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Glioma is one of the most lethal cancers and causes more than 200,000 deaths

every year. Immunotherapy was an inspiring therapy for multiple cancers but

failed in glioma treatment. The importance of serine and glycine and their

metabolism has been well-recognized in the physiology of immune cells and

microenvironment in multiple cancers. However, their correlation with

prognosis, immune cells, and immune microenvironment of glioma remains

unclear. In this study, we investigated the relationships between the expression

pattern of serine and glycine metabolism-related genes (SGMGs) and

clinicopathological features, prognosis, and tumor microenvironment in

glioma based on comprehensive analyses of multiple public datasets and

our cohort. According to the expression of SGMGs, we conducted the

consensus clustering analysis to stratify all patients into four clusters with

remarkably distinctive clinicopathological features, prognosis, immune cell

infiltration, and immune microenvironment. Subsequently, a serine and

glycine metabolism-related genes signature (SGMRS) was constructed based

on five critical SGMGs in glioma to stratify patients into SGMRS high- and low-

risk groups and tested for its prognostic value. Higher SGMRS expressed genes

associated with the synthesis of serine and glycine at higher levels and

manifested poorer prognosis. Besides, we confirmed that SGMRS was an

independent prognostic factor and constructed nomograms with

satisfactory prognosis prediction performance based on SGMRS and other

factors. Analyzing the relationship between SGMRS and immune landscape,

we found that higher SGMRS correlated with ‘hotter’ immunological phenotype

and more immune cell infiltration. Furthermore, the expression levels of

multiple immunotherapy-related targets, including PD-1, PD-L1, and B7-H3,

were positively correlated with SGMRS, which was validated by the better

predicted response to immune checkpoint inhibitors. In conclusion, our
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study explored the relationships between the expression pattern of SGMGs and

tumor features and created novel models to predict the prognosis of glioma

patients. The correlation of SGMRSwith immune cells andmicroenvironment in

gliomas suggested an essential role of serine and glycine metabolism in

reforming immune cells and microenvironment. Finally, the results of our

study endorsed the potential application of SGMRS to guide the selection of

immunotherapy for gliomas.

KEYWORDS

serine, glycine, metabolism, glioma, prognosis, immune infiltration, tumor
microenvironment, immune checkpoint inhibitor

Introduction

Glioma is one of the most life-threatening tumors and

accounts for approximately 80% of malignant tumors in the

central nervous system (Ostrom et al., 2021). The prognosis of

glioma patients remains poor even after a complete standard

treatment regime consisting of surgery, chemotherapy, and

radiotherapy (Stupp et al., 2005). For example, the median

overall survival of patients with glioblastoma, which is the

most aggressive glioma and accounts for nearly 50% of all

gliomas, is fewer than two years after thorough treatment

(Chinot et al., 2014; Gilbert et al., 2014; Stupp et al., 2015;

Omuro et al., 2022). Therefore, exploring novel therapy to

improve the prognosis of glioma patients is urgently needed

and attracts abundant researchers to devote themselves to it.

In recent years, the applications of immunotherapy, which

aims to enhance anti-tumor immunity delivered by immune

cells, have been endorsed by lots of studies in multiple cancers,

including melanoma (Larkin et al., 2015), non-small-cell lung

cancer (Reck et al., 2016), gastric cancer (Janjigian et al., 2021),

and renal cell carcinoma (Choueiri et al., 2021a). Multiple

randomized clinical trials were also devoted to evaluating the

efficacy of immune checkpoint inhibitors (ICIs) in the

treatment of glioblastoma, but all these attempts eventually

failed (Reardon et al., 2020; Lim et al., 2022; Omuro et al.,

2022). The immunologically quiescent environment of the

brain is considered an important reason for these failures.

The blood-brain barrier not only prevents the majority of

antitumor drugs out of brain, but also blocks most peripheral

immune cells from entering central nervous system. Besides,

regulatory T (Treg) cells in tumor microenvironment of

glioma functions to deliver immunosuppressive effects by

exhausting cytotoxic T cells, which is another reason for

the failure of immunotherapy to activate T cells (Colombo

and Piconese, 2007). However, metastatic brain tumors

located in similar environments with gliomas can benefit

from ICIs therapy (Tawbi et al., 2018; Hendriks et al.,

2019), indicating that the unique immune

microenvironment of gliomas may result in resistance to

ICIs. Adjuvant ICIs for glioblastoma would reshape the

immune microenvironment and enhance anti-tumor

immunity (Cloughesy et al., 2019; Schalper et al., 2019).

Therefore, investigating potential pathways that influence

the immune microenvironment of gliomas can provide

novel methods to reshape the immune landscape and

subsequently enhance anti-tumor immunity, reinforce the

efficacy of immunotherapy, and improve prognosis.

Serine and glycine, two non-essential amino acids, play

critical roles in multiple cell physiological processes (Sullivan

and Vander Heiden, 2017). Cells require serine and glycine via

intracellular synthesis and uptake from the extracellular

environment. The synthesis process of serine and glycine

consists of two steps: de novo synthesis of serine branched

from glycolysis and reversible interconversion from serine to

glycine (Geeraerts et al., 2021), indicating the tight

relationship between the metabolism processes of these two

amino acids. The function of serine, glycine, and their

metabolism in cancers attracted significant attention in

recent years. Upregulated synthesis of serine and glycine

has been demonstrated in multiple cancers, including lung

cancer and glioma (Kim et al., 2015; Liao et al., 2019b). The

important physiological roles of serine and glycine synthesis in

tumors, including fueling nucleotide biosynthesis (Fan et al.,

2019), regulating lipid metabolism (Gao et al., 2018), altering

sphingolipid diversity (Muthusamy et al., 2020), and

maintaining cellular redox homeostasis (Ye et al., 2014),

were potential causes that drive the tumors to upregulate

the synthesis of serine and glycine to meet the aberrant

demand. The process of serine and glycine synthesis can

generate abundant one-carbon units and replenish carbon

sources for one-carbon metabolism in cancer cells

(Locasale, 2013; Newman and Maddocks, 2017; Fan et al.,

2019). Besides, serine and glycine are critical for the survival

and growth of cancer cells (DeBerardinis, 2011; DeBerardinis

and Chandel, 2016). Downregulation of serine and glycine

synthesis has been shown to inhibit cancer cell proliferation

(Mullarky et al., 2016; Pacold et al., 2016). Cancer cells can not

only upregulate serine and glycine synthesis, but also secret

extra serine and glycine to extracellular spaces to reshape

tumor microenvironment (Geeraerts et al., 2021). In

glioma, glycine concentration was determined as a

biomarker of aggressiveness (Tiwari et al., 2020). Serine and
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glycine in tumor microenvironment enhanced nucleotide

