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Umbilical cord mesenchymal stem cells (UCMSCs) are a reportedly promising

choice in the treatment of irreversible pulmonary fibrosis and lethal interstitial

lung disease with limited drug treatment options. In this study, we investigated

the therapeutic efficacy of UCMSCs overexpressing hepatocyte growth factor

(HGF), which is considered one of the main anti-fibrotic factors secreted by

MSCs. Adenovirus vector carrying the HGF gene was transfected into UCMSCs

to produce HGF-modified UCMSCs (HGF-UCMSCs). Transfection promoted

the proliferation of UCMSCs and did not change the morphology, and

differentiation ability, or biomarkers. Rats were injected with HGF-UCMSCs

on days 7 and 11 after intratracheal administration of bleomycin (10 mg/kg). We

performed an analysis of histopathology and lung function to evaluate the anti-

fibrotic effect. The results showed that HGF-UCMSCs decreased the Ashcroft

scores in hematoxylin and eosin-stained sections, the percentage positive area

in Masson trichrome-stained sections, and the hydroxyproline level in lungs.

Forced expiratory volume in the first 300m/forced vital capacity was also

improved by HGF-UCMSCs. To explore the possible therapeutic mechanism

of HGF-UCMSCs, we detected inflammatory factors in the lungs and performed

mRNA sequencing in UCMSCs and HGF-UCMSCs. The data indicated that

inhibition of interleukin-17 in the lung may be related to the anti-fibrosis of

HGF-UCMSCs, and overexpressed HGF probably played a primary role in the

treatment. Collectively, our study findings suggested that the overexpression of

HGF may improve the anti-fibrotic effect of UCMSCs through directly or

indirectly interacting with interleukin-17-producing cells in fibrotic lungs.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is one of the forms of

chronic progressive fibrotic interstitial lung disease (Lederer and

Martinez, 2018). Patients with IPF eventually develop and

ultimately die of irreversible respiratory failure (Richeldi et al.,

2017). The death rate among patients with IPF has gradually

increased, with an annually increasing trend (Hutchinson et al.,

2014; Raghu et al., 2014; Hutchinson et al., 2015; Dove et al.,

2019; Navaratnam and Hubbard, 2019; Tran et al., 2020). At

present, the most effective treatment is lung transplantation, but

transplant rejection and a lack of donor’s lungs make it

impossible for more patients to benefit from transplantation

(Raghu et al., 2015; George et al., 2019). Although pirfenidone

and nintedanib can improve lung function and exercise tolerance

to some extent, it is still difficult to prevent IPF from progressing

(King Jr et al., 2014; Richeldi et al., 2014). Thus, new curative

methods for patients with IPF are urgently needed.

Mesenchymal stem cells (MSCs) have been widely proven to

effectively treat pulmonary fibrosis in animals through secreting

anti-fibrotic factors (Huang et al., 2015; Kotani et al., 2017; Chen

et al., 2018). Given that MSCs were likely an effective way to cure

patients with IPF, clinical studies were subsequently conducted.

The results showed that MSC administration was safe and could

delay the deterioration of pulmonary function over time

(Tzouvelekis et al., 2013; Chambers et al., 2014; Glassberg

et al., 2017). Nevertheless, the progression of pulmonary

fibrosis still cannot be stopped. Therefore, researchers must

find ways of enhancing the anti-fibrotic efficacy of MSCs.

Gene modification of anti-fibrotic factors is a valid means to

achieve the abovementioned goal (Madrigal et al., 2014;

Ocansey et al., 2020). The hepatocyte growth factor (HGF) is

a crucial factor in anti-fibrosis (Dong et al., 2015; Cahill et al.,

2016). It has been shown that HGF can repair damaged alveolar

epithelium and inhibit the profibrotic ability of fibroblasts and

myofibroblasts in the lungs (Mizuno et al., 2005; Lee et al., 2008;

Shukla et al., 2009). Umbilical cord MSCs (UCMSCs) are most

likely the appropriate choice for modification due to their

naturally high secretion of HGF, abundant supply, and no

invasive extraction or donor site morbidity (Prasanna et al.,

2010; Balasubramanian et al., 2012; Han et al., 2013; El Omar

et al., 2014; Marmotti et al., 2017; Kim et al., 2018; Al Naem

et al., 2020). HGF-modified UCMSCs (HGF-UCMSCs) have

been used in the treatment of bronchiolitis obliterans, wound

healing, acute kidney injury, and liver fibrosis, among others

(Chen et al., 2011; Li et al., 2015; Cao et al., 2016; Yin et al.,

2020). However, the application of HGF-UCMSCs in the

treatment of bleomycin-induced pulmonary fibrosis has

rarely been reported. A comparison of the therapeutic effects

between HGF-UCMSCs and identified anti-fibrotic drugs is

also needful.

