhances the levels of

superoxide dismutase (SOD), catalase (CAT), glutathione

peroxidase (GPX), glutathione s-transferase (GST), glutathione

(GSH), and glutathione reductase (GR) in menopausal female

Sprague‒Dawley (SD) rats to reverse the changes in ovarian

morphology induced by oxidative stress (Hong et al., 2018; Wang

et al., 2018). In addition, quercetin also has promising potential

to alleviate IR. Neisy et al. discovered that quercetin increased

insulin sensitivity and restored glucose homeostasis by restoring

the activities of hexokinase (HK) and glucokinase (GK) in the

liver and the expression of the intrauterine glucose transporter

type 4 (GLUT4) gene (Neisy et al., 2019). Later, Wang et al. found

that quercetin reduced the levels of the inflammatory cytokines

IL-1β, IL-6, and TNF-α by regulating the oxidized low-density

lipoprotein (OX-LDL)/Toll-like receptor 4 (TLR-4)/nuclear

factor κB (NF-κB) pathway, improving the inflammatory

microenvironment of ovarian tissue and reversing IR in

dehydroepiandrosterone (DHEA)-induced PCOS rats (Wang

et al., 2017).

3.2 Soy isoflavones

Soy isoflavones are a kind of secondary metabolite formed in

the growth of soy and display diverse bioactivities. In recent

years, soybean isoflavones have attracted much attention due to

their antioxidation, anti-inflammatory, and cholesterol-lowering

properties. Farkhad et al. found that treatment with soy

isoflavones could reduce the total oxidative state (TOS) and

inflammatory cytokines IL-6, IL-12, IL-1β, and TNF-α in

estradiol valerate (EV)-induced PCOS rats and increase the

total antioxidant capacity (TAC) (Farkhad and Khazali, 2019).

Their report revealed that soy isoflavones reduced the number of

cystic follicles and the outer layer of theca cells (Lan et al., 2017).

In addition, Ma et al. found that soy isoflavones regulated the

morphology and function of ovaries by inhibiting the NF-κB
pathway to achieve antioxidation and anti-inflammatory effects,

improving hormone disorders in PCOS rats (Ma et al., 2021).

Aromatase is a critical enzyme in converting androgen to
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estrogen, and insufficient aromatase activity may contribute to

excessive androgen accumulation. Soy isoflavone decreased

testosterone concentration by increasing aromatase activity

and improving hyperandrogenism in letrozole-induced PCOS

rats (Rajan et al., 2017). Clinical data studies showed that soy

isoflavones (50 mg daily for 12 weeks), a reduction in BMI, blood

glucose, insulin resistance markers (such as insulin), total serum

testosterone, sex hormone-binding globulin (SHBG), free

androgen index, triglyceride, VLDL-cholesterol, and

malondialdehyde were observed, as well as increases in GSH,

SOD, and GPX (Jamilian and Asemi, 2016; Karamali et al., 2018).

These experiments indicated that soy isoflavones have beneficial

effects on IR, hormone disorders, and oxidative stress related to

PCOS. For gut microbiota, Liyanage et al. have found that

letrozole-induced PCOS rats with soy isoflavones and resistant

starch can restore the menstrual cycle and improve the polycystic

ovary through the genus-level of gut microbiota returned to

normal (Liyanage et al., 2021). However, the poor effect of soy

isoflavone used exclusively was documented, which implied that

soy isoflavone could be applied as an auxiliary drug to regulate

gut microbiota (Liyanage et al., 2021). In contrast to the above

studies, Patisaul et al. have shown that lifetime exposure to a soy

diet containing endocrine-active phytoestrogens could induce

the symptoms of PCOS caused by endocrine-disrupting

compounds (EDCs) (Patisaul et al., 2014). Therefore, attention

should be given to this phenomenon in treating PCOS.

3.3 Naringenin

Naringin, one of the valuable flavonoids widely found in

traditional Chinese medicine, possesses a variety of

pharmacological activities, such as anti-inflammation and

antioxidation. Due to the existing B-ring moiety, naringin can

reduce the activities of steroidogenic enzymes 3β-HSD and 17β-
HSD in the letrozole-induced PCOS rats and improve the

symptoms of hormone disorder (Hong et al., 2019).

Additionally, naringin can enhance the bioactivities of SOD,

CAT, and GPX while scavenging ROS and relieving the oxidative

stress of PCOS (Hong et al., 2019). Wu et al. found that naringin

could affect the level of sex hormones, reduce IR, alleviate

chronic inflammation and maintain normal ovarian

morphology and function by activating the AMPK/SIRT-1/

PGC-1α signaling pathway and regulating the composition of

intestinal flora (Wu et al., 2022). Furthermore, Yang et al.

disclosed that naringin combined with morin could inhibit the

proliferation of human endometrial adenocarcinoma cells. In

their study, naringin inhibited PCOS-induced endometrial

hyperplasia and regulated autophagy by blocking the

mammalian target of rapamycin complex 1 (mTORC1)/

mammalian target of rapamycin complex 2 (mTORC2)

signaling, and morin increased the levels of Caspase-3 and

LC3-phosphatidylethanolamine conjugate (LC3-II) (Yang

et al., 2022). In addition, naringin could change the elevated

serum insulin level and maintain the typical morphology of the

ovary in rats with PCOS (Wu et al., 2022). Undoubtedly, naringin

shows specific therapeutic potential in insulin-resistant PCOS.