production and cell proliferation in brain metastasis (Ngo

et al., 2020). Furthermore, serine and glycine synthesized and

secreted by cancer cells play multiple roles in tumor immune

microenvironment. Serine in extracellular environments

inhibits the functions of macrophages and neutrophils (He

et al., 2019). A high level of phosphoglycerate dehydrogenase

(PHGDH), an essential enzyme for serine and glycine

synthesis, can induce macrophages to immunosuppressive

M2-like macrophages (Wilson et al., 2020). Serine and

glycine synthesis can also switch the phenotype of

macrophages to express immunosuppressive programmed

death-ligand (PD-L1) by inducing the production of IL-1β
(Su et al., 2018; Rodriguez et al., 2019). These findings suggest

that the metabolism of serine and glycine is involved in

tumorigenesis and related to the aggressiveness and

immune microenvironment of cancers. However, the role of

serine and glycine metabolism in malignant features and the

immune landscape of glioma remains unclear and need to be

further elucidated.

In this study, we comprehensively analyzed the RNA-

sequence data from multiple glioma patient cohorts,

including TCGA, CGGA325, CGGA693, and our

institution, to investigate the relationship between serine

and glycine metabolism-related genes (SGMGs) expression

and clinicopathological characteristics of glioma. Moreover,

we constructed a serine and glycine metabolism-related gene

risk signature (SGMRS) to evaluate the clinical significance of

SGMGs expression profile. Additionally, we also conducted

several analyses to investigate the correlation between the

expression of SGMGs and the tumor immune

microenvironment landscape of glioma.

Materials and methods

Data sources

Gene expression profile (fragments per kilobase million,

FPKM) and clinicopathological features in this study were

obtained from three public databases and an own cohort.

Those patients with primary oligodendroglioma,

astrocytoma, and glioblastoma were included in this study.

Those patients with recurrent gliomas or age <18 were exclude
from this study, because these tumors occupied minority of the

data set with distinctive biological features (Louis et al., 2021).

The three cohorts of public databases were from the Cancer

Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) and the

Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.

cn/). The TCGA cohort contained 662 primary glioma

samples, and 655 of which had complete survival data.

There are two cohorts from the CGGA database,

CGGA325 and CGGA 693 cohorts. The CGGA325 cohort

contained 226 adult primary gliomas, and the

CGGA693 cohort contained 415 primary gliomas. FPKM

data of these two cohorts were downloaded from the

CGGA website.

Our own cohort consisted of 77 primary glioma patients

from West China Hospital (WCH). The tumor samples were

obtained during tumor resection surgery and subsequently

sequenced for mRNA. After that, the mRNA sequencing data

was quantified and normalized to FPKM by STAR. Prognosis

information of these 77 patients was obtained through regular

follow-up and telephone interview. The overall survival (OS) was

calculated as the time length from surgery to death or last follow-

up (censored value). In preprocessing procedure, we exclude the

genes with too low FPKM values (maximum FPKM <0.1 or

standard deviation < 0.01, which may represent sequencing/

mapping artifacts) from further analyses. Detailed

clinicopathological information of these four cohorts was

showed in Table 1.

Consensus clustering analyses based on
serine and glycine metabolism-related
genes

The serine and glycine metabolism-related genes (SGMGs)

were identified based on the serine and glycine metabolism

pathway from PathBank (https://pathbank.org/, pathway No.

SMP0000004), which contained 24 SGMGs. After excluding

the genes with low expression levels, 21 SGMGs were

eventually enrolled in the following analyses. The list of these

24 SGMGs was downloaded from the PubChem website (https://

pubchem.ncbi.nlm.nih.gov/pathway/PathBank:SMP0000004/),

and the list of SGMGs before and after exclusion was given in

Supplementary Table S1. Subsequently, unsupervised consensus

clustering analyses were conducted based on expression patterns

of SGMGs to represent the different serine and glycine

metabolism patterns in gliomas. Consensus clustering analysis

was conducted using the R package ‘ConsensusClusterPlus’.

Briefly, for number of clusters (k) from 2 to 10, hierarchical

clustering of k clusters was performed over 1,000 random subsets

of samples based on Pearson correlation. The consensus index

was calculated as the frequency for which two samples were

stratified into the same cluster. The optimal k was determined

when gain in area under the cumulated distribution function

(CDF) curve of the consensus index converged with the increase

of k, under the restriction that the sample size of each cluster

should not too small to study its implications. Furthermore, we

performed the t-Distributed Stochastic Neighbor Embedding

(tSNE) analysis to visualize the different expression patterns

of SGMGs in each cluster. Besides, a naïve Bayes classifier was

constructed based on the SGMGs expression and cluster labels of

the TCGA cohort to classify the patients of the other three

cohorts into distinctive clusters.
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Construction and validation of the serine
and glycinemetabolism-related genes risk
signature

To elucidate the relationship between serine and glycine

metabolism and glioma, we constructed a gene risk

signature based on the expression of SGMGs, the serine

and glycine metabolism-related genes risk signature

(SGMRS). In the first step, patients of TCGA cohort were

split into training and validation sets with a ratio of 6:4, and all

the other three cohorts were defined as validation sets.

Subsequently, we utilized the Least Absolute Shrinkage and

Selection Operator (LASSO) Cox regression analysis to

filter the 21 SGMGs in the training set. The SGMG was

determined as critical SGMG if its coefficient was not

zero at the optimal model with maximum C-indices in over

80 random repetitions of LASSO Cox regression out of 100.

Moreover, we fitted a concluding multivariate Cox regression

model to the training set with critical SGMGs. The serine and

glycine metabolism-related genes risk signature (SGMRS) was

calculated using the following formula:

SGMRS � ∑
i�1
(βipExpi)

TABLE 1 Clinicopathological characteristics of patients in TCGA, CGGA325, CGGA693, and WCH cohorts.

