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Chemoradiotherapy is frequently used to treat cancer. Stereotactic body
radiotherapy (SBRT) is a single high-dose radiotherapy used to treat a variety of
cancers. The anticancer drug methotrexate (MTX) shows affinity for solute carrier
(SLC) and ATP-binding cassette (ABC) transporters. This study investigated
relationships between accumulation of methotrexate and gene expression levels
of solute carrier and ATP-binding cassette transporters in cancer cells after a single
and high-dose X-ray irradiation. Cancer cell lines were selected from lung and
cervical cancer cell line that are commonly used for stereotactic body radiotherapy
and effective with methotrexate. We examined expression levels of organic anion-
transporting polypeptide (OATP)1B1, OATP1B3, OATP1B7, and organic anion
transporter (OAT)1 as solute carrier transporters and multidrug resistance-
associated protein (MRP)1 and MRP2 as ATP-binding cassette transporters, using
real-time polymerase chain reaction and accumulation of 3H-MTX in cancer cells
after 10-Gy irradiation, assuming stereotactic body radiotherapy. Cells were divided
into three groups: Control without irradiation; 4 h after irradiation; and 24 h after
irradiation. In control, gene expression levels of OAT1 in all cells was below the limit
of measurement. After irradiation, gene expression levels of OATP1B1/1B3/
1B7 showed changes in each cell line. Gene expression levels of MRP1/2 tended
to increase after irradiation. Gene expression levels of OATP1B1/1B3/1B7 were much
lower than those of MRP1/2. Accumulation of 3H-MTX tended to decrease over time
after irradiation. Irradiation of cancer cells thus alters gene expression levels of both
solute carrier transporters (OATP1B1/1B3/1B7) and ABC transporters (MRP1/2) and
decreases accumulation of 3H-MTX in cancer cells over time due to elevated
expression of MRP1/2.
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1 Introduction

Chemoradiotherapy combines chemotherapy with anticancer
drugs and radiotherapy to treat cancer. Chemoradiotherapy can be
divided into three categories according to the timing of anticancer
drug administration: Neoadjuvant; concurrent; and adjuvant (Baldini
et al., 2018). The accumulation of anticancer drugs in cancer cells
usually depends on gene expression levels of solute carrier (SLC) and
ATP-binding cassette (ABC) transporters (Nakanishi, 2007;
Carmichael and Day, 2022). SLC transporters mainly contribute to
the uptake of anticancer drugs, while ABC transporters are involved in
their excretion (Nakanishi, 2007; Carmichael and Day, 2022).

In radiotherapy, stereotactic radiotherapy involves the delivery of
higher doses (7–18 Gy or more) than the usual single-beam dose
(1.8–2 Gy) and is used to treat various cancers (Marcrom et al., 2017;
Jardel et al., 2020; Sarudis et al., 2021; Ugurluer et al., 2021).
Stereotactic radiotherapy was originally used to treat brain cancers,
with stereotactic body radiotherapy (SBRT) representing the
application of this technology to the trunk of the body, such as for
lung and liver cancers (Song et al., 2004; Donovan and Swaminath,
2018; Tandberg et al., 2018; Sarudis et al., 2021; Ugurluer et al., 2021).
SBRT has also been shown to be effective against cervical cancer,
which is still frequently treated using intracavitary small-source
radiotherapy (Ito et al., 2019; Facondo et al., 2021)

Methotrexate (MTX) is a folate antagonist used as an anticancer
drug (Visentin et al., 2012). This agent stops cancer growth by
preventing the uptake of folic acid, which is necessary in DNA
synthesis (Yu et al., 2020). MTX is effective against lung and
cervical cancers, where SBRT also appears useful (Conroy et al.,
1976; Smyth and Ford, 1981). MTX has shown affinity for the SLC
transporters organic anion-transporting polypeptide (OATP) and
organic anion transporter (OAT), and the ABC transporters
multidrug resistance-associated protein (MRP), multidrug
resistance protein (MDR), and breast cancer resistance protein
(BCRP) (Hagenbuch and Meier, 2004; Nakanishi, 2007; Murakami
and Mori, 2012; Gao et al., 2021). While irradiation increases the
expressions of MRP1 and MRP2, contributing to the efflux of MTX
(Henness et al., 2002; Bartkowiak et al., 2009), the effects of irradiation
on SLC transporters have not been examined. Further, correlations
between the kinetics of anticancer drugs including MTX and SLC and
ABC transporters after irradiation have yet to be clarified. The purpose
of this study was thus to investigate the relationships between
accumulation of MTX and expression levels of the genes for SLC
and ABC transporters in cancer cells after irradiation. Temporal
changes in MTX accumulation in cancer cells after a single and
high-dose irradiations assuming SBRT were examined.

