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One of the main obstacles to most medication administrations (such as the

vaccine constructs) is the cellular membrane’s inadequate permeability, which

reduces their efficiency. Cell-penetrating peptides (CPPs) or protein

transduction domains (PTDs) are well-known as potent biological

nanocarriers to overcome this natural barrier, and to deliver membrane-

impermeable substances into cells. The physicochemical properties of CPPs,

the attached cargo, concentration, and cell type substantially influence the

internalization mechanism. Although the exact mechanism of cellular uptake

and the following processing of CPPs are still uncertain; but however, they can

facilitate intracellular transfer through both endocytic and non-endocytic

pathways. Improved endosomal escape efficiency, selective cell targeting,

and improved uptake, processing, and presentation of antigen by antigen-

presenting cells (APCs) have been reported by CPPs. Different in vitro and in vivo

investigations using CPP conjugates show their potential as therapeutic agents

in various medical areas such as infectious and non-infectious disorders.

Effective treatments for a variety of diseases may be provided by vaccines

that can cooperatively stimulate T cell-mediated immunity (T helper cell activity

or cytotoxic T cell function), and immunologic memory. Delivery of antigen

epitopes to APCs, and generation of a potent immune response is essential for

an efficacious vaccine that can be facilitated by CPPs. The current review

describes the delivery of numerous vaccine components by various CPPs

and their immunostimulatory properties.
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Introduction

Subunit and nucleic acids (NAs) vaccines are now the

primary focus of vaccine development, rather than

conventional vaccinations (Skwarczynski and Toth, 2016). The

most significant benefit of subunit and NAs vaccines is that they

have a better safety profile than conventional vaccines, which is

the main issue in creating modern vaccines. These vaccines are

created to contain only specific antigens, which are made up of

antigenic peptides, polysaccharides, or proteins. This eliminates

redundant parts and, as a result, lowers the risk of allergic or

autoimmune reactions (Skwarczynski and Toth, 2014;

Jaberolansar et al., 2016). An essential stage in the ability of

vaccines to trigger immunological responses is the intracellular

transport of antigens into antigen-presenting cells (APCs). The

cell and organelle membranes are the main obstacle to transport

of biologically active substances into target cells and various

organelles. Diverse methods are employed for the trans-barrier

delivery of various cargoes (Sánchez-Navarro, 2021). The

exogenous materials must be transported to the target cells’

nucleus and cytoplasm to produce the protein products of the

inserted gene and subunit vaccines. This procedure of

transfection is performed through viral and non-viral vectors.

The viral method is linked to increased technical demands but

there are elevated risks of virus-related harm. Despite viral

vectors, the non-viral vectors, such as nanocarriers and cell-

penetrating peptides (CPPs), are significantly more affordable

and simpler to manufacture in huge quantities. These vectors

have restricted immunogenicity, which permits potential re-

dosing. They are regarded safe since there is no possibility of

recombination as detected in a competent virus that could

potentially cause disease. CPPs, also known as protein

transduction domains (PTDs), are the novel non-viral vectors

that have attracted more considerate in the recent years

(Lundberg and Langel, 2003).

To achieve efficient cell membrane translocation, CPPs were

frequently fused with antigens. This improved antigen uptake,

processing, and presentation by APCs increase both humoral and

cellular immune responses. Without the aid of membrane

proteins, CPPs can pass through the membrane

semipermeable barrier and enter the cell interior non-

invasively (Deshayes et al., 2005), but however, the delivery

method of the CPPs and their cargo is not well known.

Energy-independent (“direct penetration”) and endocytotic

pathways have been proposed as the two prominent types of

CPP absorption processes which can be influenced by the type

and size of the CPP and cargo. Determining the precise

absorption mechanism of a specific CPP/CPP-cargo is crucial

for developing medication delivery systems based on CPP

technologies. Over the past 10 years, CPPs have been widely

used to enhance vaccine formulations and drug delivery systems

since they are typically harmless and easy to produce

economically (Yang et al., 2019).