Characteristics TCGA (N = 662) CGGA325 (N = 226) CGGA693 (N = 415) WCH (N = 77)

Age: mean (range) 46 (18–89) 52 (22–87) 43 (19–76) 46 (19–77)

Gender

Female 282 (42.6%) 87 (38.5%) 176 (42.4%) 30 (39.0%)

Male 380 (57.4%) 139 (61.5%) 239 (57.6%) 47 (77.0%)

NA 0 0 0 0

Histology

Astrocytoma 341 (51.5%) 82 (36.3%) 182 (43.9%) 22 (28.6%)

Oligodendroglioma 167 (25.2%) 60 (26.6%) 94 (22.7%) 21 (27.3%)

Glioblastoma 154 (23.3%) 84 (37.2%) 139 (33.5%) 34 (44.2%)

Grade

G2 214 (32.3%) 94 (41.6%) 134 (32.3%) 29 (37.7%)

G3 237 (35.8%) 48 (21.2%) 142 (34.2%) 14 (18.2%)

G4 154 (23.3%) 84 (37.2%) 139 (33.5%) 34 (44.2%)

NA 57 (8.6%) 0 0 0

IDH status

Mutant 421 (63.6%) 115 (50.9%) 169 (40.7%) 42 (54.5%)

WT 236 (35.6%) 110 (48.7%) 207 (49.9%) 35 (45.5%)

NA 5 (0.8%) 1 (0.4%) 39 (9.4%) 0

1p19q Codeletion

Codel 167 (25.2%) 54 (23.9%) 267 (64.3%) 19 (24.7%)

Non-codel 488 (73.7%) 169 (74.8%) 88 (21.2%) 43 (55.8%)

NA 7 (1.1%) 3 (1.3%) 60 (14.5%) 15 (19.5%)

TERT promoter status

Mutant 340 (51.4%) NA NA 30 (39.0%)

WT 156 (23.6%) NA NA 23 (29.9%)

NA 166 (25.1%) NA NA 24 (31.2%)

MGMT promoter status

Methylated 472 (71.3%) 97 (42.9%) 141 (34.0%) 35 (45.5%)

Unmethylated 157 (23.7%) 115 (50.9%) 195 (47.0%) 13 (16.9%)

NA 33 (5.0%) 14 (6.2%) 79 (19.0%) 29 (37.7%)

ATRX status

Mutant 192 (29.0%) NA NA 22 (28.6%)

WT 459 (69.3%) NA NA 53 (68.8%)

NA 11 (1.7%) NA NA 2 (2.6%)

Abbreviation: TCGA, the cancer genome atlas; CGGA, chinese glioma genome atlas; WCH, west china hospital; IDH, isocitrate dehydrogenase; TERT, telomerase reverse transcriptase;

MGMT, O6-methylguanine-DNA, methyltransferase; ATRX, alpha-thalassemia x-linked intellectual disability syndrome; WT, wild type; NA, not available.
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In this formula, β represented the coefficient of each critical

SGMG when fitted by the concluding multivariate Cox regression

model. Exp standed for the expression level of each essential SGMG.

Furthermore, the optimal SGMRS cut-off value was settled by the

function ‘surv_cutpoint’ of the R package ‘survminer’ with each

group proportion ≥0.3. According to the optimal cut-off value, all

patients were allocated into SGMRS low-risk or high-risk

group. Eventually, to validate the efficacy of prognostic

prediction, we illustrated the receiver operating characteristic

(ROC) curves in validation sets of 1-, 2-, and 3-year survival

rates and used the R package ‘time ROC’ to calculate the area

under the ROC curve (AUC).

Assessments of gene alterations and copy
number variation

We obtained the data of gene alterations and copy number

variation (CNVs) from the cBioPortal database (https://www.

cbioportal.org/) for the TCGA cohort to assess the gene

alterations and CNVs between different clusters and SGMRS

risk groups. Subsequently, the R package ‘maftools’ was used to

depict the different patterns of gene alterations and tumor

mutation burdens (TMBs). Moreover, the CNV levels were

represented as the Genomic Identification of Significant

Targets in Cancer (GISTIC) score.

Gene set enrichment analyses

In the section of gene set enrichment analyses, we used the R

package ‘clusterProfiler’ to conduct the over-representation and

gene set enrichment analysis (GSEA) to assess the differentially

expressed genes (DEGs). Besides, we used the R package ‘limma’

to determine the DEGs between clusters and risk groups. DEGs

were defined as those genes with |log2FC| > 0.5 and adjusted

p-value < 0.05. In the GSEA, the DEGs were arranged according

to their log2FC values and a Running Enrichment Score for each

gene set was computed by adding 1/(number of DEGs) when a

DEG was found in the gene set and subtracting 1/(number of

DEGs) if not. Moreover, we converted the logFPKM matrix of

genes to the pathway expression matrix using the R package

‘GSVA’. The differentially expressed pathways between clusters

and risk groups were identified with the ‘limma’ package.

Comprehensive characterization of tumor
immune microenvironment based on
serine and glycine metabolism

To explore the impact of serine and glycine metabolism on

the tumor immune cells and immune microenvironment, we

conducted multiple analyses to characterize the differences in the

tumor immune microenvironment between different clusters

and risk groups. Firstly, we applied the website of

CIBERSORTx (https://cibersortx.stanford.edu/). Subsequently,

we utilized the Estimation of Stromal and Immune Cells in

Malignant Tumor issues using Expression data (ESTIMATE)

to calculate the stromal, immune, and ESTIMATE scores in

glioma, contributing to evaluating the infiltration of stromal and

immune cells in the tumor microenvironment (Yoshihara et al.,

2013). In this algorithm, the non-hematopoiesis-related genes

that were differentially expressed between tumor cells and

matched stromal cells separated by laser capture

microdissection in multiple cancers were screened. The

stromal related genes were selected from these genes. Besides,

we also integrated the tumor purity data based on the

ESTIMATE score and consensus purity estimation (CPE)

previously published by D.Aran et al. (Aran et al., 2015). To

identify the tumor immunological phenotype (TIP), we applied

another previously published algorithm (Wang et al., 2021) to

compute the TIP gene signature. According to the TIP gene

signature, we could identify the immunological phenotype of

tumor as either relatively ‘cold’ or ‘hot’ tumors. Additionally, the

Tumor Immune Dysfunction and Exclusion (TIDE) suite (http://

tide.dfci.harvard.edu/) was applied to predict potential response

to therapy with ICIs.

Nomogram construction based on SGMRS
and other prognostic factors

To construct a nomogram that could effectively predict

glioma patients’ prognosis, we initially identified independent

prognostic factors using univariate and multivariate Cox

regression analyses. Firstly, the SGMRS, together with other

potential prognostic factors, including age, gender, tumor

grade, radiotherapy, chemotherapy, Karnofsky Performance

Scale (KPS), isocitrate dehydrogenase (IDH) mutation, and

1p/19q codeletion, were enrolled into univariate Cox

regression analysis. Then those prognostic factors with

p-value < 0.05 in univariate Cox regression analysis entered

the following multivariate analysis. Eventually, those

prognostic factors with p-value < 0.05 in multivariate Cox

regression analysis were determined as independent

prognostic factors.

The nomograms were constructed based on these

independent prognostic factors using the R package ‘rms’. To

assess the efficacy of nomograms in the prediction of prognosis,

we computed calibration curves for each nomogram.

