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Objective: The goal of this study was to create a risk model based on the

ferroptosis gene set that affects lung adenocarcinoma (LUAD) patients’

prognosis and to investigate the potential underlying mechanisms.

Material andMethods: A cohort of 482 LUAD patients from the TCGA database

was used to develop the prognostic model. We picked the module genes from

the ferroptosis gene set using weighted genes co-expression network analysis

(WGCNA). The least absolute shrinkage and selection operator (LASSO) and

univariate cox regression were used to screen the hub genes. Finally, the

multivariate Cox analysis constructed a risk prediction score model. Three

other cohorts of LUAD patients from the GEO database were included to

validate the prediction ability of our model. Furthermore, the differentially

expressed genes (DEG), immune infiltration, and drug sensitivity were analyzed.

Results: An eight-gene-based prognostic model, including PIR, PEBP1,

PPP1R13L, CA9, GLS2, DECR1, OTUB1, and YWHAE, was built. The patients

from the TCGA database were classified into the high-RS and low-RS groups.

The high-RS group was characterized by poor overall survival (OS) and less

immune infiltration. Based on clinical traits, we separated the patients into

various subgroups, and RS had remarkable prediction performance in each

subgroup. The RS distribution analysis demonstrated that the RS was

significantly associated with the stage of the LUAD patients. According to

the study of immune cell infiltration in both groups, patients in the high-RS

group had a lower abundance of immune cells, and less infiltration was

associated with worse survival. Besides, we discovered that the high-RS

group might not respond well to immune checkpoint inhibitors when we

analyzed the gene expression of immune checkpoints. However, drug
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sensitivity analysis suggested that high-RS groups were more sensitive to

common LUAD agents such as Afatinib, Erlotinib, Gefitinib, and Osimertinib.

Conclusion:We constructed a novel and reliable ferroptosis-related model for

LUAD patients, which was associated with prognosis, immune cell infiltration,

and drug sensitivity, aiming to shed new light on the cancer biology and

precision medicine.

KEYWORDS

ferroptosis, WGCNA, lung adenocarcinoma, bioinformatics analysis, prognosis,
immune microenvironment, drugs sensitivity

Introduction

Lung cancer, short for primary bronchogenic carcinoma, is

the malignant tumor with the highest mortality and morbidity

worldwide (Sung et al., 2021). From the point of pathology and

therapy, lung cancer can be divided into non-small cell lung

cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC

counted for 80%–85%, which can be further classified into lung

adenocarcinoma (LUAD) and lung squamous cell carcinoma

(LUSC) for most patients. LUAD represents the most common

lung cancer subtype (Inamura, 2018). Although low-dose

computed tomography showed an advantage in lung cancer

diagnosis, until recently, no effective lung cancer screening

method was available, which resulted in the advanced stage

when the patients were diagnosed (Nasim et al., 2019). As

scientific research develops, more and more therapeutic

modalities are being applied to treat lung cancer. Neoadjuvant

radiation and neoadjuvant immunotherapy have recently

emerged in addition to traditional surgery. Researchers have

demonstrated that Nivolumab is the most effective treatment for

patients with advanced NSCLC who have high PD-L1 expression

(>50%) (Liang et al., 2020). In addition to traditional

chemotherapy, immunotherapy and targeted therapies, studies

have shown that root extracts of some plants, such as Plant-

Derived Triptolide and Tanshinone I, are beneficial in anti-

tumor treatment (Yan et al., 2018; Wei et al., 2019). However,

this has not significantly improved the relatively poor prognosis

of lung cancer patients. The overall 5-year relative survival rate

was less than 30% for NSCLC and only less than 10% for SCLC

(Nasim et al., 2019).