2 Material and methods

2.1 Cancer cell lines

The human-derived lung adenocarcinoma cancer cell lines NCI-
H441 (American Type Culture Collection, Manassas, VA,
United States) and PC-14 (RIKEN Cell Bank, Tsukuba, Japan)
were used. The HeLa human-derived cervical cancer line (RIKEN
Cell Bank) was also used. H441, PC-14 and HeLa cell lines were
cultivated using RPMI-1640 (FUJIFILM Wako Chemical, Osaka,
Japan), Dulbecco’s Modified Eagle’s Medium (FUJIFILM Wako

Chemicals) and Eagle’s minimum essential medium (FUJIFILM
Wako Chemicals) mixed with 10% fetal bovine serum and 1%
sodium pyruvate at 37°C under conditions of 5% CO2.

2.2 Irradiation of cell lines

After achieving 70–80% confluence in a 10-cm diameter plate,
each cell line was irradiated with a single 10-Gy X-ray (dose rate,
1.0 Gy/min) using X-ray irradiation equipment (MBR1520R-3;
Hitachi, Tokyo, Japan). Cells were divided into three groups:
Control without irradiation; 4 h after irradiation; and 24 h after
irradiation.

2.3 RNA extraction and quality assessment

An RNeasy Plus Mini Kit (QIAGEN, Hilden, Germany) was used
to extract RNA from the cancer cells used in this study. The quality of
the extracted RNA was evaluated using the RNA integrity number
(RIN) as an indicator of quality. The RIN is expressed as a number
from 1 to 10, with a higher number reflecting higher quality of RNA.
An Affinity Script QPCR cDNA Synthesis kit (Agilent Technologies,
Tokyo, Japan) was used for synthesizing cDNA.

2.4 Conducting real-time polymerase chain
reaction (PCR)

Real-time PCR was performed using an AriaMx 5P system
(Agilent Technologies). OATP1B1/1B3/1B7 as the combination of
OATP1B1, OATP1B3 and OATP1B7 for SLC transporters (because
the primer sequences of these transporters are quite similar) and
MRP1 and MRP2 for ABC transporters were selected as the targets of
PCR. The gene ACBT for β-actin was used as the internal control gene,
as a housekeeping gene that is constantly expressed in all cells. Also,
ACBT was used to correct for differences in the amounts of initial
RNA and cDNA due to differences in sample organization and
purification methods. Primer design was outsourced to Eurofins
Genomics (Tokyo, Japan). Preparation of cloned plasmids used for
the creation of standard curves was outsourced to GenScript (Tokyo,
Japan). Primer sequences and concentrations of the genes used are
shown in Table 1. A 20-µL volume of PCR reaction solution contained
10 µL of Brilliant III Ultra-Fast SYBR Green QPCR Master Mix
(Agilent Technologies), .4 µL of primer, 1 µL of template (10–50 ng
of cDNA or cloned plasmid) and 8.6 µL of nuclease-free water. The
thermal profile of reaction conditions was: 95°C hot start for 3 min,
then 45 cycles of amplification at 95°C for 5 s and 62°C for 15 s, ending
with 95°C for 1 min, 55°C for 30 s and 95°C for 30 s.

2.5 Accumulation of 3H-MTX in cancer cells

Each cell was seeded at 1.0 ×105 cells/well in 12-well plastic plates.
At about 24 h after seeding, cells were irradiated and divided into three
groups: 4 h after irradiation; 24 h after irradiation; and control without
irradiation. Each group was pre-incubated for 5 min in phosphate-
buffered saline (PBS), then incubated with 3H-MTX (10 kBq/well) for
5, 10, 30, or 60 min. After incubation, cells were washed twice with
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600 µL of PBS and lysed by 500 µL of .1 M NaOH. Three hundred
microliters of cell lysate were mixed with 5 mL of ULTIMA GOLD
(Perkin Elmer, Waltham, MA, United States) and the radioactivity of
the mixture was measured using a liquid scintillation counter (LSC-
5100; Hitachi Aloka Medical, Tokyo, Japan). The results are shown as
the percent injected dose/number of living cells measured by an
automatic cell counter (LUNA FX7™; Logo Biosystems, Gyeonggi-
do, South Korea).

3 Results

All cell lines showed RIN >9, indicating high-quality RNA.
Measured expression levels of drug transporter genes in each cell
line in the three groups by conducting Real-time PCR are shown in
Table 2. For SLC transporters, the total gene expression level of
OATP1B1/1B3/1B7 was higher in H441 cells than in PC-14 or

HeLa cells, but OAT1 in all cells was below the limit of
measurement. After cell irradiation, total gene expression levels of
OATP1B1/1B3/1B7 decreased in H441 in comparison to before
irradiation (control), but increased slightly in PC-14 and HeLa cells.