Statistical analyses

The R software (version 4.2.1) was used to perform the

above bioinformatic analyses unless otherwise specified. For
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FIGURE 1
Clustering of gliomas based on expression pattern of SGMGs. (A) tSNE map for SGMGs expression patterns of four consensus clusters. (B)
Heatmap for expression of 21 SGMGs based on four clusters. (C) The expression levels of PHGDH, PSAT1, PSPH, and SHMT1 among four clusters. (D)
K-M curves based on four consensus clusters in (D) TCGA, (E) CGGA325, (F) CGGA693, and (G) WCH cohorts.
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continuous variables, the Wilcoxon rank sum test was used to

evaluate the differences between different clusters and risk

groups. For categorical variables, the chi-square test was used

to evaluate the differences. All the survival analyses were

performed using the R package ‘survminer’. The differences

between Kaplan-Meier (K-M) curves were tested by log-rank

test. Univariate and multivariate Cox regression analyses were

conducted using the ‘coxph’ function of the R package

‘survival’. The LASSO Cox regression analysis was

performed using the R package ‘glmnet’. In linear

regression analysis, the T Iterative Grubbs test was utilized

to exclude the outliers.

Ethic approval and data availability

The collection processes of clinical data and tumor

samples were approved by the institutional review board of

West China Hospital (No. 2018.569) following the

1964 Helsinki declaration and its later amendments.

Besides, every patient signed written consent for collecting

and using tumor tissue and clinical information. All the tumor

tissue sequencing data from West China Hospital were

available at the Genome Sequence Archive for Humans

with accession code: HRA002839 (https://ngdc.cncb.ac.cn/

gsa-human/s/JQssVoV1).

Results

Unsupervised consensus clustering
analyses based on serine and glycine
metabolism-related genes

Based on the expression patterns of 21 serine and glycine

metabolism-related genes (SGMGs), we performed an

unsupervised consensus clustering analysis in patients of

TCGA cohort. According to the clustering algorithm

explained in Material and Method section, the delta area of

CDF dropped significantly when k increased from 3 to 4, which

suggest convergence of within-cluster similarity over between-

cluster similarity with increased k over 4. Therefore, 4 was chosen

to be the optimal number of clusters, and patients of TCGA

cohort were classified into four consensus clusters

(Supplementary Figure S1). The different expression patterns

of SGMGs among these four clusters were illustrated using tSNE

analysis (Figure 1A). Besides, the expression levels of four

important genes involved in serine and glycine synthesis were

illustrated (Figure 1B). Notably, cluster 3 significantly highly

expressed PHGDH and PSAT1, and cluster 4 significantly highly

expressed PSPH and SHMT1 (Figure 1C). The expression levels

of all SGMGs in different clusters are illustrated in

Supplementary Figure S1.

The survival analysis demonstrated that the prognosis of

cluster 4 was overwhelmingly worse than the other three clusters

in TCGA cohort (Figure 1D). Based on the naïve Bayes clustering

classifier trained by the TCGA cohort, patients of the other three

cohorts were also classified into four clusters. In survival analyses,

the other three cohorts also exhibited the same trend (Figures 1E,

F), indicating that the expression pattern of SGMGs was related

to the prognosis of glioma patients even in independent glioma

cohorts.

To investigate the distinctive patterns of pathway

alterations related to serine and glycine metabolism, we

conducted functional enrichment analyses between cluster

1 and cluster 4, which showed the most differential SGMGs

expression profiles and prognosis. In GSEA, the cytokine

signaling in immune system pathway (NES = 2.739,

adjusted p-value < 0.001) and the extracellular matrix

organization pathway (NES = 3.165, adjusted p-value <
0.001) ranked among the top five REACTOME gene sets in

the differentially expressed genes (DEGs) between cluster

1 and 4 (Figure 2A), suggesting the potential impact of

serine and glycine metabolism on the tumor

microenvironment and immunity. Besides, the extracellular

matrix receptor interaction pathway (NES = 2.869, adjusted

p-value <0.001) and the asthma pathway (NES = 2.983,

adjusted p-value < 0.001) were also among the top 5 most

significantly enriched Kyoto Encyclopedia of Genes and

Genomes (KEGG) gene sets in the cluster 1/4 DEGs

(Figure 2B), indicating the potential effect on inflammation

and neurogenesis in glioma.

The results of gene mutation analysis revealed different

gene mutation models of each cluster (Figure 2C).

IDH1 mutation, a critical marker for diagnosis and

prognosis of gliomas, was frequently observed in cluster 1, 2,

and 3 but hardly occurred in cluster 4. Moreover, the mutation

rates of TP53 and ATRX in cluster 3 were remarkably higher

than the other 3 clusters. Moreover, most CIC mutations

occurred in cluster 1. The analysis of CNVs also suggested

distinctive characteristics among the four clusters. The gain of

chromosome 7 and loss of chromosome 10 (+7/-10), which was

recognized as a diagnostic marker for glioblastoma,

predominantly occurred in cluster 4.1p/19q codeletion,

which was indispensable for diagnosis of oligodendroglioma,

mainly occurred in cluster 1, in line with the best prognosis of

cluster 1. In clinicopathological features, the proportion of

WHO grade 4 tumors grew from cluster 1 to cluster 4,

which were characterized by glioblastomas and gliomas with

unmethylated MGMT promoter, while TERT promoter wild-

type tumors occupied the majority of cluster 3 gliomas,

suggesting a potential connection between these tumors and

alternative telomere lengthening (Figures 2E–H). Additionally,

the differences in other clinicopathological features among

these four clusters were also illustrated in Supplementary

Figure S2.
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FIGURE 2
Functional enrichment and clinicopathological characteristics of the four consensus clusters in TCGA cohort. (A) Top five pathways with the
highest NES in the REACTOME gene set between cluster 1 and cluster 4. (B) Top five pathways with the highest NES in the KEGG gene set between
cluster 1 and cluster 4. (C) Top 20mutated genes of the four consensus clusters. (D)Heatmap for copy number variations of the four clusters. (E) The
differences in (E) tumor grade, (F) histological diagnosis, (G) MGMT promoter status, and (H) TERT promoter status among four clusters. *p <
0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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FIGURE 3
Different immunological landscapes of tumor microenvironment among four clusters. (A) Boxplots for infiltration fraction of four types of
immune cells based onCIBERSORTx in TCGA cohort. (B)Differences in stromal, immune, and ESTIMATE scores among four clusters in TCGA cohort.
(C)Difference in tumor purity among four clusters in TCGA cohort. (D) TIP score and related gene expression heatmap among four clusters in TCGA
cohort. (E)Difference in TIP score among four clusters in TCGA cohort. (F) TIP score and related gene expression heatmap among four clusters
in CGGA325 cohort. (G) Difference in TIP score among four clusters in CGGA325 cohort. (H) Differences in expression levels of CD274 and
CD276 among four clusters in TCGA and CGGA 325 cohorts. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Analyses of immune cells infiltration and
tumor microenvironment based on
consensus clusters