Ferroptosis was a novel type of iron-dependent cell death

discovered recently, accompanied by massive iron accumulation

and lipid peroxidation (Li et al., 2020a). Ferroptosis resulted from

the redox imbalance between oxidants and antioxidants, which

led to the accumulation of lipid reactive oxygen species (Tang

et al., 2021), ultimately causing oxidative cell death. Numerous

preclinical studies indicated that the stimulation of ferroptosis

might be a helpful therapeutic approach to avoid the

development of acquired resistance to a number of cancer

treatments (Hangauer et al., 2017; Viswanathan et al., 2017;

Tsoi et al., 2018). Regarding immunotherapy, ICIs targeted

CTLA4, PD-1, and its ligand PD-L1 and worked primarily by

triggering an efficient cytotoxic T cell-driven anti-tumor immune

response. Cancer cells might undergo ferroptosis as a result of

cytotoxic T-cell-driven immunity (Wang et al., 2019). A complex

web of epigenetic, transcriptional, post-transcriptional, and post-

translational processes controlled the ferroptotic response.

Targeting the mechanisms that control ferroptosis in tumor

cells could be a new anticancer tactic (Chen et al., 2021a;

Tang et al., 2021).

Currently, it is unclear what mechanisms ferroptosis plays in

lung cancer. In this study, bioinformatics methods were used to

examine the interactions between genes related to ferroptosis and

lung cancer. Subsequently, we analyzed the infiltration of the

immune cells in tumor tissue.

Materials and methods

Materials and samples

We acquired mRNA-seq expression data, survival

statistics, and clinical details for patients with LUAD from

the Cancer Genome Atlas (TCGA) data portal (https://portal.

gdc.cancer.gov/) (TCGA-LUAD). After matching the mRNA

expression and miRNA expression with survival files, mRNA-

seq data of 497 patients and miRNA data of 416 patients were

utilized for further investigation. Additionally, we recruited

GSE8894, GSE50081, and GSE68465 data sets with intact

mRNA-seq expression data and survival statistics as

validation cohorts by searching the Gene Expression

Omnibus (GEO) database.

Ferroptosis-related genes

FerrDb (Zhou and Bao, 2020) (http://www.datjar.com:

40013/bt2104/) was the first database dedicated to ferroptosis

regulators and ferroptosis-disease associations. A total of

407 FRGs (255 driven genes, 208 suppressors genes, and

125 marker genes, 131 were overlapped) were extracted

(Supplementary Table S1) for subsequent analysis.
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Weighted gene co-expression network
analysis

Weighted gene co-expression analysis can systematically

detect strongly associated modules in a gene set. WGCNA, as

an unsupervised algorithm, can construct a correlation between

gene expression and clinical traits (Langfelder and Horvath,

2008). Instead of concentrating simply on differentially

expressed genes, WGCNA identifies gene sets of interest and

does substantial association analysis with phenotypes, which

transforms the problem of multiple hypothesis testing

corrections by changing the correlation of thousands of genes

with phenotypes into the association of several gene sets.

WGCNA contributed to identifying susceptibility modules and

genes inmultiple diseases andmalignant carcinoma, for example,

in abdominal aortic aneurysm, NSCLC, and esophageal

adenocarcinoma (Chen et al., 2019; Niemira et al., 2019;

Nangraj et al., 2020).

With the gene expression of tumor tissues, the Estimation of

STromal and Immune cells in MAlignant Tumors using

Expression data (ESTIMATE) (Yoshihara et al., 2013)

algorithm could predict the proportion of the stromal and

immune cells in tumor samples. The results of these tools

included immune score, stromal score, and ESTIMATE score,

which are positively correlated with the infiltration level of the

stromal and immune cells in tumor tissues and tumor purity. We

carried out this study using WGCNA with the four results as the

phenotypes to analyze the gene expression of LUAD.

Identification of the hub genes and
construction of a ferroptosis-related
prognostic model

The module genes screened by WGCNA were analyzed

with univariate Cox regression to retrieve prognostic FRGs,

using a p value <0.05 as the threshold. And then, the least

absolute shrinkage and selection operator (LASSO) regression

analysis was performed with the glmnet package (Liang et al.,

2022). The penalty parameter (λ) value was determined

according to the lowest partial likelihood of deviance by

10-fold cross-validation. The genes selected from LASSO

regression were the hub genes.