In the present study, we evaluated the therapeutic outcome of

HGF-UCMSCs in rats with pulmonary fibrosis induced by

bleomycin. The therapeutic mechanism of HGF-UCMSCs was

also explored using lung cytokines detection together with

mRNA sequencing.

Materials and methods

Isolation and culture of human UCMSCs

Clinical-grade UCMSCs were obtained from Beijing SH

Biotechnology (http://www.bjshbio.com/). The isolation and

culture of UCMSCs were based on previously described

methods (Chu et al., 2019), as follows. The umbilical cord

was minced into small pieces then washed thoroughly with

phosphate buffer saline (PBS) (Gibco, United States) and

digested using collagenase (Gibco, United States) at 37°C

for 60 min. The digestion was stopped using an MSCs

growth medium (Beijing SH Technology, China), and the

digested mixture was passed through a 70-μm cell strainer

(BD, United States) to obtain a single-cell suspension. All

primary UCMSCs were seeded in flasks at a density of 8,000/

cm2 and cultured at 37°C in a humidified atmosphere

containing 5% CO2.

Production of HGF-UCMSCs

The protocol for producing HGF-UCMSCs was referred to

in the previous paper (Wang et al., 2013). A replication-

defective adenovirus expressing human HGF (Ad-HGF)

and a replication-defective adenovirus not carrying

exogenous genes (Ad-Null) were constructed with the

AdEasy system (Stratagene, United States) and were

purified by double cesium chloride density gradient

ultracentrifugation. Ad-HGF and Ad-Null dissolved in

storage buffer (Hanks’ buffer, 10% glycerol) were stored

at −80°C. According to the previous protocol, UCMSCs

were infected with 150 multiplicities of infection of Ad-

Null or Ad-HGF. The cells were collected 48 h post-

infection for further usage in vitro and in vivo experiments.

Before treatment, the conditioned medium of MSCs infected

with Ad-Null and Ad-HGF was collected for HGF testing

according to the instructions in an HGF ELISA kit (ExCell,

China). Medium not used for cell culture was utilized as a

negative control in the ELISA reaction.
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Identification of MSCs

Cultured MSCs were identified for cell morphology and

adherence, immune surface markers, and differentiation potential

(Nadri et al., 2002; Soleimani and Nadri, 2009). MSCs were

photographed for observation using a fluorescence digital

microscope BZ-X800 (Keyence, Japan). Immune surface markers

(i.e., CD105, CD73, CD90, CD34, CD11b, CD19, CD45, and HLA-

DR) were analyzed by flow cytometry using aHumanMSCAnalysis

Kit (BD, United States). For osteogenesis or adipogenesis, MSCs

were respectively incubated in an osteogenic or adipogenic medium

(Cyagen, China) for 3 weeks, and were then fixed with methanol. A

Leica DMI 3000B fluorescence microscope (Leica, Germany) was

used for photographs of osteoblasts or adipoblasts stained with

alizarin red or Oil Red O, respectively.

Animals and experimental design

Sprague-Dawley rats (6 weeks, 200–220 g) were purchased

from Guangdong Medical Laboratory Animal Center (China)

and were housed in a specific pathogen-free animal facility. All

studies were approved by the Animal Ethics Committee of

Guangdong Medical Laboratory Animal Center.

Rats were divided into five groups (six rats per group): a

CTRL group, BLM group, UCMSC group, HGF-UCMSC group,

and PFD group. A microsprayer aerosolizer (Yuyan Instruments

Co., Ltd. China) (Figure 1) was used to deliver sterile PBS or

bleomycin into the lungs. On day 0, rats in the CTRL group were

instilled intratracheally with sterile PBS; the remaining rats were

instilled with 10 mg/kg body weight bleomycin (Hanhui co.