For ABC transporters, expression levels of MRP1/2, as the
combination of MRP1 and MRP2, were higher than levels of
OATP1B1/1B3/1B7 and OAT1 in control samples of all cancer
cells. In control samples, MRP1/2 showed higher expression in
HeLa than in H441 or PC-14. In addition, H441 and PC-14
showed higher gene expression levels of MRP1 than MRP2, while
HeLa displayed higher gene expression levels of MRP2 than MRP1.
After irradiation, gene expression levels of MRP1/2 tended to increase
over time in all cancer cell lines.

Figure 1 shows the accumulation of 3H-MTX in H441, PC-14 and
HeLa cells in the control, 4 h after irradiation and 24 h after irradiation
groups at 5, 10, 30, and 60 min after 3H-MTX injection. Accumulation
of 3H-MTX was decreased at 4 and 24 h after irradiation in H441 cells
and at 24 h after irradiation in PC-14 cells. In HeLa cells, accumulation
of 3H-MTX was significantly decreased compared to control from
10 min after 3H-MTX injection in the 4 h after irradiation group and
from 30 min after 3H-MTX injection in the 24 h after irradiation
group.

4 Discussion

Consideration of the effects of irradiation on the kinetics of
anticancer drugs in chemoradiotherapy is important. This study
examined how the accumulation of 3H-MTX in cancer cells was
impacted by the effects of gene expression levels for SLC and ABC
transporters after X-ray irradiation. Since the degree to which gene
expression levels of SLC and ABC transporters are changed under the
influence of irradiation was unknown, we examined these gene
expressions after irradiation by conducting Real-time PCR
(Table 2). Total gene expression levels of OATP1B1/1B3/
1B7 decreased after irradiation in H441 cells compared to control,
but increased slightly in PC-14 and HeLa cells. For ABC transporters,
total gene expression levels of MRP1/2 were higher than OATP1B1/
1B3/1B7 and OAT1 in all cancer cell lines under the control
conditions. Accumulation of 3H-MTX tended to decrease over time
after irradiation in all cancer cell lines (Figure 1), and accumulation
was significantly decreased at 24 h.

TABLE 1 Primer sequences and concentrations of the used genes.

Transporters/Housekeeping
gene

Gene symbol Primer sequence Concentration (nM)

Forward Reverse

OATP1B1/1B3/1B7 OATP1B1 SLCO1B1 GCACTGGGTTTCCACTCAAT CAGTTGTTGGTGGACCACTTT 200

OATP1B3 SLCO1B3 GCAATGGGTTTCCAGTCAAT AGCTGTTGGTGGACCACTTC

OATP1B7 SLCO1B7 GCAATCGGCTTCCATTCAAT AGCTGTTGGTGGACCACTTC

OAT1 SLC22A6 GCGCCTTTTTTTGCCTTCT TTCCCGCTTCCCATTGATC 300

MRP1 ABCC1 GACCATGAATGTGCAGAAGG GCCTCATCCAACACAAGGAT 100

MRP2 ABCC2 CTGCGGCTCTCATTCAGTCT GCCAAGTTGGATAGGGTCAA

ACTB ACTB CCAACCGCGAGAAGATGA CCAGAGGCGTACAGGGATAG

TABLE 2 Gene expression levels of measured drug transporter in each cell by
conducting Real-time PCR.

Gene expression
level (×105)

Transporter Condition H441 PC-14 HeLa

OATP1B1/1B3/1B7 Control 13.0 0.01 0.04

4 h after irradiation 10.5 0.05 0.06

24 h after irradiation 10.0 0.04 0.09

MRP1 Control 64.5 56.1 34.5

4 h after irradiation 50.3 78.9 51.0

24 h after irradiation 79.3 90.3 70.8

MRP2 Control 0.30 1.80 56.7

4 h after irradiation 0.40 2.30 60.2

24 h after irradiation 0.80 2.70 98.0

MRP1/2 Control 64.8 57.9 91.2

4 h after irradiation 50.7 81.2 111.2

24 h after irradiation 80.1 93.0 168.8
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The correlation between accumulation of 3H-MTX and gene
expression levels of drug transporters is discussed for each cell line.
In H441 cells (Table 2), gene expression levels of OATP1B1/1B3/
1B7 decreased over time, and MRP1/2 was slightly decreased at 4 h
after irradiation in comparison with control and increased further
at 24 h after irradiation. Accumulation of 3H-MTX in H441 cells
was significantly decreased compared to control at 5, 10, and
30 min after adding 3H-MTX (Figure 1A). Although we selected
MRP1/2 as representative ABC transporters for MTX, changes in
MDR and BCRP gene expressions might also influence the
accumulation of 3H-MTX in H441 (Ji et al., 2013). Henness

et al. (2002) reported that expressions of MRP1 and MRP2 were
increased after fractionated irradiation, but these expression levels
might change over time after a single high-dose irradiation. In PC-
14 and HeLa cells (Table 2), gene expression levels of MRP1/2 were
much greater than those of OATP1B1/1B3/1B7. After irradiation,
the difference between OATP1B1/1B3/1B7 and MRP1/2 became
greater over time.