3.4 Baicalin

Scutellaria baicalensis Georgi has been used for thousands of

years in Asia. As an effective flavonoid isolated from Scutellaria

baicalensis Georgi, baicalin has a wide range of pharmacological

activities, such as anti-inflammatory, antitumor, and

antioxidation activities. Overexpression of 3β-hydroxysteroid
dehydrogenase type II (HSD3B2) in ovarian tissue or adrenal

cortex leads to excessive androgen synthesis and results in PCOS

(Yu et al., 2019). In NCI-H295R cells and the DHEA-induced

PCOS rat model, Yu et al. discovered that baicalin could improve

the hyperandrogenism of PCOS by destroying the binding of the

HSD3B2 gene to the promoter GATA1 and reducing the

expression of ovarian HSD3B2, resulting in reduced

testosterone secretion (Yu et al., 2019). Additionally, previous

studies have shown that AMPK, a sensor of cellular energy

changes and a key enzyme in regulating glucose and lipid

metabolism, participates in the synthesis and oxidative

decomposition of glucose and fatty acids (You et al., 2018).

Wang et al. reported that baicalin increased AMPK to inhibit

the PI3K/Akt signaling pathway and reduce the protein level of

5α-R1 in ovarian tissue, contributing to increasing insulin

sensitivity and regulating androgen levels (reducing the

hormone levels of free testosterone, total testosterone,

luteinizing hormone (LH), FSH, progesterone, and estradiol).

Likewise, baicalin decreased TNF-α, IL-1β, and IL-18 and

increased IL-10, resulting in the amelioration of inflammation

by proinflammatory and anti-inflammatory cytokines in ovarian

tissues (Wang et al., 2019).

3.5 Apigenin

Apigenin is a natural flavonoid from many sources, such as

fruits and vegetables, with anti-inflammatory, antioxidation, and

antitumor activities. Darabi et al. revealed that apigenin could

reduce testosterone, estrogen, and LH/FSH levels in EV-induced

PCOS rats, normalizing the hormone levels (Darabi et al., 2020).

Moreover, they speculated that the observed decrease in

hormone levels might be achieved by reducing the activity of

aromatase and its 17β-hydroxysteroid dehydrogenases. PCOS is

a chronic inflammatory disease highly related to oxidative stress.

The experiment showed that apigenin reduced TNF-α and IL-6,

which may be accomplished by reducing the expression of the

NF-κB transcription factor gene (Darabi et al., 2020). Peng et al.

found that apigenin could decrease the TOS and increase the

TAC and the activities of SOD, CAT, peroxidase (POD),
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nicotinamide adenine dinucleotide phosphate (NADPH), and

glutathione reductase (GR), thus inhibiting oxidative stress (Peng

et al., 2022). As a result, the antioxidant effect of apigenin

restored ovarian tissue, increased the number of healthy

follicles, and contributed to regaining the pleura of follicles

(Darabi et al., 2020; Peng et al., 2022).

3.6 Luteolin

Luteolin is a natural flavonoid in fruits, vegetables, and TCM

used to treat hypertension, diabetes, cancer, and allergies. It is

generally accepted that IR, which is closely related to

hyperinsulinemia, is one of the pathogenic mechanisms of

PCOS. The abundance of insulin receptor substrate (IRS) is

related to decreased PI3K activity in women with PCOS

(Chahal et al., 2021). The phosphorylation of IRS in PCOS

results in the dysfunction of PI3K/Akt transduction,

eventually leading to exaggerated IR and disturbance of

glucose homeostasis. Luteolin showed significant glucose

homeostasis recovery and IR improvement in letrozole-

induced PCOS rats by regulating PI3K/Akt transduction

(Huang and Zhang, 2021). Additionally, PCOS patients always

showed a state of oxidative stress. The decrease in antioxidants,

such as SOD, CAT, GSH, GPX, and glutathione peroxidase

(GSH-Px), and the increase in ROS affected the ovary’s

physiological functions, such as ovulation, folliculogenesis, and

oocyte maturation. Moreover, Nrf2 is a transcription factor

mediating the antioxidant pathway. Huang et al. reported that

luteolin exerted antioxidative effects by activating Nrf2 to

promote the expression of heme oxygenase-1 (Hmox1) and

quinone oxidoreductase 1 (NQO1), as well as increasing the

levels of CAT, GPX, SOD, GSH, and GSH-Px. As a result,

reduced oxidative stress and restored ovarian function were

observed in ovarian granulosa cells of rats with letrozole-

induced PCOS (Huang and Zhang, 2021).

3.7 Rutin

Rutin is a flavonol compound from many sources with

antioxidative, anti-inflammatory, and hypoglycemic effects.

Dyslipidemia, IR, hormonal imbalances, and oxidative stress

often exist in PCOS. Rutin can restore lipid profiles by

reducing the expression levels of adipogenic genes (Han et al.,

2016). For IR, rutin could enhance the activity of insulin-

dependent receptor kinase and increase the expression of

GLUT4, thus increasing glucose uptake, controlling blood

sugar, and reducing the risk of diabetes in patients with PCOS

(Jahan et al., 2016). The function and morphology of aberrant

adipose tissue in PCOS patients are closely related to IR. BAT

(brown adipose tissue) can participate in whole-body metabolic

homeostasis through uncoupling protein 1 (UCP1)-mediated

thermogenesis and secretory cytokines such as adiponectin.

Previous research experimentally showed that BAT

transplantation in DHEA-induced PCOS rats improved lipid

metabolism and reversed anovulation, hyperandrogenism, and

polycystic ovaries (Yuan et al., 2016). However, BAT

transplantation is unfeasible in clinical applications. Moreover,

rutin could activate BAT, increase the expression of UCP1 to

increase energy expenditure, and upregulate adiponectin

expression in BAT, thereby improving adiposity and IR in

DHEA-induced PCOS rats (Hu et al., 2017). Treatment with

rutin activated ovarian steroidogenic enzymes such as P450C17,

aromatase, 3β-HSD, 17β-HSD, and STAR at normal levels and

improved the hormonal imbalances of PCOS rats (Hu et al.,

2017). Furthermore, rutin reduced ROS accumulation and

improved oxidative stress in PCOS rats. As a rutin derivative,

troxerutin was capable of reducing the expression of GnRH (as

the master hormone), reducing the secretion of LH and

testosterone, and improving the reproductive endocrine

dysfunction of 5α-DHT-induced PCOS rats (Gao et al., 2020).