After recognizing the hub genes, we constructed a

ferroptosis-related prognostic model with multivariate Cox

regression analysis. The risk score (RS) was also generated

after multivariate Cox regression. An RS was the sum of the

product of coefficients and gene expression for each patient, in

which coefficients indicated the regression coefficient in the

multivariate Cox regression, and gene expression was the

expression of the hub genes.

Subsequently, the LUAD patients in the TCGA cohort

were allocated into the high-RS or low-RS group according to

the median of the RS. Meanwhile, we created a ferroptosis-

related score with the Gene Set Variation analysis (GSVA) to

compare the difference in the ferroptosis between the two

groups. To evaluate the predictivity of the prognostic model,

we performed the Kaplan–Meier (K-M) survival analysis.

Furthermore, we used the timeROC package to construct

the receiver operating characteristic (ROC) curve to show

the one-, two-, and 3-year OS prediction. We determined the

discrimination power of RS with the area under the curve

(AUC) value. To further explore the reliability of our

ferroptosis-related prognostic model, we evaluated the

performance of the model in the validation datasets

from GEO.

Evaluation of the prognostic model

We explored the relationship between the RS and different

clinicopathologic features among the LUAD patients in the

TCGA cohort. Subsequently, we performed the subgroup

analysis to further examine if the efficiency of the prognostic

model was subject to clinicopathologic characteristics such as

gender and TNM stage.

Next, we conducted the univariate and multivariate Cox

regression analysis by incorporating RS and the clinical

variables, including age, gender, and stage. Based on the

regression analysis, a nomogram was constructed to predict

the risk of the patients with the rms package. Meanwhile,

calibration plots were depicted to assess the prognostic

accuracy of the nomogram.

Analysis of differentially expressed genes,
microRNAs, and long-non-coding RNAs

We detected the DEGs with the limma package (Lu et al.,

2022) to investigate the difference between the high-RS and low-

RS groups. The cutoff criterion for DEGs was a p value <0.05 and
the absolute value of log2 Fold-change (logFC) > 1. Next, we

analyzed the protein-protein interaction (PPI) among the DEGs

with the STRING (version 11.5). STRING is an online analysis

website that aims to integrate all known and predicted

associations between proteins, including physical interactions

and functional associations (Szklarczyk et al., 2021). We used the

MCODE to visually show the PPI clusters with the interactions of

the DEGs. The MODE is a software project most used for visually

integrating the protein-protein network in the Cytoscape

(Shannon et al., 2003) (version 3.8.2).

Meanwhile, we detected the differentially expressed

miRNAs and lncRNAs between the two groups. The

criterion for miRNAs was a p value <0.05 and the absolute

of logFC >0.5. The standard for lncRNAs was a p

value <0.05 and the absolute of logFC >1.
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FIGURE 1
(A) Clustering of samples and removal of outliers. (B) Analysis of network topology for various soft-thresholding powers. (C) The cluster
dendrogramof genes of LUAD patients. Each branch in the figure represents one gene, and every color below represents one co-expressionmodule.
(D)Correlation between the genemodule and clinical characteristics, including stromal score, immune score, ESTIMATE score, and tumor purity. (E)
The ferroptosis-related score difference between the two groups.
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Analysis of the tumor microenvironment

In our study, the single-sample Gene Set Enrichment

Analysis (ssGSEA) algorithm was performed with the GSVA

package to calculate the single-sample enrichment score of

24 immune cell types (Bi et al., 2020). Meanwhile, Spearman

correlation analysis was performed to evaluate the relationship

between the infiltrating immune cells. The expression of immune

checkpoints in different groups was explored for that they were

significantly related to the response to immunotherapy (Cai et al.,

2021). Furthermore, the potential immune checkpoint blockade

(ICB) response was predicted with the tumor immune

dysfunction and exclusion (TIDE) algorithm (http://tide.dfci.

harvard.edu/) (Fu et al., 2020).