Based on the consensus clusters, we performed comprehensive

analyses to explore the impact of serine and glycine metabolism on

the immune cells and immune microenvironment in glioma. The

analyses of immune cell infiltration in the tumor

microenvironment revealed that there were more abundant

M2 macrophages, resting NK cells, and resting memory CD4+

T cells but fewer plasma B cells in the tumor microenvironment of

cluster 4 (Figure 3A). Besides, the calculation of stromal, immune,

and ESTIMATE scores based on the ESTIMATE algorithm

demonstrated that cluster 4 had remarkably higher scores than

the other three clusters. Higher stromal, immune, and ESTIMATE

scores represented for more stromal cells and more immune

infiltration in the tumor microenvironment. In comparison,

cluster 3 gliomas also had significantly higher scores than

cluster 1 and 2, suggesting that these tumor microenvironment-

related scores were related to serine and glycine metabolism and

prognosis in glioma (Figure 3B). Furthermore, for the analysis of

tumor purity, cluster 4 was manifested with significantly lower

tumor purity than other clusters, indicating amore complex tumor

microenvironment of cluster 4 (Figure 3C). Moreover, based on

the computation of the TIP score, cluster 4 was demonstrated with

higher expression of genes related to the ‘hot’ immunological

phenotype of tumor than other clusters in TCGA cohort

(Figure 3D). The resulting TIP score of cluster 4 was

significantly higher than other clusters, suggesting cluster

4 could be a relatively ‘hotter’ tumor compared to those in

other clusters (Figure 3E). These findings were also validated in

CGGA325 cohort (Figure 3F, G), suggesting a robust association

between the expression of serine/glycine metabolism-related genes

and the immune landscape of gliomas. Additionally, analyses of

markers related to immunotherapy revealed that expression levels

of CD274 (PD-L1) and CD276 (B7-H3), which were essential

targets for immunotherapy, expressed at remarkably higher levels

in cluster 4 compared to other clusters in TCGA and

CGGA325 cohorts (Figure 3H). Combined results of TIP score

and the expression levels of immunotherapy-related targets

demonstrated that cluster 4, which exhibited ‘hotter’

immunological phenotype and expressed more immunotherapy-

related targets, might be more likely to response to

immunotherapy than patients of other clusters.

Construction and validation of serine and
glycine metabolism-related genes risk
signature

In this section, we filtered the 21 SGMGs with the LASSO

Cox regression in training set to identify critical genes for the

construction of serine and glycine metabolism-related genes risk

signature (SGMRS). Five SGMGs, including SHMT1, PSPH,

GNMT, SARDH, and ALDH2, were identified as critical genes

for the construction of SGMRS (Figure 4A), and the formula of

the SGMRS was derived by fitting a final multivariate Cox

regression model to the expression of the 5 critical SGMGs in

the training dataset. The SGMRS was calculated using the

following formula:

0.505*SARDH+0.243*SHMT1-1.77e-4*PSPH-
0.050*ALDH2-0.209*GNMT

Further univariate analysis demonstrated that SHMT1,

SARDH, and PSPH were hazardous prognostic factors for

glioma (Figure 4B). GNMT and ALDH2 were protective

factors for glioma (Figure 4B). Moreover, to validate these

results, we obtained representative immunohistochemical

staining for SARDH and PSPH from the Human Protein

Atlas (https://www.proteinatlas.org/) (Pontén et al., 2008).

The staining figures revealed that the protein levels of

SARDH and PSPH were higher in high-grade gliomas

compared to low-grade gliomas (Supplementary Figure 3A-

B), which was consistent with the results of the univariate

analysis. Subsequently, the ‘surv_cutpoint’ algorithm was used

to identify the optimal SGMRS cut-off for all these four

cohorts, and the patients were classified into SGMRS high-

and low-risk groups based on this cut-off (Figure 4C). Further

survival analyses revealed that the patients in SGMRS high-

risk group had an enormously poorer prognosis than low-risk

group in the TCGA validation cohort (Figure 4D), which was

also confirmed by the other three cohorts (Figures 4E,F). We

also conducted ROC analyses to examine the efficacy of

SGMRS to predict survival rates at 1, 2, and 3 years. AUCs

of the ROC curves of SGMRS in TCGA validation cohort at 1,

2, and 3 years was 0.815, 0.842, and 0.848, endorsing the

effectiveness of SGMRS on prognosis prediction (Figure 4H).

In the other three cohorts, the performances of SGMRS on

prognosis prediction were similar (Figure 4H).

To illustrate the expression pattern of these five critical

SGMGs, we aligned a heatmap of the expression level of each

patient in order of SGMRS. Besides, the clinicopathological

features, including tumor grade, histology diagnosis, IDH

status, 1p/19q codeletion, TERT promoter status, ATRX

status, and MGMT promoter status, were also integrated

(Figure 5A). As for the analysis of gene mutations, the

SGMRS high-risk group manifested with a lower incidence

of IDH1 and TP53 mutation (Figure 5B) and a higher

incidence of EGFR and PTEN mutation. Furthermore, the

tumor mutation burden (TMB) analysis between

SGMRS high- and low-risk groups revealed a significantly

higher TMB in high-risk groups (Figure 5C). Additionally,

the analysis of CNVs demonstrated that most of chromosome

+7/-10 occurred in SGMRS high-risk group (Figure 5D),

and most of the 1p/19q codeletion occurred in the low-risk

group.
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FIGURE 4
Construction of SGMRS and its relationship with prognosis. (A) Average of coefficients of five critical SGMGs in the LASSO Cox regression at
each lambda value. (B) The prognostic effect of each critical SGMG in glioma. (C)Optima cutoff value of SGMRS in all four cohorts. (D) K-M curves of
the (D) TCGA, (E)CGGA325, (F)CGGA693, and (G)WCHcohorts based on SGMRS high- and low-risk groups. (H) ROC curves andmatched AUCof 1-
, 2-, 3-year survival rate in all four cohorts.
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FIGURE 5
Clinicopathological features of SGMRS risk groups. (A) Expression level of five critical SGMGs and its relationship with clinicopathological
features. (B)Gene mutations of five critical SGMGs and top eight frequently mutated genes in gliomas ordered by SGMRS risk groups. (C) Difference
in tumor mutation burden between SGMRS high- and low-risk groups. (D) Copy number variation and its relationship with clinicopathological
features ordered by SGMRS risk groups. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Functional enrichment analyses based on
SGMRS risk groups