3.8 Saffron petal anthocyanins

Crocus sativus (saffron) possesses anti-inflammation,

antioxidation, and antitumor properties in the clinical

application of TCM. Anthocyanins belong to the flavonoid

family and are used to alleviate diabetes and control obesity,

which contribute to PCOS. Moshfegh et al. utilized saffron petal

anthocyanins (SPA) to treat testosterone-induced PCOS mice

and disclosed that SPA could improve the hormone disorder,

which was evidenced by the recovery of serum levels of LH, FSH,

and steroid hormones (estrogen, progesterone, and testosterone)

in mice (Moshfegh et al., 2022). In addition, SPA reduced the

levels of the inflammatory cytokines TNF-α, IL-6, IL-1β, IL-18,
and C-reactive protein (CRP), indicating that SPA demonstrated

an anti-inflammatory effect by reducing the mRNA levels of

inflammatory genes and restoring NF-κB and inhibitor of NF-κB
(IκB) (key mediators of inflammatory genes), resulting in

improvement of the inflammatory response of PCOS mice

(Moshfegh et al., 2022). In addition, SPA showed

antioxidation, which was reflected in the increased levels of

GPX, SOD, CAT, GST, and GSH enzymes in the plasma of

PCOS mice after SPA treatment. Subsequently, these results

ensured that the number of follicles and corpus luteum

increased, and the number of cystic follicles decreased in

PCOS mice (Moshfegh et al., 2022).

4 Polyphenols

Polyphenols play a restricted role in modern medicine

because of their poor bioavailability (Dei Cas and Ghidoni,

2019; Zhang et al., 2020a). However, polyphenols possess
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TABLE 2 Therapeutic effects of polyphenols on PCOS.

Compound Detail Cell lines/model Dose Application Ref

Resveratrol Reduced the expression of VEGF and HIF1 genes women with PCOS 800 mg clinical study Bahramrezaie et al.
(2019)

Decreased VEGF in granulosa cells Granulosa cells 10–50 μM In vitro Ortega et al. (2012b)

Reduced levels of testosterone and DHEA Women with PCOS 1500 mg clinical study Banaszewska et al.
(2016)

Inhibited the Akt/PKB signal pathway NCI-H295R cells 5–50 μM
(DMSO)

In vitro Marti et al. (2017)

Blocked the activity of the Akt/PKB signaling pathway to
inhibit Cyp17a1 mRNA expression

Ovarian the interstitial
cells

1–10 μM In vitro Ortega et al. (2012a)

Inhibited the mevalonate pathway and Akt/PKB
phosphorylation

Ovarian the interstitial
cells

3–10 μM In vitro Ortega et al. (2014)

Mediated deacetylation of the p66Shc and reduced the
production of ROS and fibrotic factors

DHEA-induced PCOS
rats model

100 mg/kg In vivo (Wang et al., 2020)

Altered the expression of genes involved in the UPR
process

Women with PCOS 800 mg clinical study Brenjian et al., 2020

Inhibited NF-κB and NF-κB regulated gene products

Activated the AMPK-SIRT-1 pathway and reduced the
levels of AMH, testosterone, LH, and LH/FSH

DHEA-induced PCOS
rats model

20 mg/kg In vivo Rencber et al., 2018

Resumed the inward flow of calcium ions, activated the
CaMKIIβ, and enabled TZPs synthesis

TBT-induced PCOS
rats model

20 mg/kg
(0.5% CMC)

In vivo Chen et al. (2022)

Curcumin Inhibited the IRE1α-XBP1 pathway in ovarian GCs, and
downregulated follicular development-related genes (Ar,
Cyp11α1, and Cyp19α1)

DHT-induced PCOS
rats model

200 mg/kg In vivo (Zhang et al., 2021)

Regulated the level of PI3K/Akt/mTOR in the pancreas
and reduce the level of TNF-α

Letrozole-induced
PCOS rats model

50, 100,
200 mg/kg

In vivo Abuelezz et al. (2020)

Reduced the expression of apoptotic factors and increased
the expression of BAX, Bcl2 genes, and Caspase3

DHEA-induced PCOS
mice model

5.4 mg/100 g
(54 mg/kg)

In vivo Abhari et al. (2020)

Achieve a natural drug delivery system (sustained release
pattern) against PCOS for a long time

KGN cells 5 μg/ml In vitro Raja et al. (2021)

EV-induced PCOS
mice model

50 mg/kg In vivo

Reduced FPG and DHEA Women with PCOS 1500 mg clinical study Heshmati et al. (2021)

Catechin Inhibited the expression of STAT3 signaling, MMP2, and
MMP9 in the uterus, increased IRS-1 and PI3K signals,
downregulated NF-κB

Insulin and hCG-
induced PCOS mice
model

25, 50,
100 mg/kg

In vivo Hong et al. (2020)

Activated PPAR-α, and PPAR-γ Woman with PCOS 200 mg clinical study Haj-Husein et al.
(2016)

Cinnamon Enhanced insulin sensitivity and reduced the levels of
insulin and LDL

Woman with PCOS 1500 mg clinical study Hajimonfarednejad
et al. (2018)

Reduced the plasma IGF-1 level, increased the plasma
IGFBP-1 level, and downregulated the serum levels of
testosterone and insulin

DHEA-induced PCOS
mice model

10 mg/100 g In vivo Dou et al. (2018)

(100 mg/kg)

Gallic acid Decreased the concentrations of inflammatory cytokines
and inhibited ROS production

EV-induced PCOS rats
model

50, 100 mg/kg In vivo Mazloom et al. (2019)

Mangiferin Reduced the pp65/p65 ratio and blocked the NF-κB
signaling and the expression of inflammatory cytokines
IL-6, IL-1β, and TNF-α

DHEA-induced PCOS
rats model

10, 20, 30 mg/kg In vivo Qian et al. (2020)
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significantly beneficial effects in treating PCOS, which has been

confirmed in recent studies (Mirabelli et al., 2020; Mihanfar et al.,

2021a). This section mainly focuses on the pharmacological

effects of polyphenols such as resveratrol, curcumin, catechins,

cinnamon, gallic acid, and mangiferin on PCOS (Table 2).