Prediction of drug sensitivity

We exploited cell line drug sensitivity data in the Genomics

of Drug Sensitivity in Cancer (GDSC; https://www.cancerrxgene.

org/) database (Yang et al., 2013) in order to identify drugs that

LUAD patients might most benefit from. The drug sensitivity was

measured with the oncoPredict package by half-maximal drug

inhibitory concentration (IC50) (Park et al., 2022).

Statistical analysis

All the statistical analysis was performed in the R software

(version 4.1.3). The Chi-square test or Fisher exact test was used

for categorical variables when appropriate and Student’s t-test for

continuous variables. The log-rank test was used to compare the

overall survival (OS) between the two groups. All the tests were

two-sided and the significance threshold for the p-value was 0.05.

Results

Weighted genes co-expression network
analysis and identification of the hub
genes

With the ESTIMATE algorithm and the RNA-seq expression

profile, we obtained the stromal score, immune score, estimate

score, and tumor purity of the 497 LUAD patients in the TCGA

cohort. After intersecting the RNA-seq expression profile with

the FRGs and removing the outlier samples (Figure 1A),

362 FRGs and 482 samples in the TCGA cohorts were

incorporated into the co-expression network analysis using

the four signatures calculated in the ESTIMATE. The power

of β = 5 was chosen as the soft-thresholding parameter to ensure

a scale-free network (Figure 1B). The 362 FRGs were separated

into three modules named blue, turquoise, and grey, among

which the grey module (R2 = 0.68, p < 0.0001) was significantly

correlated to the immune score (Figures 1C,D).

We performed the univariate Cox regression analysis with

the 207 module genes in the grey module and selected

31 prognostic genes (p < 0.05). To remediate multicollinearity

among these genes, we performed the LASSO analysis

(Supplementary Figures S1A,B) and eight hub genes, including

PIR, PEBP1, PPP1R13L, CA9, GLS2, DECR1, OTUB1, and

YWHAE, were finally included in the prognostic model.

Among these eight hub genes, GLS2 and PEBP1 were

downregulated in the high-RS group, and the remaining ones

were upregulated. In addition, we performed K-M survival

analysis of each hub gene. We found that patients with the

high expression of PPP1R13L, CA9, OTUB1, and YWHAE and

low expression of GLS2 and PEBP1presented a worse OS (Figures

2A–D,G,H, p < 0.05). As mentioned previously, GLS2 and

PEBPB1 were downregulated and the other ones were

upregulated in the high-RS group, which similarly showed a

worse OS. However, survival differences were not detected for

PIR and DECR1. (Figures 2E,F).

Construction of the ferroptosis-related
prognostic model

The ferroptosis-related prognostic model for LUAD patients

was built with themultivariate Cox regression analysis and the RS

was calculated as followed: PIR * (0.23113668) + PEBP1 *

(−0.54954902) + PPP1R13L * (0.23748274) + CA9 *

(0.07352803) + GLS2 * (−0.50852672) + DECR1 *

(0.33163909) + OTUB1 * (0.34034368) + YWHAE *

(0.38633985). Then the LUAD patients were divided into the

high-(N = 241) and low-RS (N = 241) groups by the median RS.

The GSVA showed that the high-RS group enriched a higher

ferroptosis-related score (p < 0.05, Figure 1E). Furthermore, the

K-M survival analysis demonstrated that the high-RS group had

a worse OS (p < 0.05, Figure 3A), indicating that high RS might

be a high risk for LUAD patients. The predictive ability of our

model was visualized by the ROC curve and quantified by the

AUC. The result showed the AUC at one-, two-, and 3-year OS

prediction was 0.7248, 0.7275, and 0.7198, respectively

(Figure 3E).

External validation of the ferroptosis-
related prognostic model

Additionally, the predictive ability of our model was

validated in the dataset from GEO. The high-RS group in

GSE8894 also had a worse survival (p < 0.0001, Figure 3B),

and the AUC at one-, two-, and 3-year OS prediction was 0.7086,

0.7382, and 0.786 (Figure 3F). Similarly, in the GSE50081 and the

GSE68465 dataset, the K-M survival analysis implied the same
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tendency (Figures 3C,D). The AUC at one-, two-, and 3-year OS

prediction was also greater than 0.6 (Figures 3G,H). These results

suggested that the ferroptosis-related prognostic model showed a

robust prognostic ability.