Generally, CPPs were widely used for cargo delivery due to its

high efficiency, good safety properties, and broad delivery of

different cargoes. In addition, CPPs showed the advantages of

low cytotoxicity and high penetration efficiency in various cell

types. But however, CPPs possess some problems and limitations

in clinical application such as: 1) Cellular uptake mechanism of

CPPs is unclear; 2) Lack of cell and tissue specificity; 3) The

penetration ability to different cells is variable; and 4) The

stability needs to be improved (Zhang et al., 2021). Thus,

despite main progress in design and application of CPPs,

further studies are required to improve their delivery to

different cells (e.g., tumor cells), with reduced side-effects and

enhanced therapeutic efficacy (Tripathi et al., 2018). Here, we will

review the history and characteristics of CPPs, their applications

as a non-viral delivery system for CPP-based vaccine

development against infectious and non-infectious diseases,

and at the end, we will study the different challenges of CPPs

and their optimization methods.

Overview of history and characteristics of
CPPs

CPPs are small peptides and typically have 5–30 amino acids.

To date, August 2022, the CPPsite 2.0 database, a user-friendly

updated database that supplies different information about CPPs,

reveals around 1700 unique, experimentally validated CPPs,

together with their secondary and tertiary structures (https://

webs.iiitd.edu.in/raghava/cppsite/). The human

immunodeficiency virus (HIV) transactivating regulatory

protein (TAT) was the first CPP that was raised in 1988

(Green and Loewenstein, 1988). A few years later, researchers

discovered other naturally CPPs, such as the Herpes simplex

virus (HSV)-1 protein-derived VP22 (Elliott and O’Hare, 1997),

penetratin derived from the antennapedia, a drosophila

homeoprotein (Derossi et al., 1994), transportan derived from

a neuropeptide, etc. (Pooga et al., 1998). A variety of synthetic

CPPs was later developed based on the structure of these

naturally CPPs, including poly-arginine (Wender et al., 2000),

poly-lysine (Heitz et al., 2009), model amphipathic peptide

(MAP) (Oehlke et al., 1998), TP2 (Marks et al., 2011), MPG,

etc. (Morris et al., 1997). Furthermore, in silico CPP predictions

revealed the thousands of these peptides that are waiting to be

verified and used. Based on physiochemical properties, CPPs fall

under the following three broad classifications: 1) cationic, 2)

amphipathic, and 3) hydrophobic (Lindgren et al., 2000). The

positive charge of cationic CPPs has a strong affinity with the

cytoplasmic membrane under normal physiological pH values.

The negatively charged cell membrane glycoprotein combined

with the cationic CPPs through electrostatic contact is

subsequently internalized into the cell using a mechanism

independent of the receptor. The first cationic CPP was Tat

(Heitz et al., 2009). Positively charged peptides involve natural
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protamines and polylysine are employed as a vehicle for

intracellular delivery of proteins (Haas et al., 2012) and NAs

(Cotten et al., 1990). Research results from oligo-arginine cell

penetration capability have revealed that increasing the number

of arginines improves uptake capacity. Indeed, polylysine has a

much weaker absorption profile in comparison with polyarginine

(Tünnemann et al., 2008). Among the CPPs presently discovered,

amphipathic CPPs, such as transportan (Zhang et al., 2019a) and

MPG (Mehrlatifan et al., 2016), are the most usual, accounting

for upper than 40%. They are peptides with both polar and non-

polar properties, and the non-polar regions are rich in

hydrophobic residues. These peptides target the membranes

through interaction with the hydrophilic-hydrophobic nature

of the lipid bilayer, thus displaying the properties of lipids’

hydrophilic and hydrophobic nature (Edwards et al., 2016). In

contrast, there are just a few numbers of hydrophobic CPPs.

These CPPs usually contain nonpolar/apolar residues or a

functional group or hydrophobic motif that is essential for

penetrating membranes. These peptides are generated by

sequences of signal peptides containing residues of nonpolar

peptides such as prenylates (Vickers, 2017), pepducins (Covic

et al., 2002), and staples (Lau et al., 2015). Hydrophobic CPPs

have a moderately low general charge, and the hydrophobic

residues are important for membrane element interaction (Tian

and Zhou, 2021). According to the findings, cumulative carrier

hydrophobicity was a considerable determinant for improving

the function of peptide in both internalization and activity of

protein cargoes allowing for the finding of new and effective

protein cargoes (Hango et al., 2021).

CPPs, due to their excellent efficacy and minimal toxicity,

have become one of the most used techniques for accessing the

intracellular space in recent years (Guidotti et al., 2017). Because

of this capacity, they have been widely regarded as promising

tools for intracellular delivery across the various bio-barriers

including the blood-brain barrier (BBB), and intestinal, nasal and

skin barriers (Shi et al., 2014; Zarei et al., 2020; Behzadipour et al.,

2021). So, CPPs have been used in numerous biological and

therapeutic contexts, including cancer and enzyme replacement

treatment (Rapoport et al., 2011), vaccine development (Brooks

et al., 2010), inflammation (Orange and May 2008; Lee et al.,

2012), and diagnostic applications (Xie et al., 2020). The use of

CPPs in the vaccine development against infectious and non-

infectious diseases is one of the considerable favorable

therapeutic processes.