4.1 Resveratrol

PCOS often presents with hyperandrogenism, oxidative

stress, and infertility, accompanied by cardiovascular diseases

and others. Resveratrol (RVT) is a polyphenolic compound

derived from peanuts, grapes, and other plants featuring

broad biological functions, such as antioxidation, anti-

inflammatory, and cardiovascular protective effects.

Hyperandrogenism in PCOS induces the expression of VEGF

(highly related to ovarian hyperstimulation syndrome) and leads

to abnormal angiogenic irregularities in ovaries (Herr et al.,

2015). Ortega and Bahramrezaie et al. illustrated that RVT

improved irregular angiogenesis by reducing the expression of

VEGF mRNA, VEGF protein, and the intermediate factor

HIF1 to improve disorders of ovulation, subfertility, and

endometriosis caused by ovarian hyperstimulation syndrome

(Ortega et al., 2012b; Bahramrezaie et al., 2019). The high

testosterone secreted by the ovary and high DHEA secreted

by the adrenal gland could induce hyperandrogenism.

Banaszewska et al. found that RVT reduced the levels of

testosterone and DHEA in serum and affected the production

of androgen in the ovary and adrenal glands, thus improving

hyperandrogenism in PCOS (Banaszewska et al., 2016). Further

study showed that CYP17/Cyp17a1 was the key rate-limiting

enzyme in androgen biosynthesis. RVT reduced androgen

production by inhibiting the Akt/PKB signaling pathway and

reducing the protein expression of CYP17/Cyp17a1 in theca-

interstitial cells (Ortega et al., 2012a; Marti et al., 2017).

Moreover, Israel et al. confirmed that RVT, combined with

simvastatin (a drug that inhibits steroidogenesis in theca-

interstitial cells), could effectively reduce steroidogenesis by

inhibiting the mevalonate pathway and Akt/PKB

phosphorylation (Ortega et al., 2014).

Hyperandrogenism also induces ovarian oxidative stress

(OS) and fibrosis in PCOS rats, leading to infertility. Wang

et al. reported that RVT, as a SIRT-1 agonist, mediated

deacetylation of the 66-kDa Src homology 2 domain-

containing protein (p66Shc) while reducing the production of

ROS and fibrotic factors, resulting in improved ovarian oxidative

stress and fibrosis (Wang et al., 2020). Endoplasmic reticulum

stress (ERS) in granulosa cells (GCs) is related to chronic

inflammation and oxidative stress in PCOS. Studies have

shown that RVT can regulate ERS in GCs by altering the

expression of genes involved in the unfolded protein response

(UPR) process, reducing the levels of proinflammatory factors,

such as IL-6, IL-1β, TNF-α, IL-18, and CPR, and contributing to

the amelioration of inflammation and oxidative stress (Ghowsi

et al., 2018; Brenjian et al., 2020). Rencber et al. further disclosed

that RVT could not only reduce the level of these factors by

activating the AMPK-SIRT-1 pathway but also downregulate the

levels of anti-Müllerian hormone (AMH), T, LH, and LH/FSH,

giving rise to ameliorate the hormone disorders of PCOS and the

structure of follicular cells (Rencber et al., 2018). Recent studies

have pointed out that damage to transzonal projections (TZPs)

could mediate oocyte-granulosa cell (GC) communication in

follicles, which may play a vital role in the etiology of PCOS.

Chen et al. disclosed that RVT resumed the inward flow of

calcium ions and activated calcium-/calmodulin-dependent

protein kinase II beta (CaMKIIβ), thus enabling the synthesis

of TZPs. Chen’s work provided a new strategy for treating PCOS

(Chen et al., 2022).

4.2 Curcumin

Curcumin is a yellow polyphenol pigment extracted from

turmeric (Curcuma longa L.), which is low-insoluble in water.

Curcumin has received attention from the scientific community

due to its anti-inflammatory, antioxidation, and antiapoptotic

properties. In PCOS, hyperandrogenism induces ERs and

activation of the UPR (to maintain ER homeostasis). Zhang

et al. illustrated that long-term ERs led to GC autophagy or

apoptosis and caused follicle development disorders, including

the accumulation of small follicles around the ovary, polycystic

morphology, anovulation, and damage to follicular maturation

(Zhang et al., 2021). Curcumin (200 mg/kg daily for 8 weeks)

combined with aerobic exercise ameliorated follicle development

disorders by reducing hyperandrogen-induced ERs, inhibiting

the IRE1α-XBP1 pathway in ovarian GCs, and downregulating

follicular development-related genes (Ar, Cyp11α1, and

Cyp19α1) (Zhang et al., 2021). Heshmati et al. found that in a

randomized, placebo-controlled double-blind trial, curcumin

(1500 mg daily for 12 weeks) significantly reduced fasting

plasma glucose (FPG) and DHEA in PCOS patients. This

result suggested that curcumin could reduce blood glucose,

regulate hormone levels, and prevent type 2 diabetes and

other complications with PCOS (Heshmati et al., 2021). Due

to curcumin’s low oral bioavailability, medium-high curcumin

was utilized in the above experiments.

To improve curcumin’s solubility and bioavailability, many

researchers have applied curcumin nanoparticles (curcumin

NPs) to improve its therapeutic effects. Abuelezz et al.

reported that impaired PI3k/Akt/mammalian target of

rapamycin (mTOR) signaling in the pancreas and increased

levels of TNF-α in PCOS led to pancreatic β-cell secretory

dysfunction and IR to disturb glucose metabolism. Curcumin

NPs, as an anti-inflammatory agent, could regulate the level of

PI3K/Akt/mTOR in the pancreas and reduce TNF-α, thus

alleviating abnormal glucose metabolism (Abuelezz et al.,
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2020). In addition, Abhari et al. revealed that the imbalance

between increased ROS levels and decreased GSH initiates

oxidative stress and induces apoptosis (Abhari et al., 2020).