LTD., China). From day 7–20, rats in the PFD group were

infused orally with 100 mg/kg body weight pirfenidone once a

day. The remaining rats were injected with sterile PBS, UCMSCs,

or HGF-UCMSCs via tail vein on both days 7 and 11, as follows.

1) CTRL group and BLM group: sterile PBS, 400 μL/day per rat;

2) UCMSC group: UCMSCs, 2 * 10̂6/400 μL/day per rat; 3) HGF-

UCMSC group: HGF-UCMSCs, 2 * 10̂6/400 μL/day per rat.

For the collected lungs on day 21, left lungs were inflated and

immersed with 4% paraformaldehyde (Biosharp, China), and right

lungs were frozen at −80°C in a refrigerator as quickly as possible.

Lung function test

Rats were anesthetized with pentobarbital sodium and

endotracheal intubation was performed. The intubated

catheter was connected to a Buxco pulmonary function testing

system (DSI Buxco, United States) to measure lung function as

follows: forced expiratory volume in the first 300 m/forced vital

capacity (FEV300/FVC), peak expiratory flow (PEF), chord

compliance (Cchord), and total lung capacity.

Hydroxyproline evaluation

The right lung lobes of each rat were ground into a powder in

liquid nitrogen and used for hydroxyproline (HYP) detection. To

assess the total collagen content of lung tissue, we used an HYP assay

kit (Nanjing Jiancheng Bioengineering Institute, China). The

experiment was performed according to the manufacturer’s

instructions.

Cytokine detection

Some lung tissue powder was prepared for cytokine

detection, referring to the protocol of the Rat Cytokine/

FIGURE 1
Establishment of pulmonary fibrosis model. (A) A microsprayer aerosolizer was used to deliver aerosols of PBS or bleomycin into the lungs of
rats (B) The aerosols were presented in the lower tracheas.
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Chemokine Magnetic Bead Panel (Millipore, United States).

Interleukin-17 (IL-17), IL-10, vascular endothelial growth

factor (VEGF), and granulocyte-macrophage colony-

stimulating factor (GM-CSF) were detected in 96-well plates

using MILLIPLEX® MAGPIX with MILLIPLEX Analyst.

V5.1 software. Median fluorescence intensity data were

analyzed using a five-parameter logistic method for calculating

analyte concentrations in samples.

Histopathological analysis

Left lungs were processed by Bios Biological Co. Ltd. (China).

For paraffin sections, lungs were dehydrated using gradient ethanol

and then embedded in paraffin blocks. The blocks were cut into

sections of 3–5 μm thickness; sections were placed on polylysine-

coated glass slides and stored at room temperature for further use.

Hematoxylin and eosin (H&E) andMasson trichrome staining were

performed following the standard protocol. The stained sections

were captured, and the pictures were sent to two pathologists for

evaluation. The severity of the injury was quantified using the

Ashcroft scoring system in H&E-stained lung sections (Ashcroft

et al., 1988). The percentage of blue-stained area in Masson

trichrome-stained lung sections was quantified using ImageJ

(National Institutes of Health, United States).

mRNA sequencing

UCMSCs (N = 3) and HGF-UCMSCs (N = 3) were lysed and

total RNA was extracted using a Trizol reagent kit (Invitrogen,

United States), following the manufacturer’s protocol. For

mRNA sequencing, samples were submitted to Gene Denovo

Biotechnology Co. (Guangzhou, China), where RNA quality

evaluation, mRNA enrichment, and cDNA library preparation

were performed. The cDNA libraries were sequenced on the

Illumina sequencing platform Novaseq6000 by Gene Denovo

Biotechnology Co., Ltd. (Guangzhou, China). RNA differential

expression was analyzed using DESeq2 [7] software. Transcripts

with a false discovery rate (FDR) < 0.05 and absolute fold change

(FC) ≥ 2 were considered s differentially expressed genes/

transcripts. The upregulation or downregulation of genes

depended on the change in mean value of Fragments Per

Kilobase of transcript per Million mapped reads (FPKM) in

HGF-UCMSCs in comparison with UCMSCs. A volcanic map

was drawn to display the differentially significant genes.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 8.0

(GraphPad Software, Inc. United States). Two groups were

compared using an unpaired t test. Comparisons among more

than two groups were performed using a one-way analysis of

variance, followed by Tukey’s multiple comparison test. All

values were expressed as the mean ± standard deviation. P <
0.05 was considered statistically significant.