In PC-14 (Figure 1B), accumulation of 3H-MTX showed little
change between control and 4 h after irradiation, but was
significantly decreased at all time points after adding 3H-MTX in
cells at 24 h after irradiation. Since gene expression levels of
OATP1B1/1B3/1B7 were slightly greater in PC-14 cells, the
effects on gene expression levels of OATP1B1/1B3/1B7 may be
greater than the effects on accumulation of 3H-MTX at 4 h after
irradiation. At 24 h after irradiation, a correlation was noted between
decrease in accumulation of 3H-MTX and much higher gene
expression levels of MRP1/2.

In HeLa cells (Figure 1C), accumulation of 3H-MTX was
significantly decreased compared to control at 4 h after
irradiation from 10 min after adding 3H-MTX, and at 24 h after
irradiation from 30 min after adding 3H-MTX. Although the
effects of drug transporters are usually seen at 5 min after
adding 3H-MTX, no significant differences at this time points
were seen between control and groups at 4 and 24 h after
irradiation. An equilibrium state appears to exist between
functions of OATP1B1/1B3/1B7 and MRP1/2 at around 5 min
after adding 3H-MTX, but gene expression levels of MRP1/
2 were higher than those of OATP1B1/1B3/1B7 (Table 2). With
greater expression of MRP1/2 over time, accumulation of 3H-MTX
decreased significantly compared to control (Figure 1C). From
10 min after adding 3H-MTX, accumulation of 3H-MTX was
higher in HeLa than in H441 and PC-14. Gene expression
levels of MRP2 were also higher in HeLa than in H441 or PC-
14, and expression of MRP2 was also higher than that of MRP1.
These results may suggest that 3H-MTX has higher affinity for
MRP1 than for MRP2.

This study was performed assuming SBRT, in which a single
exposure provides a higher dose than conventional radiotherapy
(Marcrom et al., 2017; Jardel et al., 2020; Sarudis et al., 2021;
Ugurluer et al., 2021). Since Lei et al. (2021) reported that the
survival rate of HeLa was less than 50% after a single 10-Gy
irradiation, we selected a single high-dose of 10-Gy irradiation. In
our experiments, cancer cells after a single high-dose irradiation
have shown a tendency to excrete anticancer drugs as a foreign body.
Neoadjuvant chemotherapy, which administers anticancer drugs
prior to radiation, may therefore prove effective in the
combination of SBRT and chemotherapy. However, these results
only reflect temporal changes following a single irradiation. Future
experiments will need to consider fractional irradiation at high dose.
In addition, in vivo experiments will be required to confirm our
in vitro results for the accumulation of 3H-MTX and expression of
drug transporters.

For a more detailed examination, next-generation sequencers
might be useful in the future because this method is capable of
comprehensively quantifying multitude of various genes (Slatko
et al., 2018). However, we intentionally selected MTX which has
affinity primarily for OATP and MRP transporters as an anti-
cancer drug. Therefore, Real-time PCR, which can accurately
quantify gene expression levels of specific transporters, would be

FIGURE 1
Accumulation of 3H-MTX in H441 (A), PC-14 (B) and HeLa (C) cells
in the three groups including control, 4 h after irradiation and 24 h after
irradiation at 5, 10, 30, and 60 min after adding 3H-MTX. Accumulation of
3H-MTX tended to decrease after irradiation in all three cancer cells.
†p < .01 and *p < .05 vs. control.
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appropriate in this study. The Real-time PCR was also used in the
study of (Sutherland et al., 2020). They examined the relationship
between accumulation of anti-cancer drugs in cancer cells and gene
expression levels of specific SLC transporters by Real-time PCR.

5 Conclusion

X-ray irradiation with a single, high dose to cancer cells alters gene
expression levels of both SLC transporters (OATP1B1/1B3/1B7) and
ABC transporters (MRP1/2). In particular, changes in MRP1/2 were
much greater than those in OATP1B1/1B3/1B7. Irradiation decreased
accumulation of 3H-MTX in cancer cells over time due to higher
expression of MRP1/2.
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