Oxidative stress could increase the levels of AMH and

estrogens via lipid peroxidation of GCs and then bring about

follicular atresia, polycystic morphology, anovulation, and other

symptoms in PCOS. Interestingly, curcumin’s antioxidation

could reduce the level of ROS and inhibit GC apoptosis and

oxidative stress by reducing the expression of apoptotic factors

and increasing the expression of BAX, B-cell lymphoma 2 (Bcl2)

genes, and Caspase3, followed by restoring ovarian function

(Abhari et al., 2020). Inspired by the above studies, Raja et al.

modified curcumin NPs, which encapsulated arginine (Arg)- and

N-acetyl histidine (NAcHis)-modified chitosan (Arg-CS-

NAcHis/Cur) nanoparticles (NPs), to construct a better

natural drug delivery system (sustained release pattern)

against PCOS (Raja et al., 2021).

4.3 Catechin

Bioactive ingredients extracted from tea potentially improve

IR, hyperandrogenism, abnormalities in ovarian morphology,

and overweight in PCOS through antioxidation and anti-

inflammatory pathways. Catechins from oolong tea inhibited

the expression of STAT3 signaling, MMP2, and MMP9 in the

uterus, increased insulin receptor substrate-1 (IRS-1) and PI3K

signals, and downregulated NF-κB, contributing to ameliorating

hyperandrogenism and IR, reversing abnormalities in ovarian

morphology and reducing uterine inflammation in insulin- and

hCG-induced PCOS mice (Hong et al., 2020). The phenolic

content in marjoram (Origanum majorana L.) tea aqueous

extract mainly includes caffeic acid derivatives and rosmarinic

acid. Haj-Husein et al. illustrated that marjoram tea increased

PCOS-induced insulin sensitivity by activating peroxisome

proliferator-activated receptor-α (PPAR-α) and peroxisome

proliferator-activated receptor-γ (PPAR-γ) (Haj-Husein et al.,

2016). A host of PCOS patients are overweight or obese, which

will not only affect metabolism but also lead to reproductive

disorders. Mombaini et al. demonstrated that green tea reduced

body mass index, weight, waist circumference, and body fat

percentage in women with PCOS and revealed that catechins

and caffeine in green tea could prolong the pharmacological

effects of catecholamines and increase levels of norepinephrine

(increasing energy expenditure and fat oxidation) (Mombaini

et al., 2017). These experiments suggested that long-term tea

consumption was beneficial in preventing PCOS.

4.4 Cinnamon

Cinnamon polyphenol compounds isolated from cinnamon

have attracted much attention because of their potential in

patients with type 2 diabetes. Kort et al. showed that

cinnamon could significantly reduce FPG and improve IR and

menstrual cyclicity in patients with PCOS, but the specific

mechanism has not been clarified (Kort and Lobo, 2014).

Further mechanistic studies showed that cinnamon extract

had insulin-like properties, enhancing insulin sensitivity and

reducing insulin levels and LDL. As a result, the improvement

of hormone levels, recovety of the normal menstrual cycle, and

reduction of the risk of PCOS complications such as type

2 diabetes and cardiovascular disease were observed (Keefe,

2015; Hajimonfarednejad et al., 2018; Khan and Begum,

2019). In addition, the imbalance between insulin-like growth

factor-1 (IGF-1) and insulin-like growth factor-binding protein-

1 (IGFBP-1) affects follicular maturation. Patients with PCOS

always feature higher IGF-1 and lower IGFBP-1 than healthy

women. Dou et al. found that cinnamon extract could reduce the

plasma IGF-1 level, increase the plasma IGFBP-1 level, and

downregulate the serum levels of testosterone and insulin,

followed by restoring the estrous cyclicity and ovary

morphology of DHEA-induced PCOS mice (Dou et al., 2018).

4.5 Gallic acid

Gallic acid (GA), with the chemical formula C7H6O5 and a

molecular weight of 170.12 g/mol, is a polyphenol found in many

plants with anti-inflammatory and antioxidation properties.

Mazloom et al. showed that proinflammatory cytokines were

significantly increased, and estrous cyclicity was disrupted in the

EV-induced PCOS rat model (Mazloom et al., 2019). The

decreased concentrations of inflammatory cytokines in the

ovaries of rats treated with GA indicated that GA played an

anti-inflammatory role in PCOS (Mazloom et al., 2019). As an

antioxidant, GA could effectively protect the ovary and improve

the blocked development of follicular formation and follicular

atresia in PCOS by inhibiting ROS production, protecting DNA,

and preventing lipid peroxidation (Mazloom et al., 2019).

4.6 Mangiferin

Mangiferin is a bioactive compound isolated from the leaves

and bark of mango tree (Mangifera indica) and kinds of TCM,

which is widely reported due to its anti-inflammatory and

regulation of blood glucos. Qian et al. demonstrated that

mangiferin could ameliorate ovarian function and IR by

reducing the ratio of ovarian weight/body weight, levels of

blood glucose, and insulin, which was highly connected with

POCS (Qian et al., 2020). In Qian’s experiment, mangiferin

improved inflammation in the DHEA-induced PCOS rat

model by reducing the pp65/p65 ratio and blocking NF-κB
signaling and the expression of the inflammatory cytokines

IL-6, IL-1β, and TNF-α. They also found that inhibition of
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inflammation improved IR symptoms in DHEA-induced PCOS

rats (Qian et al., 2020). Their research showed that the utilization

of mangiferin could be considered a potential therapeutic

strategy for PCOS.