Results

Cell identification and quality control

In bright-field microscopy, both UCMSCs and HGF-

UCMSCs were plastic-adherent and appeared spindle-shaped

(Figure 2A). Ad-HGF transfection hardly changed the

morphology of UCMSCs. Cultured in a specific differentiation

induction medium, UCMSCs and HGF-UCMSCs differentiated

into osteoblasts and adipoblasts (Figure 2A) with no obvious

difference between the two groups. To identify MSC biomarkers,

we performed flow cytometry. Overexpression of HGF did not

alter the size and granularity of UCMSCs (Figures 2B, C). CD73,

CD90, and CD105 were all positively expressed and CD34,

CD11b, CD19, CD45, and HLA-DR were seldom expressed

on the surface of the cells (Figures 2D–2G). Similar to the

results of cell differentiation, gene modification did not

influence the proportion of the markers mentioned above. To

verify whether Ad-HGF transfection was successful, we

measured the concentration of HGF in CM. The level of HGF

was much higher in the CM of HGF-UCMSCs than that of

UCMSCs (p < 0.0001) (Figure 2H). Moreover, HGF-UCMSCs

proliferated faster than did UCMSCs (p = 0.0378) (Figure 2I).

Collectively, the transfection of Ad-HGF promoted HGF

secretion and cell proliferation without changing the basic

characteristics of UCMSCs.

Efficacy of HGF-UCMSCs in lung function

Before euthanizing the rats, we evaluated the physiological

function of the lungs. Compared with the CTRL group, FEV300/

FVC, PEF, Cchord and TLC in the BLM group decreased

significantly (p < 0.05) (Figure 3). The PFD, UCMSC and

HGF-UCMSC groups alleviated the pulmonary function

injury, but the statistical difference was only found between

the BLM and HGF-UCMSC group (p < 0.05). The therapeutic

effect was not present for PEF, Cchord and TLC in the PFD,

UCMSC and HGF-UCMSC group (p > 0.05).

Effect of HGF-UCMSCs on the
improvement of lung structure

The histopathology was analyzed to estimate the

improvement effect on lung structure. In H&E-stained

sections, pulmonary fibrosis of differing degrees was induced
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FIGURE 2
Characteristics of UCMSCs and HGF-UCMSCs. (A) Regularly cultured MSCs were induced into osteoblasts and adipoblasts stained with alizarin
red and Oil Red O, respectively (magnification: ×100). (B–G) Flow cytometry was utilized to analyze the physical features and cell surface markers of
MSCs (H) The concentration of HGF in the conditionedmediumwas detected using a commercial ELISA kit (I) The proliferation ofMSCswas assessed
by CCK8 assay. Values are presented as mean ± standard deviation. * p < 0.05; ** p < 0.01; *** p < 0.001.
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in the other groups but was not seen in the CTRL group. The

alveolar septum was filled with mesenchymal tissue stained with

“acidophilic eosin” (Figure 4A). Ashcroft scores in the BLM

group were significantly higher than that in the CTRL group (p <
0.05) (Figure 4B). The scores were decreased in all therapeutic

groups, in which the PFD group got the lowest scores followed by

the HGF-UCMSC group (p < 0.05). In sections stained with

Masson trichrome, there was a large amount of collagen

abnormally present in the interstitial lung tissue (Figure 4A).

Similar to the result of Ashcroft scoring, the CTRL group showed

significantly less Masson area% than the BLM group (p < 0.05)

(Figure 4C). In comparison to the BLM group, the PFD, UCMSC

and HGF-UCMSC groups significantly decreased the Masson

area% (p < 0.05). Of note, the HGF-UCMSC group had the

lowest p-value among the treatment groups in comparison with

the BLM group (p = 0.0005). For the evaluation of collagen

content, we detected HYP levels in the lungs. A higher level of

HYP was present in the BLM group than in the CTRL group (p <
0.05) (Figure 4D). The treatment groups had various degrees of

inhibitory effect on collagen deposition. HYP was significantly

decreased in PFD and HGF-MSC group than the BLM group

(PFD vs. BLM, p = 0.0378; HGF-UCMSC vs BLM, p = 0.0088);

the UCMSC group exhibited less HYP, with no statistical

significance (p > 0.05). Though the statistical difference was

not present between the UCMSC and HGF-UCMSC groups, it

is likely that HGF modification probably promoted the anti-

fibrotic effect of UCMSCs in bleomycin-induced pulmonary

fibrosis.