In this section, we performed multiple functional enrichment

analyses to investigate the pathway alterations in different

SGMRS risk groups. The extracellular matrix organization of

REACTOME gene sets and the extracellular matrix receptor

interaction of KEGG gene sets were identified with high odds

ratio and p-value between high- and low-risk groups (Figures

6A,B). The retinoid cycle disease events pathway was listed in the

FIGURE 6
Functional enrichment analyses between two SGMRS risk groups. (A) Pathways with high confidence and odds ratio in REACTOME gene sets.
(B) Pathways with high confidence and odds ratio in KEGG gene sets. (C) Top 12 pathways in REACTOME gene set with the highest GSVA scores. (D)
Top 12 pathways in KEGG gene set with the highest GSVA scores. (E) Top five pathways in REACTOME gene set with the highest normalized
enrichment scores. (F) Top five pathways in KEGG gene set with the highest normalized enrichment scores.
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FIGURE 7
Prognostic value of SGMRS and construction of SGMRS-based nomograms. (A) Univariate analysis of potential prognostic factors in glioma. (B)
Multivariate analysis to identify independent prognostic factors in glioma. (C)Nomogramof 1-, 2-, and 3-year survival rate of glioma patients in TCGA
cohort. (D) Calibration plots for the nomogram of TCGA cohort. (E) Nomogram of 1-, 2-, and 3-year survival rate of glioma patients in
CGGA325 cohort. (F) Calibration plots for the nomogram of CGGA325 cohort.
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top 12 dysregulated pathways in the REACTOME gene set

(Figure 6C). The glutathione metabolism pathway, which was

regulated by serine and glycine synthesis (Geeraerts et al., 2021),

was listed in the top 12 pathways with highest GSVA scores in the

KEGG gene set (Figure 6D). Besides, the cytokine signaling in

immune system pathway (NES = 2.568, adjusted p-value <0.001)
and extracellular matrix organization pathway (NES = 2.718,

adjusted p-value <0.001) of REACTOME gene sets were ranked

in the top five pathways in comparison between two SGMRS risk

groups using GSEA (Figure 6E). The complement and

coagulation cascades pathway (NES = 2.223, adjusted

p-value <0.001) and the focal adhesion pathway (NES = 2.354,

adjusted p-value <0.001) of KEGG gene sets were ranked in the

top five (Figure 6F).

Construction of nomograms based on
SGMRS to predict prognosis in glioma
patients

We firstly conducted univariate and multivariate Cox

regression analyses to identify independent prognostic factors

for the subsequent construction of nomograms. The SGMRS,

together with other potential prognostic factors, including tumor

grade, patient age, radiotherapy, chemotherapy, sex, KPS, 1p/19q

codeletion, and IDHmutation, were enrolled into univariate Cox

regression analysis in TCGA cohort (Figure 7A). Subsequently,

those prognostic factors (p-value < 0.05 in univariate analysis)

were enrolled into multivariate Cox regression analysis.

Eventually, the SGMRS, together with tumor grade,

radiotherapy, 1p/19q codeletion, and IDH mutation, were

identified as independent prognostic factors in glioma

(p-value < 0.05, Figure 7B). These factors were utilized to

construct a nomogram to achieve individualized survival rate

prediction (Figure 7C). The corrected C-index of this nomogram

based on TCGA cohort was 0.848. This nomogram’s efficacy in

predicting the prognosis of glioma patients was validated by the

1-, 2-, and 3-year calibration curves (Figure 7D). For the

CGGA325 and cohort, the corrected C-index of the

nomogram was 0.765 (Figure 7E). For the CGGA693 cohort

and WCH cohort, it is 0.772 and 0.696 respectively. The 1-, 2-,

and 3-year calibration curves derived from

CGGA325 dataset also endorsed performance of the

nomogram (Figure 7F).

Correlation of SGMRS with immune cells
and immune microenvironment

To investigate the connection between SGMRS and the

immune landscape of gliomas, we performed comprehensive

analyses to elucidate the correlation between SGMRS and

multiple immunity-related indexes. Firstly, we computed

the infiltration fraction of 22 types of immune cells in the

tumor microenvironment using the CIBERSORTx algorithm.

The results revealed that gliomas of SGMRS high-risk group

harbored more macrophages (including M0, M1, and M2),

resting NK cells, and resting memory CD4+ T cells infiltrated

into the tumor microenvironment, and fewer plasma cells and

activated NK cells (Figure 8A), depicting distinctive immune

cell infiltration models between SGMRS high- and low-risk

groups. Subsequently, we utilized the ESTIMATE algorithm to

analyze immune-related scores and tumor purity. The SGMRS

high-risk group manifested with higher stromal, immune, and

ESTIMATE scores compared to the low-risk group in TCGA,

CGGA325, and WCH cohorts (Figure 8B), indicating a

significantly more complex tumor microenvironment in

gliomas with higher SGMRS. The analysis of tumor purity

also confirmed that gliomas of the high-risk group had

remarkably lower tumor purity than those of the low-risk

group, which was in accordance with the results of immune-

related scores (Figure 8C). Further correlation analysis

confirmed that the stromal score, immune score, and

ESTIMATE score were strongly positively correlated with

the value of SGMRS in these three cohorts (Figures 8D–F).

The tumor purity was negatively correlated with the value of

SGMRS in these three cohorts (Figure 8G).

To explore potential applications of SGMRS in the

guidance of immunotherapy, we analyzed the relationship

between multiple immunotherapy-related markers and

SGMRS. In gliomas of SGMRS high-risk group, the

expression levels of CD274 (PD-L1), CD276 (B7-H3), and

CD279 (PD-1) were remarkably higher compared to the low-

risk group in TCGA cohort (Figure 9A). In the

CGGA325 cohort, this result was also confirmed

(Figure 9B), indicating that gliomas with high SGMRS

would overexpress multiple targets for immunotherapy.

Furthermore, to validate the potential ability of SGMRS to

direct the use of immunotherapy, we calculated the TIP score

to identify the relationship between the immunological

phenotype and SGMRS in glioma. The result demonstrated

that gliomas of SGMRS high-risk group would highly express

immunological ‘hot’ tumor genes (Figure 9C) in TCGA

cohort. And the TIP scores of gliomas in the high-risk

group were enormously higher than low-risk group

(Figure 9D). Correlation analysis confirmed the positive

correlation between TIP score and SGMRS (Figure 9E).