5 Alkaloids

Alkaloids are a class of compounds with various therapeutic

effects that play a massive role in treating diseases (Peng et al.,

2019; Bai et al., 2021; Rampogu et al., 2022). However, according

to the literature, alkaloids rarely show potential in treating PCOS.

This phenomenon indicates that research on alkaloids may

provide an opportunity to treat PCOS (Table 3).

PCOS patients usually present with IR, an excess of

androgens, an inflammatory response, infertility, or

miscarriage. Metformin and insulin sensitizers are usually

used to relieve the above symptoms in the clinic. Berberine

(BBR) is an isoquinoline alkaloid that is mainly isolated from

TCMs, such as Berberis vulgaris L. and Coptis chinensis Franch.

BBR is regarded as an insulin sensitizer, and An et al. discovered

that BBR was similar to metformin in reducing fasting glucose,

fasting insulin, HOMA-IR, and androgen and increasing SHBG.

Moreover, women who received berberine were associated with

an increase in the live birth rate and fewer side effects after

in vitro fertilization (an assisted reproductive technology)

treatment than metformin (An et al., 2014). In addition, BBR

increases insulin sensitivity by regulating IRS-1 and the mTOR

signaling pathway (Kuang et al., 2020). Likewise, BBR

upregulated GLUT4 to alleviate IR through dual regulation of

PI3K/Akt and mitogen-activated protein kinases (MAPKs)

(Zhang et al., 2020b). Additionally, Shen et al. discovered that

BBR might alleviate PCOS by inhibiting apoptosis and regulating

the expression levels of toll-like receptor 4 (TLR4), tyrosine

kinase (LYN), PI3K, Akt, NF-κB, TNF-α, IL-1, IL-6, and

caspase-3, which contributed to the improvement of IR (Shen

et al., 2021a). For infertility and miscarriage caused by PCOS, Yu

et al. confirmed that BBR promoted proliferation and inhibited

apoptosis of ovarian granulosa cells through the PI3K/Akt

pathway, which is beneficial to improving the pregnancy rate

(Yu et al., 2021). High levels of lysophosphatidic acid receptor 3

(LPAR3) and integrin αvβ3 led to reduced endometrial

receptivity and subsequent miscarriage. Wang et al. revealed

that intervention with BBR could downregulate the levels of

LPAR3 and αvβ3 in PCOS rats (Wang et al., 2021). Furthermore,

BBR alleviates ovarian glucose metabolism disorders in PCOS. Li

et al. indicated that BBR activated the AMPK pathway by

promoting the ubiquitination of SIRT-3 and resulted in

ovarian cell glucose uptake to maintain ovarian glucose

homeostasis (Li et al., 2020). Regarding the effects of the gut

microbiota on PCOS, Shen et al. found that berberine improved

the symptoms of PCOS by regulating the structure of the gut

TABLE 3 Therapeutic effects of alkaloids on PCOS.

Compound Detail Cell lines/model Dose Application Ref

Berberine an increase in live birth rate and fewer side effects
after in vitro fertilization (IVF) treatment,
decreased total testosterone, FAI, fasting glucose,
fasting insulin, and HOMA-IR, and increased the
SHBG

Infertile women with PCOS 3 × 500 mg clinical study An et al.
(2014)

Regulated IRS-1 and mTOR signaling pathway Serum samples and granulosa cells treated
with IVF/Intracytoplasmic Sperm Injection-
Embryo Transfer woman

100 μM In vitro Kuang
et al.
(2020)

Regulated the PI3K/Akt and MAPK pathways to
improve GLUT4

Letrozole-induced PCOS rats model 400, 200, or
100 mg/kg

In vivo (Zhang
et al.,
2020b)

Inhibited apoptosis and regulated the expression
levels of TLR4, LYN, PI3K, Akt, NF-κB, TNF-α,
IL-1, IL-6, and caspase-3

DHEA-induced PCOS rats model 150 mg/kg In vivo Shen et al.
(2021a)

Regulated the PI3K/Akt pathway to promote
proliferation and inhibited apoptosis of ovarian
granulosa cells

Letrozole-induced PCOS rats model 95, 190 mg/kg In vivo (Yu et al.,
2021)

Downregulated the levels of LPAR3 and αvβ3 Testosterone propionate-induced PCOS rats
model

100,
200 mg/kg

In vivo (Wang
et al.,
2021)

Promoted the ubiquitination of SIRT-3 to activate
the AMPK pathway

The KGN cell line 0, 12.5, 25,
50 μM

In vitro Li et al.
(2020)

Regulated gut microbiotas and metabolites DHEA-induced PCOS rats model 150 mg/kg In vivo Shen et al.
(2021b)
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microbiota and its metabolites (including glutamine, unsaturated

acids, and glucose), bringing about decreased Firmicutes and

increased Bacteroidetes at the phylum level, as well as increasing

glutamine and decreasing glucose and unsaturated acids (Shen

et al., 2021b). Their study offered a new direction for berberine in

the improvement of PCOS.

6 Summary and outlook

Although modern medical treatments, including drugs and

surgery, play an important role in treating PCOS, their

accompanying side effects further limit their clinical

application. Phytochemicals are a vital source of drug

discovery and show the potential to improve the symptoms of

PCOS and even possess some preventive effects. In this review,

we summarized the advancement of these bioactive

phytochemicals isolated from TCM and medicinal plants in

treating PCOS, including flavonoids, polyphenols, and

alkaloids. These phytochemicals show therapeutic effects on

PCOS supported by in vivo and in vitro studies, mainly

depending on anti-inflammatory, antioxidation, improvement

of hormone disorder and IR, and alleviation of hyperinsulinemia

(Figure 2). For instance, the anti-inflammatory effect is achieved

by inhibiting the combination of ox-LDL and TLR4 from

avoiding NF-κB pathway activation, which then elevates the

expression of proinflammatory cytokines such as IL-1β, IL-6,
IL-12, and TNF-α; activating AMPK to inhibit the NF-κB
pathway; and restraining UPR activation by decreasing the

production of proinflammatory cytokines. The antioxidation

effect is primarily triggered by the initiation of UCP1 to

increase the interaction between adiponectin and AdipoR1,

leading to the activation of AMPK-SIRT-1 and decreased ROS

production. As a result, antioxidant enzymes (such as GST, CAT,

and GSH) are enhanced, leading to the activation of Nrf2 to

produce Hmox1 and NQO1, followed by the downregulation of

ROS. For IR or hyperinsulinemia, these valuable phytochemicals

exhibit a potential capacity to sensitize insulin receptors

attributed to their antioxidant and anti-inflammatory features.