Clinical signature of the model

To further investigate the relationship between the RS and

the different clinical characteristics, we compared the

distribution of the RS in the subgroup of LUAD patients. The

results suggested that the RS increased as the TNM stage

advanced (p < 0.05, Figures 4A–D), which demonstrated that

the RS implied the progression of LUAD. There was no

significant difference in the distribution of the RS in different

gender (Figure 4E). For further analysis of the predictive ability of

the RS, we performed the survival analysis in the subgroup. From

the result, we could see that the higher-RS group showed worse

OS than the low-RS group in almost every subgroup (Figures

4F–O) except for theM1 group. It is plausible that the insufficient

sample number (N = 24) for the M1 subgroup was the cause of

the lack of survival differences.

We performed the univariate and multivariate Cox

regression by incorporating the RS and the clinical

characteristics, including age, gender, and stage,

demonstrating that tumor stage and RS were the independent

FIGURE 2
(A–H) Kaplan–Meier curves of high- and low-expression of the hub genes of LUAD patients in the TCGA.
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FIGURE 3
(A–D) Kaplan–Meier curves of high- and low-RS LUAD patients in the TCGA, GSE8894, GSE50081, and GSE68465 cohort. (E–H) ROC curves of
one-, two-, and 3-year OS for LUAD patients based on the RS in the TCGA, GSE8894, GSE50081, and GSE68465 cohort.
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FIGURE 4
(A–E) Distribution of the RS separated by the clinical-pathological features among the LUAD patients in the TCGA cohort. (F–O) Subgroup
analysis of prognostic value of the ferroptosis-prognostic model for LUAD patients by Kaplan–Meier curves according to clinicopathologic
characteristics.
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FIGURE 5
(A) Uni- and multivariate Cox regression analysis of the associations between survival outcomes and age, gender, stage, and risk score of LUAD
patients. (B) ROC curves of one-, two-, and 3-year OS for LUAD patients based on the RS and TNM stage. (C) The comparison of the prediction ability
between the twomodel. (D) The nomogram of the overall survival predictionmodel. (E–G)Calibration plots for the nomogram: 1-year (E); 3-year (F);
5-year (G) nomogram. (H) Volcano plot of differentially expressed genes between the two groups.
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FIGURE 6
(A–C) Top three clusters in the protein-to-protein interaction (PPI) network. (D) Enrichment analysis of the top three clusters. (E) Competing
endogenous RNA (ceRNA) network of RS-related DEGs - differentially expressed miRNAs—differentially expressed lncRNAs.
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risk factors of LUAD (p < 0.05, Figure 5A). The AUC at one-,

two-, and 3-year OS prediction was 0.7791, 0.768, and 0.7622,

separately (Figure 5B). Meanwhile, the corresponding

concordance index (C-index) value showed that the

combination of the RS and stage performed remarkably

(Figure 5C). A nomogram was constructed according to

independent risk factors to predict the risk of the patients

(Figure 5D). The calibration plots were depicted to show the

one-, three-, and 5-year OS rates of LUAD patients

(Figures 5E–G).

Analysis of the differentially expressed
genes

Among the 18437 protein-coding genes, 380 were

upregulated, and 642 were downregulated in the high-RS

group (p < 0.05, Figure 5H, Supplementary Table S2). Among

the DEGs, NEUROD4 (logFC = 6.166719, p < 0.0001), SPAG11B

(logFC = 4.839105, p < 0.0001), and SPAG11A (logFC =

4.537401, p < 0.0001) were the most significantly upregulated

genes; PSG5 (logFC = −7.380016, p < 0.0001), PSG11

(logFC = −7.033551, p < 0.0001), and DEFA5

(logFC = −6.899311, p < 0.0001) were the most significantly

downregulated genes. Next, the PPI clusters were analyzed with

MCODE, and the clustering scores of the top three modules were

19.000, 16.429, and 8.200, respectively (Figures 6A–C).