These findings were also validated in the CGGA325 cohort

(Figures 9F–H). Additionally, the analysis of cytotoxic T cells

(CTLs) revealed that the gliomas of SGMRS high-risk group

harbored more CTLs infiltration compared to the low-risk

group in TCGA and CGGA325 cohort (Figure 9I). It is also

demonstrated that patients of the high-risk group would

respond better to immune checkpoint inhibitors compared

to low risk in TCGA cohort (Figure 9J). Most of these findings

can be validated in other cohorts (Supplementary Figure S4).
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FIGURE 8
Analyses on immune landscapes of tumor microenvironment between SGMRS high- and low-risk groups. (A) Boxplot for the estimated
infiltration fraction of 22 types of immune cells in tumors. (B) Differences in the stromal, immune, and ESTIMATE scores between two risk groups in
TCGA, CGGA325, and WCH cohorts. (C)Differences in tumor purity between two risk groups in TCGA, CGGA325, and WCH cohorts. (D) Analyses of
correlations of SGMRS with the (D) stromal score, (E) immune score, (F) ESTIMATE score, and (G) tumor purity in TCGA, CGGA325, and WCH
cohorts. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Frontiers in Pharmacology frontiersin.org16

Chen et al. 10.3389/fphar.2022.1072253

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1072253


FIGURE 9
Differences in expression of immunotherapy-related genes, immunological phenotype, and response to ICIs between two SGMRS risk groups.
(A) Boxplot for the expression level of 33 immunotherapy-related genes in two risk groups in TCGA cohort. (B) Analyses of correlations between
SGMRS and the expression levels of CD274, CD276, CD44, and PD-1 in TCGA cohort. (C) Analysis of TIP score and related gene expression levels
ordered by SGMRS in TCGA cohort. (D) Difference in TIP score between two risk groups in TCGA cohort. (E) Analysis of correlation between

(Continued )
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Discussion

As one of the most lethal cancer, glioma causes more than

200 thousand deaths worldwide every year (Sung et al., 2021).

Due to its heavy burden and direct threats to human health,

countless researchers devoted themselves to exploring novel

therapies to improve the prognosis of glioma patients.

However, there is hardly inspiring breakthrough in the field of

glioma, especially for glioblastoma, which accounts for 50% of

gliomas and presented with only a median overall survival of

22 months after the complete treatment process, including

surgery resection, radiotherapy, chemotherapy, and even

tumor treating field (Stupp et al., 2005; Stupp et al., 2017).

Immunotherapy, emerging under the spotlight as a novel

therapy for cancers, has been proven effective in multiple

types of cancer (Eggermont et al., 2018; Gandhi et al., 2018;

Choueiri et al., 2021b; Cortes et al., 2022). Hence, several studies

have concentrated on the potential therapeutic effects of

immunotherapy in glioma. However, almost all these attempts

at the application of immunotherapy failed to improve the overall

survival of glioma patients in phase 3 clinical trials (Weller et al.,

2017; Wakabayashi et al., 2018; Reardon et al., 2020; Lim et al.,

2022; Omuro et al., 2022). The blood-brain barrier (BBB), which

functions to block most peripheral immune cells out of the

central nervous system (CNS), was recognized as an

important reason for these failures. However, inspiringly, a

novel lymphatic pathway permitting antigen-presenting cells

to escape from CNS was introduced in recent years (Louveau

et al., 2015). Further research proved that lymphocytes outside

CNS could be primed by these antigen-presenting cells and then

infiltrate into the brain and execute immune responses (Lim

et al., 2018). These studies suggest that brain is not a closed area

for applications of immunotherapy. If we can further investigate

and understand the mechanisms of immune cell infiltrations and

reshaped immune landscapes of the tumor microenvironment,

immunotherapy might become another robust weapon for us to

fight against glioma. Therefore, our present study devoted to

investigating the underlying mechanisms of the unique immune

landscape of glioma, aiming to provide potential help to the

application of immunotherapy.

In the field of tumor immunity, the relationship between

unique metabolic patterns and immunological characteristics of

tumors has become an attractive topic (Xia et al., 2021). Many

studies have suggested that serine and glycine metabolism has

critical effects on cancers (DeBerardinis, 2011; DeBerardinis and

Chandel, 2016). As two non-essential amino acid, cells can gain

serine and glycine through intracellular synthesis and uptake

from the environment (de Koning et al., 2003; Sullivan and

Vander Heiden, 2017). The upregulation of serine and glycine

synthesis has been observed in many cancers (Kim et al., 2015;

Liao et al., 2019b). As a side-branch of glycolysis, serine and

glycine synthesis was tightly regulated by the activity of

glycolysis. Due to the Warburg effect, cancer cells could fulfil

the requirement of glycolytic intermediates in the synthesis of

serine and glycine through activated aerobic glycolysis

(DeBerardinis and Chandel, 2020). Upregulating the activity

of M2 isoform of pyruvate kinase (PKM2), an enzyme

functioned to catalyze conversion of phosphoenolpyruvate

into pyruvate, can restrict 3-PG, the initial compound of

serine and glycine synthesis, channeling into serine and

glycine synthesis (Chaneton et al., 2012). In cancer cells,

activation of PKM2 can reduce the synthesis of serine and

glycine and render cancer cells dependent on uptake from

environment (Kung et al., 2012). On the other way, restriction

of dietary serine and glycine, which functioned to decrease serine

and glycine uptake from environment, can reduce tumor growth

(Maddocks et al., 2013; Gravel et al., 2014). But this effect was

alleviated in those cancer models with upregulated serine and

glycine synthesis, suggesting that the synthesis of serine and

glycine can compensate the lack of uptake from environment

(Maddocks et al., 2017). Therefore, the simultaneous application

of inhibiting serine and glycine synthesis and uptake exhibited a

promising effect and called for more studies.

Moreover, in glioma, the concentration of glycine was also

proved with a positive correlation with aggressiveness (Tiwari

et al., 2020). Furthermore, serine and glycine were manifested as

immunosuppressive metabolites (He et al., 2019). Cancer cells

can overproduce abundant serine and glycine, which delivers

robust immunosuppressive effects and might contributes to the

immune evasion of cancer cells (Hanahan and Weinberg, 2011).

Extracellular serine can suppress the function of macrophages

and neutrophils (He et al., 2019). High activity of PHGDHwould

promote macrophages to differentiate intoM2-like (Wilson et al.,

2020). Hence, investigating the relationship between serine and

glycine metabolism and the immune landscape of glioma may

contribute to the application of immunotherapy.