These phytochemicals can activate AMPK to increase

GLUT4 translocation to regulate GLUT4 and the PI3K/Akt

signaling pathway to increase insulin sensitivity. Moreover,

LH binding with LH-R is implicated in androgen production.

Some phytochemicals, such as baicalein, apigenin, rutin, SPA,

and RVT, can directly decrease LH levels, which decreases

androgen release. Several individual reports found that

inhibition of the expression of 3β-HSD and 17β-HSD reduced

the levels of androstenedione and testosterone. Because of the

B-ring structure of flavonoids, these flavonoids are identical to

the substrates for the enzymes 3β-HSD and 17β-HSD. Therefore,

the binding of 3β-HSD and 17β-HSD with endogenous steroids

can be reduced, thus indirectly reducing the activities of 3β-HSD

and 17β-HSD. It can also reduce the levels of androgens such as

androstenedione and testosterone. The structure-activity

relationship of flavonoids has been preliminarily studied

according to the literature, and detailed information on the

binding sites and forms of flavonoids in ER and AR is

summarized in Table 4. Furthermore, inhibition of GnRH can

decrease the level of testosterone; regulation of PI3K/Akt in

decreasing the expression of CYP17A1 avoids the conversion

of pregnenolone to DHEA; and downregulation of FSH inhibits

the combination between FSH and the FSH receptor to reduce

cAMP through the PKA pathway for downregulating aromatase,

showing potential therapeutic effects on PCOS. In addition to the

above advancements, some bioactive phytochemicals indicate

that regulating the activities of GK and HK to increase ERα gene

expression and inhibiting the IRE1α-XBP1 pathway to

downregulate Ar, Cyp11α1 and Cyp19α1 gene expression are

beneficial to the improvement of PCOS.

In brief, flavonoids reduce androgen levels and improve

hyperandrogenism mainly by inhibiting the activities of 3β-
HSD, 17β-HSD, and aromatase, thereby inhibiting androgen

conversion. For example, quercetin decreases the activities of

3β-HSD and 17β-HSD to reduce testosterone and estradiol

levels. Regretfully, only a limited number of clinical studies

have been designed to evaluate the efficacy of flavonoids in

treating PCOS. Due to their phenolic groups, polyphenols have

redox properties, which are responsible for antioxidant effects

in treating PCOS. In addition, polyphenols also reduce the

release of inflammatory factors by downregulating NF-κB,
thereby achieving anti-inflammatory effects. For example,

resveratrol, which affects the SIRT-1 pathway by mediating

the deacetylation of p66Shc, reduces ROS to achieve antioxidant

effects. The anti-inflammatory effect of resveratrol is to reduce

the release of inflammatory factors by affecting the UPR

process. However, the poor solubility and bioavailability of

polyphenolic compounds, such as curcumin, hamper their

clinical application. For alkaloids, berberine increases insulin

sensitivity and alleviates IR by regulating IRS-1 and activating

the PI3K/Akt pathway. Nevertheless, other valuable alkaloids

have received less attention in treating PCOS. Of note,

according to the literature, we detected those flavonoids and

polyphenols accounted for most PCOS therapies, compared to a

minor proportion of alkaloids. Continuous investment and

attention to flavonoids and polyphenols will benefit the

discovery of new drugs for PCOS.

There is a close relationship between hormonal alterations

and bone metabolism in PCOS. For example, an increase in

androgen leads to an increase in inflammatory factors and

impairs bone formation. Estrogen is mainly used to maintain

the development of female bones, while the decrease in estrogen

in PCOS will cause some damage to bones. Other hormonal

alterations, such as changes in LH, FSH, and insulin levels, also

affect bone formation and development (Krishnan and

Muthusami, 2017). Interestingly, some of the phytochemicals

can directly or indirectly affect bone metabolism. For example,
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quercetin and curcumin can specifically mediate bone

metabolism and osteoclast-related pathologies (Bian et al.,

2021; Inchingolo et al., 2022); soy isoflavones can directly

participate in bone metabolism and maintain the development

of bones (Uehara, 2013; Pawlowski et al., 2015); resveratrol can

stimulate the proliferation and differentiation of OB cells or

inhibit the osteoclastic resorption (Vidoni et al., 2019; Inchingolo

et al., 2022); and berberine can not only directly participate in

bone metabolism, but also reduce the production of adipocytes

(Jia et al., 2019). Notably, there is an inverse relationship between

adipocytes and osteoblasts in bone marrow, which can indirectly

affect bone metabolism by reducing the production of bone

marrow adipocytes (Rayalam et al., 2011). As a result, these

phytochemicals can potentially treat PCOS by affecting hormone

and bone metabolism (Table 5). This conjecture needs to be

validated by abundant experiments.

In addition to these encouraging outcomes, some problems

need to be solved. Based on our review, these phytochemicals

displayed therapeutic effects in alleviating the symptoms of

PCOS. However, most of them are still in the preclinical

research stage, except for quercetin, soy isoflavones, berberine,

resveratrol, and cinnamon. The following reasons may explain

this phenomenon. First, unsatisfactory bioavailability hinders

their development in clinical application. A few compounds,

such as curcumin, need to overcome poor bioavailability before

entering clinical studies (Patel et al., 2020; Raja et al., 2021). In

addition to chemical modification, advanced drug delivery

systems such as nanoparticles (Luther et al., 2020; Nile et al.,

TABLE 4 Phytochemicals binding to androgen and estrogen receptors.