Furthermore, we employed the function enrichment analysis.

Lipid metabolism was the most enriched (Figure 6D).

Differentially expressed miRNAs and
lncRNAs and construction of the ceRNA
network

The lncRNAs and miRNAs regulated the expressions of

various mRNAs to influence tumor progression (Seo et al.,

2020). Hence, the expression of miRNAs and lncRNAs were

analyzed between the high- and low-RS group (Supplementary

Figures S1C, S1D). The results showed that 22 miRNAs were

dysregulated in the high-RS group, including 18 upregulated and

4 downregulated ones. For lncRNAs, TUNAR (logFC = 3.896800,

p < 0.0001) was the most significantly upregulated one among the

133 upregulated lncRNAs and LINC01477 (logFC = −4.0848511,

p < 0.0001) was the most significantly different one among the

95 downregulated lncRNAs.

The expressions of the lncRNAs and miRNAs were negatively

correlated in the ceRNA network (Seo et al., 2020). According to the

target pairs of miRNA–mRNA and miRNA–lncRNA, we

constructed a ceRNA network (Figure 6E). We found that miR-9

was located at the center of the network.

Characteristics of tumor
microenvironment

Immune cells infiltrated in the tumor tissues played an

essential role in the TME and tumor progression (Wang et al.,

2021). Our research explored the enrichment score of

24 immune cell types to assess the relationship between

immune cell infiltration and RS (Figure 7A). The result

suggested 14 cell types with lower enrichment scores in the

high-RS group, including dendritic cells, B cells, and

eosinophils (p < 0.05), and Th2 cells with higher

enrichment scores in the high-RS group (p < 0.001). We

further investigated the interrelationships between the

24 immune cell types, which revealed a strong, positive

correlation between them (Figure 7B). Last, we performed

the univariate Cox regression analysis, which demonstrated

that low immune cell infiltration, especially B cells, was related

to a poor prognostic (Figures 7C–E).

The investigation of the immune checkpoint gene

expression suggested that 17 genes are significantly

differentially expressed among the 37 immune checkpoint

ones, including 12 downregulated and 5 upregulated in the

high-RS group (Figure 8A). Moreover, we estimated the

potential ICB response with the TIDE algorithm

(Figure 8B). The high-RS group showed a higher TIDE

score, which indicated a higher potential for tumor

immune evasion and a low probability to benefit from anti-

PD1/CTLA4 treatment.

With the ESTIMATE algorithm, we compared the Immune

Score, Stromal Score, ESTIMATE Score, and tumor purity

between the two groups. The results demonstrated that

immune, stromal, and Estimate scores were significantly

lower, and tumor purity was substantially higher in the high-

RS group (p < 0.05, Figures 8C,D). These results suggested that

high-RS was an indicator of lower immune infiltration, higher

tumor purity, and resistance to immunotherapy.

Prediction of drug sensitivity

We discovered that the response to 90 of the 198 drugs in

the GDCS differed considerably between the two groups.

Additionally, we observed that the high-RS group was

more were more sensitive to 63 of them (Supplementary

Table S3). For example, among the agents which were

widely used for LUAD patients, including Afatinib,

Erlotinib, Gefitinib, and Osimertinib, the result showed

that the patients in the high-RS group were more sensitive

to them (p < 0.001, Figure 8E), which suggested that high-RS

might lead to a better response to drugs, and more drugs

might be used for LUAD treatment.
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FIGURE 7
(A) Comparisons of infiltration levels of immune cells between high- and low-RS groups with the ssGSEA algorithm. (B) The correlation of the
tumor-infiltrated immune cells. (C–E) Forest plot of the tumor-infiltrated immune cells with ssGSEA (C), xCell database (D), and EPIC database (E).
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FIGURE 8
(A) Comparisons of the expression of immune checkpoints between high- and low-RS groups. (B–D) Comparisons of TIDE score (B), tumor
purity (C), stromal score, immune score, and ESTIMATE score (D) between the high- and low-RS groups. (E) Comparisons of the response to drugs
between high- and low-RS groups by GDSC database.
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Discussion

LUAD is one of the most prevalent and lethal tumors in adults.