In the present study, to explore the relationship between

SGMGs and clinicopathological features and the immune

landscape of gliomas, we firstly classified all patients into four

consensus clusters based on their distinctive expression patterns

of SGMGs. Compared to the other clusters, gliomas in cluster

4 expresses significantly higher levels of PSPH and

FIGURE 9 (Continued)
SGMRS and TIP score in TCGA cohort. (F) Analysis of TIP score and related gene expression levels ordered by SGMRS in CGGA325 cohort. (G)
Difference in TIP score between two risk groups in CGGA325 cohort. (H) Analysis of correlation between SGMRS and TIP score in CGGA325 cohort.
(I) Difference in proportion of patients with high cyto-toxic T lymphocytes infiltration between two risk groups in TCGA cohort. (J) Difference in
proportion of patients with predictive response to immune checkpoint inhibitors between two risk groups in TCGA cohort.
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SHMT1 which were known culprits of aberrant serine and

glycine production in malignant cancers (Geeraerts et al.,

2021). Additionally, the strong immunohistochemistry signal

of PSPH in high grade gliomas presented as an example that

the dysregulated SMGMs could be used as pathological

biomarkers to identify the most aggressive gliomas

(Supplementary Figure S3). Among these four clusters,

different clinicopathological features and prognosis patterns

were depicted. Furthermore, the incidences of gene alterations

also differed among these four clusters. For instance, IDH

mutation, a critical diagnostic and prognostic marker for

glioma would lead to abnormal tricarboxylic acid (TCA) cycle

(Yan et al., 2009; Pirozzi and Yan, 2021). Besides, the serine and

glycine synthesis pathway was reported to provide approximately

50% of the total anaplerotic flux of glutamine into the TCA cycle

(Possemato et al., 2011), indicating potential interaction between

serine and glycine metabolism and IDH mutation. Nevertheless,

even with potential interaction with other prognostic factors, the

SGMRS was still proved as an independent prognostic factor in

multivariate analysis, which included SGMRS and other potential

prognostic factors, indicating the satisfactory potential of

SGMRS as a prognostic factor.

After filtering SGMGs, five SGMGs were identified as critical

genes for the prognosis of glioma, suggesting the strong interaction

between these five genes and glioma. For example, phosphoserine

phosphatase (PSPH), an essential enzyme of serine and glycine

metabolism, catalyzes the dephosphorylation of phosphoserine to

serine. In multiple cancers, PSPH promotes tumor growth and

metastasis (Liao et al., 2019a; Rawat et al., 2021). In our study, the

hazardous effect of PSPH was illustrated. Serine hydroxymethyl

transferase 1 (SHMT1) is a critical enzyme that converts serine to

glycine (Hebbring et al., 2012). Upregulation of SHMT1 would

increase the concentration of glycine. Several studies have found that

SHMT1 can promote tumor growth and progression (Pandey et al.,

2014; Gupta et al., 2017). The activity of SHMT1 was strongly

negatively correlated with the overall survival in both clustering

analysis and SGMRS analysis, which was accordance with previous

study and endorsed the critical role of SHMT1 on the prognosis of

glioma patients. Compared to other three essential enzymes of serine

and glycine synthesis, SHMT1 showed significantly stronger

correlation with prognosis both in consensus clustering analysis

and in SGMRS analysis, suggesting that SHMT1 was the essential

enzyme of serine and glycine synthesis to regulate the malignancy of

glioma. Besides, glycine N-methyltransferase (GNMT) catalyzes the

methylation of glycine to form sarcosine (Yeo and Wagner, 1994),

which might decrease glycine concentration in the tumor. GNMT

has been proven to have tumor suppression function in

hepatocellular carcinoma (Chen et al., 1998). However, there is

no study to elucidate the effects of GNMT in glioma. Our study

suggested the protective effects of GNMT in glioma, inspiring

further research on it.

Further analyses of immune cell infiltration and immune

landscapes depicted the relationship between serine and glycine

metabolism and the immune microenvironment of glioma. The

CIBERSORTx analyses estimated the infiltration fraction ofmultiple

types of immune cells. The results demonstrated that the infiltration

ofmany immune cells was correlated with SGMRS. For example, the

infiltration of M2 macrophages into the tumor microenvironment

was strongly positively correlated with SGMRS. Circulating

monocytes and neighboring macrophages can be recruited by

tumor cells and then infiltrated into the tumor

microenvironment. Subsequently, these macrophages were

polarized from M1-like to M2-like, forming tumor-associated

macrophages (TAMs) (Anderson et al., 2021). TAMs can

synthesize cytokines to suppress the function of T lymphocytes

and upregulated immunosuppressive surface proteins (Curiel et al.,

2004; Colombo and Piconese, 2007; Yang and Zhang, 2017). These

immunosuppressive functions of TAMs became an important

reason for the immune evasion of tumors. The correlation

between high SGMRS and high infiltration of TAMs suggests the

role of serine and glycine metabolism in immune evasion, inspiring

that serine and glycine metabolism could be another target to

suppress immune evasion of glioma. The expression levels of

multiple immunotherapy-related genes, including PD-1 and PD-

L1, were also strongly positively correlated with SGMRS. The serine

and glycine synthesis was also reported to induce macrophages to

overexpress PD-L1 by promoting the release of IL-1β (Su et al., 2018;
Rodriguez et al., 2019; Yu et al., 2019), according to our study.

Additionally, higher SGMRS was correlated with immunological

‘hotter’ features and more potential responders to ICIs. These

findings suggested the potential ability of SGMRS to predict the

expression of targets for immunotherapy and the consequent ability

to guide the selection and use of immunotherapy in glioma.

Although comprehensive analyses were conducted in our

present study, there are still some limitations. First, protocols

used for data preprocessing and sequencing were different

among these four cohorts. Next, compared to metabolic and

proteomic data, the abundance of public RNA-sequencing

datasets allows more robust analysis and validation of the

results in multiple independent cohorts. However, the results

derived from transcriptome analysis as performed here would

be still more impactful if validated in future experiments.

Besides, all the analyses and related genes were about

serine and glycine metabolism, in other word, in the scope

of pharmacodynamics of serine and glycine. The disposition of

serine and glycine in different organs or tissues might also

influence their effects, which remains to be explored. In

addition, due to lack of transcriptomic data from

gliomas patients receiving immunotherapy, the implications

of our findings are confined to estimated ICI responses

rather than actual response. The application of the

prediction results should be evaluated with a clinical study

design. Finally, the underlying mechanism of how serine and

glycine metabolism impacted immune cell infiltration and the

immune landscape remains unclear and calls for further

investigation.
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Conclusion

In conclusion, we demonstrated that expression patterns of

SGMGs were closely related to clinicopathological features,

immune cell infiltration, and the immune landscape of

glioma. A novel serine and glycine metabolism assessment

score system, SGMRS, exhibited with robust ability to predict

the prognosis of glioma patients. Besides, higher SGMRS,

standing for more glycine synthesis and less glycine

catabolism, predicts more immune cells infiltration, a more

complex tumor microenvironment, and more expression of

targets for immunotherapy, endorsing the application of

SGMRS to guide the choice and use of immunotherapy in glioma.
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