CPP classification

CPPs are classified based on their origin, conformation, and

physical and chemical properties. Based on their origins, CPPs

are divided into protein-derived CPPs (e.g., Tat and penetratin),

synthetic CPPs (e.g., polyarginine), and chimeric CPPs

(amphipathic peptide such as CADY). Based on their

conformation, CPPs are divided into linear CPPs and cyclic

CPPs. Based on differences in their physicochemical

properties; CPPs are classified into cationic CPPs,

amphipathic CPPs, and hydrophobic CPPs as shown in

Supplementary Table S1. New CPP classification is based on

the mechanisms of their entry into cells including direct

penetration (e.g., Barrel-Stave model, Carpet-like model, and

the Inverted-micelle model), and one of several endocytic

mechanisms (e.g., macropinocytosis, caveolin-mediated

endocytosis, clathrin-mediated endocytosis, and clathrin- and

caveolin-independent endocytosis) (Xie et al., 2020; Yokoo et al.,

2022; Zorko and Langel, 2022). Despite some common properties

of CPPs (especially their cationic nature), their translocation

mechanism is not similar for different families of CPPs.

Generally, direct penetration is most probable at high CPP

concentrations and for primary amphiphatic CPPs (e.g.,

transportan analogues and MPG). The sequences of CPPs,

their physicochemical properties, and the utilized

experimental conditions are important in determination of the

uptake mechanisms (Madani et al., 2011). Moreover, the uptake

mechanism and efficiency were shown to be dependent on local

peptide concentration, cell membrane lipid composition,

characteristics of the cargo, and experimental methodology

(Liu and Afshar, 2020). On the other hand, depending on the

type of coupling to the cargo, CPPs can be classified into

covalently or non-covalently bonded forms (Xie et al., 2020;

Yokoo et al., 2022; Zorko and Langel, 2022).

CPPs in vaccine delivery

Vaccination has progressively become common practice for

the protection of all over the world from illnesses. Despite the

achievements of traditional whole-organism vaccines, significant

constraints prevent their widespread usage (Bull, 2015). For

instance, the microorganisms in the live-attenuated vaccine

might return to their virulent state and cause illness. In

contrast, killed pathogens are unable to cause disease, but

because of their poor immunogenicity, multiple booster doses

are frequently necessary to elicit a strong enough immune

response. Whole-pathogen-based vaccines frequently contain

reactogenic components linked to unfavorable side effects with

minor to fatal consequences. Additionally, because of the

difficulty, or even incapacity, of growing some viruses (such as

hepatitis B, hepatitis C, and human papillomavirus), standard

vaccine designs are inapplicable for such diseases (Yang et al.,

2019). For this reason, the focus of the current vaccine

development has shifted away from conventional

immunizations and toward nucleic acids (NAs) and subunit

vaccines (Nevagi et al., 2018). NAs are highly charged anionic

macromolecules that quickly removed from the fluid circulation.

As a result, one of the most demanding issues in gene therapy is

solving the problem of targeted delivery. Previously, viral vectors
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were utilized to transport NAs, but because to intrinsic

immunogenicity, limited capacity to transfer macromolecules,

and high cost of treatment, CPPs have progressively replaced

them (Gaspar et al., 2020). Combining CPPs with NAs

overcomes NAs’ weak permeability and stability while

providing efficient intracellular delivery (Furukawa et al., 2020).

For the fusion of CPP with DNA vaccine, CPPs were

generally complexed with DNA via non-covalent linkage,

because the majority of CPPs have positively charged amino

acids that can be easily attached to the negatively charged nucleic

acids. Improvement in the immunogenicity of DNA vaccines

following CPP delivery was demonstrated against viral infections.

Moreover, CPPs were incorporated into other delivery systems

loaded with DNA vaccines especially nanoparticles to enhance

their intracellular delivery (Sadeghian et al., 2012). On the other

hand, the potential of CPP/mRNA non-covalent complexation as

delivery system was evaluated in cancer cells. The covalent-

linking procedure is labor-intensive and time-consuming.