Influence of HGF-UCMSC treatment on
lung cytokines

To explain why HGF-UCMSCs had better efficacy than

UCMSCs in treating pulmonary fibrosis, cytokines that may

be involved were detected according to previous studies

(François et al., 2015). The concentration of IL-17 in the BLM

group was higher than that in the CTRL group (p < 0.05)

(Figure 5A). HGF-UCMSCs had significantly decreased levels

of IL-17 compared with the BLM, PFD, and UCMSC groups (p <
0.05). There was no significance in the PFD and UCMSC group

in comparison with the BLM group (p > 0.05), although these two

groups showed lower levels of IL-17. Compared with the CTRL

group, all groups administered with bleomycin exhibited much

lower levels of IL-10, and no significance was seen among the

bleomycin groups (p > 0.05) (Figure 5B). Significantly decreased

VEGF and GM-CSF levels were observed in the BLM, PFD, and

HGF-UCMSC groups, as compared with the CTRL group (p <
0.05) (Figures 5C, D). The UCMSC group had a numerically

higher level of VEGF and GM-CSF than did the PFD and HGF-

UCMSC groups (p < 0.05), although there was no significant

difference between the UCMSC and BLM groups (p > 0.05). In

short, IL-17 may play a role in treatment with respect to HGF-

UCMSCs.

Transcriptome difference between
UCMSCs and HGF-UCMSCs

Owing to few studies that have depicted the influence of HGF

modification on UCMSCs, we conducted mRNA sequencing to

uncover the transcriptional change of transfecting Ad-HGF into

UCMSCs, thereby ascertaining whether HGF alone participates

in treating pulmonary fibrosis. In total, 57% of genes were down-

regulated and 43% of genes were up-regulated in all detected

genes, without considering the statistical significance (Figure 6A).

Among them, three genes (AC092718.2, POC1B-GALNT4

and AC007325.4) were significantly down-regulated, and five

genes (HGF, DIO2, IGFBP5, SPTBN2 and SCRG1) were

significantly up-regulated, with p values <0.05. (Figure 6B).

As shown in Table 1, the log2(FC) value was higher and the

FDR value was lower in the HGF gene than in the other genes,

which suggested that the anti-fibrotic effect may be primarily

owing to HGF.

FIGURE 3
Lung function test on day 21 before euthanasia. (A,B)
Pulmonary ventilatory function: forced expiratory volume in the
first 300 m/forced vital capacity (FEV300/FVC); peak expiratory
flow (PEF). (C) Pulmonary compliance: chord compliance
(Cchord). (D) Pulmonary volume: total lung capacity (TLC). Values
are presented in mean ± standard deviation. * p < 0.05; ** p < 0.01;
*** p < 0.001.
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Discussion

Gene modification is a promising strategy in the application

of MSCs in treating pulmonary fibrosis (Min et al., 2015; Lan

et al., 2017). As such, individually designed MSCs may function

precisely in the treatment of pulmonary fibrosis. It has been

demonstrated that HGF functions as a protective protein in

pulmonary fibrosis through binding its receptor, c-met, which

is expressed by many types of cells (e.g., epithelial cells,

fibroblasts) (Dohi et al., 2000; Watanabe et al., 2005; Gazdhar

et al., 2007; Gazdhar et al., 2013; Gazdhar et al., 2018). We

therefore performed HGF modification in UCMSCs in order to

enhance the anti-fibrotic ability of the cells. Our data showed that

the modification improved the anti-fibrotic efficacy of UCMSCs

in pulmonary ventilatory function and collagen deposition in

the lung.