Compound Binding receptor Binding site Binding type Effect References

Quercetin ART877A (PDB ID 3rll) Gln711 and Trp741 Cocrystallized with a bulky
B-ring antiandrogen

Induce the nuclear translocation
of AR, anti-androgenic activity

(D’Arrigo et al.,
2021)

Leu704, Asn705, Gln711, Gln738,
Tyr739, Met743, and His874

H-bonds

Met743 and Met895 Hydrophobic interactions

Trp741 π-π contact

Soy isoflavones wild type AR (PDB ID
3l3x)

Asn705, Gln711, and Arg752 H-bonds Induce the nuclear translocation
of AR, anti-androgenic activity

Leu704, Met742, Met745,
Phe764, Leu873, and Met895

Hydrophobic interactions

BF3 pocket of wild type
AR (PDB ID 2ylp)

Glu837, Glu829, and Asn833 H-bond

Phe673 π-π contact

Lys720, Gln733, Gln738 Interacting

Val716 and Met734 Hydrophobic interactions

Naringenin ERα (PDB ID 3uud) Glu353, Arg394, Gly521, and
Met421 or, alternatively, His524

H-bonds Anti-androgenic activity

ERRβ (PDB ID 6lit) Glu250, Arg291, Tyr301, Ala406 polar contacts

Phe410, Leu320, Leu243, Met281,
Leu284, Ile288

Hydrophobic interactions

Phe410 π-π contact

ERRγ(PDB ID 2e2r) Glu275, Arg316, His203, and
Asn346

H-bonds

Apigenin ERRβ (PDB ID 6lit) Glu250, Arg291, Tyr301, Ala406 polar contacts Anti-androgenic activity

Phe410, Leu320, Leu243, Met281,
Leu284, Ile288

Hydrophobic interactions

Phe410 π-π contact

Luteolin AR (PDB ID 2ylp) Asn727 Contact Anti-androgenic activity

ERRγ(PDB ID 2e2r) His409 Contact

Resveratrol ERα (PDB ID 3uud) Glu353, Arg394, Gly521, and
Met421 or, alternatively, His524

H-bonds Anti-androgenic activity
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2020) and antibody-conjugated drugs (Drago et al., 2021) can

effectively solve the challenges of low bioavailability and precise

drug delivery to tissues and cells, avoiding severe side effects.

However, until now, only limited attention has been given to

these valuable compounds. Conduction of the research above

could accelerate the transformation of these powerful and

valuable phytochemicals into clinical applications. Second, we

still lack in-depth research on the pathogenesis of PCOS

regardless of the known symptoms and possible mechanisms.

Interestingly, a few studies have shown that gut microbiota and

its metabolites significantly impact the evolution of PCOS, such

as soy isoflavones, naringenin, and berberine, which can alleviate

the symptoms by restoring the gut microbiota of PCOSmodels to

a normal state. Further exploring the relationship between gut

microbiota (Aron-Wisnewsky and Clement, 2016; Schuijt et al.,

2016; Zuo and Ng, 2018) and PCOS may become a new research

direction. Third, we found that many genes related to ovarian

function were responsible for the evolution of PCOS, such as

ERα, Ar, Cyp11α1, and Cyp19α1 genes. Nevertheless, current

research on these valuable phytochemicals mainly focuses on the

molecular level, except for quercetin, baicalin, apigenin, rutin,

anthocyanins, and resveratrol. Hence, exploring the effects of

other phytochemicals on PCOS at the genetic level might offer a

different solution (Ruth et al., 2020; Mimouni et al., 2021) to

treating PCOS in the future. Fourth, these molecules may play a

different role in regulating PCOS than traditional small-molecule

drugs. In recent years, the rise of targeted protein degradation

(TPD) (Schapira et al., 2019; Dale et al., 2021) technology has

revolutionized small molecule drugs, especially proteolysis-

targeting chimeras (PROTACs) (Burslem and Crews, 2020;

Bekes et al., 2022) and molecular glues (Mayor-Ruiz et al.,

2020; Dale et al., 2021). These breakthrough technologies

inspired us to determine whether these bioactive molecules

play similar roles in alleviating or treating PCOS. Of course,

sufficient experiments need to be conducted to test this

hypothesis. In brief, this review aims to provide detailed

mechanisms of these bioactive phytochemicals and hopefully

practical and reliable insight into clinical applications

concerning PCOS.
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TABLE 5 Phytochemicals and bone metabolism.

Compound Impact of bone Cell lines/model Dose Application Ref

Quercetin Promoted bone marrow mesenchymal stem cell
proliferation and osteogenic differentiation

Human bone marrow mesenchymal
stem cells (BMSCs)

1, 5, and
10 μM

In vitro (Bian et al.,
2021)

Soy isoflavones Inhibited bone resorption and improved bone
calcium retention

Menopausal women 52.85,
113.52 mg

Clinical study (Pawlowski
et al., 2015)

Resveratrol Stimulated OB cells proliferation and differentiation
or inhibited osteoclastic resorption

Human Gingival Mesenchymal
Stem Cells (HGMSCs)

1–100 μM In vitro (Vidoni et al.,
2019)

Curcumin Inhibited effects on the process of osteoporosis 100 patients with Spinal cord injury 110 mg/kg Clinical study (Hatefi et al.,
2018)

Pomoted osteogenic differentiation and inhibited
adipogenic differentiation of hBM-MSCs

Human bone marrow-derivedMSCs
(hBM-MSCs)

0.05,
0.5 and 5 μM

In vitro (Yang et al.,
2021)

Berberine Reduced alveolar bone loss and improved bone
metabolism

Ovariectomized -periodontitis rats 120 mg/kg In vivo (Jia et al., 2019)
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