This disease imposes a significant financial and medical burden

yearly, especially for advanced LUAD (Chen et al., 2021b). In this

study, we picked a grey module of 207 genes significantly related to

the immune score and ferroptosis by WGCNA. After that, through

univariate Cox regression and LASSO analysis, we reduced the gene

dimension considerably and screened 8 hub genes, including PIR,

PEBP1, PPP1R13L, CA9, GLS2, DECR1, OTUB1, and YWHAE,

which were significantly related to the survival of LUAD patients.

Finally, we constructed a ferroptosis-related prognostic model, and

the LUAD patients were divided into high- and low-risk groups by

the RS. In our research, the two groups showed different immune cell

infiltration, immune checkpoint expression, and response to drugs.

From the previous research, the hub genes in our model were

considered to promote or suppress tumorigenesis. PIR is one of the

cupin superfamily memberships acting as a nuclear redox sensor

and regulator (Wendler et al., 1997). PIR played a negative role in

regulating ferroptosis in multiple cancer cells. The knockdown of

PIR increased mRNA levels of ACSL4, a biomarker and a key

promoter of ferroptosis, in pancreatic ductal adenocarcinoma cell

lines (Hu et al., 2021). PPP1R13L, also known as iASPP, is one of the

most evolutionarily conserved inhibitors of p53, which played a

central role in the regulation of apoptosis and transcription via its

interaction with NF-kappa-B and p53/TP53 proteins, therefore

suppressing the subsequent activation of apoptosis (Laska et al.,

2009). Furthermore, researchers have demonstrated that PPP1R13L

increased chemotherapeutic drug resistance in tumor cells via the

NF-κBp65- and p53-signaling pathways (Li et al., 2020b). Carbonic

anhydrases (CAs) are a large family of zinc metalloenzymes that

catalyze the reversible hydration of carbon dioxide (Supuran, 2018).

They participate in a variety of biological processes. CA9, as a

member of the CAs family, has become a biomarker for the therapy

of a wide range of cancers (Supuran, 2008). It was reported that

CA9was associated with themigration and invasion of breast cancer

cells (Swayampakula et al., 2017) and cervical cancer cells (Shin et al.,

2011). In an analysis of 98 tissue samples of NSCLC, patients with

high CA9 expression had significantly worse survival than all other

groups (Giatromanolaki et al., 2020). Tumor cells are characterized

by cellular metabolism abnormalities, including lipid metabolism

disorder. DECR1 is an accessory enzyme that participates in the

beta-oxidation and metabolism of unsaturated fatty enoyl-CoA

esters. As an androgen receptor (AR) target gene with negative

regulatory activity, DECR1 might support human prostate cancer

(PCa) cell survival and resistance to AR targeting therapies (Nassar

et al., 2020). DECR1 knockdown made PCa cells susceptible to

ferroptosis and inhibited the formation of PCa cells (Blomme et al.,

2020). OTUB1 is the foundingmember of the ovarian tumor (OTU)

domain family of deubiquitinases (DUBs) and is expressed in

various tissues in humans (Borodovsky et al., 2002). OTUB1 was

essential in respiratory control, adult lung tissue homeostasis,

embryogenesis, and cell proliferation (Ruiz-Serrano et al., 2021).

Through the suppression of RAS ubiquitination in NSCLC,

OTUB1 caused the activation of the MAPK pathway,

contributing to the advancement of NSCLC (Baietti et al., 2016).

YWHAE belongs to the 14-3-3 family of proteins, which mediate

signal transduction by binding to phosphoserine-containing

proteins. YWHAE was upregulated in breast cancer cells and

patients with overexpressed YWHAE showed a poor survival

(Yang et al., 2019).