Compared to the covalent strategy, the non-covalent method

was easier to use, produce, and preserve the function of mRNA.

CPPs complexed with antigen-encoding mRNA were

successfully delivered to immune cells, and facilitated mRNA

escape from the endosomes to the cytosol, inducing CTL

responses (Kim et al., 2022). The lysine- and arginine-rich

cationic peptides are able to form non-covalent complexes

with nucleic acids but they require in most cases a covalent

conjugation to proteins, marker molecules or drugs. Their

positive charges favor the interaction with negatively charged

components in the cell membrane and in the plasma. But, these

CPPs are prone to be rapidly eliminated by reticulo-endothelial

system (Reissmann, 2021).

Therapeutic peptides and protein domains, known as subunit

vaccines, have enormous potential in vaccine development. They

can exhibit good features, including selectivity due to broad

interaction surfaces, stability under physiological

circumstances, and tolerability. Generally, subunit and NAs

vaccines are made up of pathogen components or their

encoding genes. They are often non-immunogenic alone and

thus an immunostimulating substance, like an adjuvant, must be

included in their formulation. However, there are just a few

approved adjuvants, and their immunostimulatory activity is

frequently limited, while their toxicity might be significant

(Nevagi et al., 2018). Nevertheless, this class of vaccine’s poor

membrane permeability is a substantial impediment to their

successful targeting of intracellular components. Many

research companies have attempted to utilize CPPs in

developing vaccine delivery systems during the last 10 years

(JiangY, 2014). The goal is to transfer antigenic peptides

into APCs.

Many vaccine delivery techniques have been developed to

resolve these concerns. Most of them are intended to increase

antigen stability in vivo and deliver them into the immune cells.

CPPs are a particularly appealing component of antigen delivery

systems (Yang et al., 2019) that often fused with antigens to

facilitate effective cell membrane translocation and presentation

by APCs. Also, they have been added to numerous NAs vaccine

candidates to promote genetic material transport across plasma

and nuclear membranes. Two pathways of exogenous and

endogenous are involved for antigen presentation. Briefly,

exogenous antigens are presented by the MHC-II molecules to

CD4+ T cells leading to humoral immunity induction. In

contrast, endogenous antigens are presented by the MHC-I

molecules to cytotoxic CD8+ T cells (CTLs), which activate

cellular immunity. In this line, CPP-antigen conjugates can be

internalized by APCs through the non-endocytic pathway, and

then they are degraded by proteasomes for presentation on the

MHC-I molecules. Also, CPP-antigen conjugates can be

internalized by APCs through endocytosis for presentation on

theMHC-II molecules. Nucleic acids-based vaccines delivered by

CPPs into the cells are translated to protein, and processed via

the endogenous pathway (Sadeghian et al., 2012; Backlund et al.,

2022). In general, CPPs promoted the vehicle of protein-based

antigens and NAs cargo in both in vitro and in vivo experiments.

Current strategies for delivery of macromolecules such as

nanoparticles, liposomes, viral-based vectors, microinjection,

and electroporation may result in high toxicity, poor

specificity, immunogenicity, and low delivery efficiency. As

compared to these delivery strategies, CPPs can enter the cells

in a non-invasive approach with high safety and potency (Xie

et al., 2020). For instance, cell-penetrating peptides have

proposed as promising tools for gene delivery. CPPs have

emerged as strong tools for mRNA delivery in cancer therapy.

The amphipathic CPP/mRNA complexes with a size less than

200 nm showed high cellular uptake and protein expression in

tumor cells (Kim et al., 2022). Moreover, combinations of CPPs

with lipid-based nanoparticles (LNPs) were followed in mRNA

delivery (Yokoo et al., 2022). CPPs could improve endosomal

escape efficiency, selective targeting of DCs, modulation of

endosomal pathways for effective antigen presentation by

DCs, and effective mRNA delivery to the lungs as well as

prolong protein expression by intracellular stabilization of

mRNA (Yokoo et al., 2022). Cationic peptides containing

positively charged residues (lysine and arginine) could form

complex with the negatively charged mRNA. They could

stabilize the mRNA against degradation from serum RNases

and protect mRNA vaccine from harsh storage conditions

(Ramachandran et al., 2022). As a result, we hope that vaccine

formulations based on CPPs, will enter clinical testing very soon.