To explore the possible mechanism of HGF-UCMSCs in

treating pulmonary fibrosis, we detected the cytokines that may

participate in the process. The results showed that IL-17 may be

affected by the treatment of HGF-UCMSCs. Produced by T

helper 17 (Th17) cells, IL-17 acts as a driver of pulmonary

fibrosis (François et al., 2015; Ting et al., 2017). The deletion

of IL-17 in mice ameliorated the severity of pulmonary fibrosis

induced by bleomycin (Wilson et al., 2010). In our study,

compared with the BLM group, all treatment groups had

numerically decreased IL-17 levels but only the HGF-UCMSC

group showed a significant inhibitory effect (p < 0.0001,

Figure 6A). Thus, HGF-UCMSCs may ameliorate pulmonary

fibrosis by inhibiting IL-17 in the lung. Our data also showed

that significantly lower IL-17 levels were seen in the HGF-UCMSC

group than those in the UCMSC group (p = 0.0285), which means

that the inhibitory effect may be associated with HGF

modification. To explore whether other anti-fibrotic factors

influenced the inhibition of IL-17 apart from HGF, we

performed mRNA sequencing in UCMSCs and HGF-UCMSCs.

The data showed that the transcriptional level of HGF was

relatively higher than that of other significantly different genes,

which suggested that HGFmay play the main role in inhibiting IL-

17. Interestingly, HGF secreted byMSCs is reported tomediate the

differentiation from CD4+ cells to regulatory T cells but not

Th17 cells, the IL-17-producing cells (Chen et al., 2020).

Therefore, we propose the possible therapeutic mechanism that

HGF-UCMSCs may directly or indirectly interact with CD4+ cells

or Th17 cells through HGF in fibrotic lungs.

Apart from HGF, the transfection of Ad-HGF also change the

transcriptional expression of other genes inUCMSCs. DIO2 acts as

an activator of the thyroid hormone, which is critical for the

maintenance of cellular homeostasis during stress responses

(Sagliocchi et al., 2019). Yu et al. (Yu et al., 2018) reported that

DIO2-knockout mice exhibited more severe pulmonary fibrosis.

FIGURE 4
Evaluation of pulmonary histopathology. (A) Lung sections were stained with H&E or Masson’s trichrome (magnification: ×100). (B) Ashcroft
scoring was performed in H&E-stained sections (C) The percentage positive area was calculated in Masson’s trichrome-stained sections (D) HYP
concentrations were detected in the lungs. Values are presented in mean ± standard deviation. * p < 0.05; ** p < 0.01; *** p < 0.001.
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The authors also used thyroid hormone to treat pulmonary fibrosis

in mice; their results showed increased survival and resolved lung

fibrosis. Insulin-like growth factor binding protein 5 (IGFBP5) was

reported as a pro-fibrotic factor in pulmonary fibrosis (Yasuoka

et al., 2006). The expression of the human IGFBP5 gene in

transgenic mice induced the up-regulation of ECM genes in the

lungs (Nguyen et al., 2021). The role of crapie responsive gene 1

(SCRG1) in pulmonary fibrosis is unknown, but it was reported

that SCRG1 is associated with the stemness of MSCs (Chosa and

Ishisaki, 2018). The relationship between other significantly

changed genes and pulmonary fibrosis or MSCs remains

unclear in the present.

Our study had some limitations. First, HGF-UCMSCs did

not show significantly anti-fibrotic effect in the comparison to

UCMSCs, albeit the administration of HGF-UCMSCs but not

wild-type UCMSCs significantly improved FEV300/FVC and

lung HYP level in our study. This might be attributed to the use

of bleomycin in over dosage that is higher than the dosage

reported in the published papers (Lee et al., 2010;

Rathinasabapathy et al., 2016; Chu et al., 2019). Second, we

did not investigate the specific mechanism of the interaction

between HGF-UCMSCs and IL-17-producing cells. Thus, in

vitro and in vivo experiments are needed to confirm whether IL-

17-producing cells are the targets of HGF and whether IGFBP5

and SCRG1 participate in the treatment of pulmonary fibrosis.

Thrid, we did not explore how HGF-UCMSCs function at

different stages after treatment and whether there is an

FIGURE 5
Detection of cytokines in the lungs. (A) Interleukin-17 (IL-17).
(B) IL-10 (C) Vascular endothelial growth factor (VEGF). (D)
Granulocyte-macrophage colony-stimulating factor (GM-CSF).
Values are presented as mean ± standard deviation. * p <
0.05; ** p < 0.01; *** p < 0.001.