As for the downregulated genes, PEBP1 encoded a

member of the phosphatidylethanolamine-binding family of

proteins (Yang et al., 2018). It was reported that

PEBP1 dissociated the Raf1-MEK complex and acted as an

inhibitor of the Raf1/MEK/ERK pathway by binding to Raf1

(Yeung et al., 2000). PEBP1 was found to be downregulated in

several tumor cells and act as a metastasis suppressor (Fu et al.,

2003; Hagan et al., 2005). GLS2 is a mitochondrial phosphate-

activated glutaminase. Glutamine metabolism is a widely-

known target for slowing cancer development, while the

p53-inducible gene GLS2 was linked to a unique metabolic

role in suppressing tumor growth (Suzuki et al., 2010).

According to previous studies, GLS2 expression was

decreased in human hepatocellular carcinoma (HCC) due

to hypermethylation. Furthermore, via negatively regulating

the PI3K/AKT pathway, GLS2 was crucial in the tumor

suppression of HCC (Liu et al., 2014).

As is well known, tumor-infiltration immune cells are the

indication of the response to tumor antigens,and strong immune

responses to malignancies have resulted in better clinical

outcome (Kotsakis et al., 2016). According to a previous study

(Zuo et al., 2020), LUAD patients with higher infiltration of

12 immune cell types had a better prognosis. Only a fewer

infiltration of Type 2 T helper cells (Th2) demonstrated a

worse OS, which was compatible with our findings. The

immune cells enrichment analysis in our prognostic model

revealed that lower enrichment scores in the high-RS group,

who had a shorter survival time. Furthermore, along with the

GSVA, the xCell and the EPIC algorithm, the univariate Cox

regression analysis found that the abundance of B cells was

significantly associated with the prognosis of LUAD patients,

and B cells were the protective factor (p < 0.05, HR < 0.5).

Tumor-infiltrated B cells could be observed in all stages of lung

cancer development (Dieu-Nosjean et al., 2014). B cell was one of

the most significant participants in humoral immunity. Tumor-

infiltrating B cells in lung cancer could develop into plasma cells

and secrete antibodies (Germain et al., 2014). Additionally,

accumulating researches indicating that tumor-infiltrated

B cells and plasma cells were correlated with better OS

(Nielsen and Nelson, 2012; Lohr et al., 2013; Ni et al., 2021),

which suggested that B cells exerted an anti-tumor function in

tumor immunity. Additionally, B cells could promote T cell

responses. It has also been demonstrated that lung cancer

patients with highly infiltrating T and B cells nearby live

longer (Kinoshita et al., 2016). More research proved that
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neoadjuvant therapy enhanced anti-tumor immunity by

recruiting B cells in NSCLC (Gaudreau et al., 2021). In

conclusion, our investigation showed a group of LUAD

patients with few infiltrating immune cells and shorter OS. At

the same time, several TME deconvolution algorithms indicated

that the infiltration of B cells was positively correlated with

prognosis.

In our analysis of immune checkpoint molecules expression,

we detected the differentially expressed ones. Among them, the

top three downregulated genes in the high-RS group were BTLA,

CD27, and CD28. BTLA, as a member of the CD28 superfamily,

was found to be expressed in tumor-infiltrating lymphocytes

(Ning et al., 2021). In addition, decreased BTLA levels predicted

poor OS in colorectal cancers (Song andWu, 2020). CD27 is a co-

stimulatory immune-checkpoint receptor. It was reported that

augmenting CD27 co-stimulation may assist in anti-tumor

immunity (Grant et al., 2017). Among the upregulated

immune checkpoint molecules, CD274, much more known as

PD-L1, and CD276 were members of the B7 superfamily,

through which cancer cells exhibit immune escape (Gou et al.,

2020; Liu et al., 2021). Similarly, we discovered that the high-RS

of LUAD patients less likely to benefit from ICI treatment based

on the higher TIDE score in the high-RS group.

Conclusion

We constructed a novel and reliable ferroptosis-related

model for LUAD patients, which was associated with

prognosis, immune cell infiltration, and drug sensitivity,

aiming to shed new light on the cancer biology and precision

medicine.
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