FIGURE 6
Analysis of transcriptional expression of UCMSCs and HGF- UCMSCs. (A) The percentage of up-regulated and down-regulated genes was
calculated among all genes (upper panel) or the significant differential genes (lower panel) (B) Significant differential gene symbols are shown in the
volcanic map.

Frontiers in Pharmacology frontiersin.org08

Chen et al. 10.3389/fphar.2022.1070736

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1070736


appropriate time window for HGF-UCMSC treatment for

better therapeutic efficacy. These may be the keys to reverse

fibrosis. Fourth, it remains unclear how the levels of VEGF and

GM-CSFin lungs were decreased by HGF-UCMSCs in

comparison to UCMSCs. To sample in earlier timing after

the administration of HGF-UCMSCs and to determine the

main cells secreting VEGF and GM-CSF might be important

to reveal the possible mechanism.

Conclusion

In this study, we confirmed that treatment with UCMSCs or

HGF-UCMSCs could alleviate pulmonary fibrosis caused by

bleomycin in mice. Furthermore, the enhancement of HGF

secretion may improve the anti-fibrotic effect of UCMSCs.

The improved anti-fibrotic effect may be associated with the

inhibition of IL-17 in the lungs.

TABLE 1 Statistics for significant differential genes.

Trend Ensembl ID Symbol UCMSC
mean
FPKM

HGF-UCMSC
mean FPKM

log2(FC) FDR GO cellular
component

GO molecular
function

GO
biological
process

Up
regulation

ENSG00000019991 HGF 4.12 288.36 6.1286 0 extracellular
region//
extracellular
space//
membrane//. . .

serine-type
endopeptidase
activity//protein
binding//growth
factor activity//. . .

MAPK cascade//
activation of
MAPK activity//
mitotic cell
cycle//. . .

ENSG00000211448 DIO2 0.42 1.28 1.6159 0.007803 plasma
membrane//
membrane//
integral
component of
membrane

thyroxine 5’-
deiodinase activity//
selenium binding//
oxidoreductase
activity//. . .

selenocysteine
incorporation//
thyroid
hormone
generation//...

ENSG00000115461 IGFBP5 0.21 0.56 1.415323 0.000722 extracellular
region//
extracellular
space//
endoplasmic
reticulum
lumen//. . .

fibronectin binding//
protein binding//
insulin-like growth
factor binding//. . .

regulation of
cell growth//
osteoblast
differentiation//
signal
transduction//
. . .

ENSG00000173898 SPTBN2 0.42 0.98 1.210778 0.00125 extracellular
space//
cytoplasm//
cytosol//. . .

actin binding//
structural
constituent of
cytoskeleton//
protein binding//. . .

MAPK cascade//
ER to Golgi
vesicle-mediated
transport//
cytoskeleton
organization//
. . .

ENSG00000164106 SCRG1 0.46 0.99 1.103436 0.007807 extracellular
region//
extracellular
space//
cytoplasm//. . .

protein binding nervous system
development//
mesenchymal
stem cell
proliferation

Down
regulation

ENSG00000260643 AC092718.2 2.09 0.78 -1.423191 0.017627 mitochondrion//
glycine cleavage
complex//
membrane//. . .

glycine
decarboxylation
via glycine
cleavage system

ENSG00000259075 POC1B-GALNT4 0.38 0.001 -8.571121 0.003186 Golgi
membrane//
Golgi apparatus//
membrane//. . .

polypeptide
N-acetylgalactosami
nyltransferase
activity//
transferase activity//
transferase activity,
transferring glycosyl
groups//. . .

protein
glycosylation//
protein
phosphopantet
heinylation

ENSG00000278817 AC007325.4 0.71 0.001 -9.473706 0.000635

Abbreviations: HGF, hepatocyte growth factor; DIO2, iodothyronine deiodinase 2; IGFBP5, insulin like growth factor binding protein 5; SPTBN2, spectrin beta, non-erythrocytic 2; SCRG1,

stimulator of chondrogenesis 1; POC1B-GALNT4, POC1B-GALNT4 readthrough.
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