CPP-conjugated vaccines against
infectious diseases

To improve the cellular uptake and effectiveness of

preventative biomolecules against infectious illnesses, their

conjugation with CPPs has been proposed and employed
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against bacterial, viral, and fungal diseases. In this section, we will

study the usage of CPPs in novel vaccines against various

infectious agents.

CPP-conjugated antiviral vaccine

Despite the existence and effectiveness of a wide range of

antiviral vaccines andmedicines that can target viral components

or different phases of the viral life cycle (Owji et al., 2020; Tompa

et al., 2021), these compounds are only effective against a small

subset of viruses. Additionally, significant adverse effects have

restricted their widespread clinical utilization (Szunerits et al.,

2015; Otręba et al., 2020). Therefore, the treatment and

prevention of viral infections requires novel prophylactic and

therapeutic approaches. NAs and peptides/proteins have been

used extensively in recent years, as novel antiviral vaccines

(Ptaszyńska et al., 2020).

Induction of strong cellular and humoral immune responses

is necessary for adequate immunization against intracellular

infections like viruses (Bungener et al., 2002; Casasola-

LaMacchia et al., 2021). Numerous studies have shown that

the CPP can enhance immune responses by increasing the

transport and presentation of NA/protein/peptide-based

antigens against viral infections. One example is the

multiepitope peptide and protein vaccine development against

HIV infection, the main reason of the acquired immune

deficiency syndrome (AIDS), using MPG and HR9 CPPs. The

results of immune responses demonstrated that these types of

vaccine formulations significantly induced the secretion of

antibodies, cytokines, and Granzyme B. Moreover, both CPPs

had the same potency as a delivery system for stimulating

immune responses (Davoodi et al., 2021). Hepatitis B virus

(HBV), the principal cause of chronic hepatitis, cirrhosis, and

hepatocellular cancer is another instance of vaccination’s

prophylactic and therapeutic efficacy (Revill et al., 2020). For

example, Chen et al. (2010) showed that immunization with TAT

CPP fused to hepatitis B core antigen (HBcAg) greatly improved

both humoral and cellular immune responses, produced strong

specific CTL activity, and had therapeutic effects in HBV

transgenic mice. On the other hand, CPPs such as Pep-1,

Cady-2, p28, and hPP10 were used for delivery of E7 antigen

in mice bearing human papillomavirus (HPV)-16-associated

tumors. The results of vaccination showed that all the CPPs

could facilitate E7 antigen uptake and among them, p28 CPP

could significantly promote long-term protection against tumor

challenge (Shahbazi and Bolhassani, 2018). Ji et al. designed

intravaginal vaccines against HIV infection to overcome mucosal

and epithelial barriers. Indeed, the antigenic HIVgag p24 gene

added to the recombinant adenovirus (rAd) vector named as

rAd/HIVgag-Tat-APS nanocomplexes induced HIVgag-specific

CD8+ and CD4+ T cell responses, and higher levels of HIVgag-

specific IgA and IgG in the vaginal cavity and serum in mice

(Yang et al., 2019). The simultaneous use of M918 and MPG

CPPs as protein and gene carriers improved HIV-1 Nef-specific

B- and T-cell immune responses in mice, as well (Rostami et al.,

2019). On the other hand, CPPs were studied to generate efficient

vaccine against other viruses. Table 1 briefly shows CPP-based

vaccines against viral infections.

CPP-conjugated antimicrobial vaccine

A big challenge in developing antimicrobial biomolecules

against various microbial agents is multi-drug resistance (MDR).

It has been demonstrated that DNA vaccination with transgene-

expressing plasmids can trigger an immune response against

multi-drug resistance. However, a delivery method and/or

immunological adjuvant are required to administer these

vaccinations. Yu et al. developed a recombinant DNA vaccine

(Yu et al., 2016) encoding OprF gene (an antigenic surface

protein) fused to HSV-1 VP22 CPP against Pseudomonas

aeruginosa (P. aeruginosa) infection. The recombinant DNA

vaccine harboring VP22 (pVAX1-OprF-VP22) considerably

increased the levels of OprF-specific antibodies, and the

survival rates in mice as compared to the recombinant DNA

vaccine without VP22 (pVAX1-OprF) (Tompa et al., 2021).

Furthermore, subunit vaccine development represents a

profitable approach for preventing and treating various MDR

microbial infections. Yang et al. (2021) utilized CPPs to produce

a lipopeptide-based anti-group A streptococcus (GAS) vaccine.

TAT (aa 47–57) or KALACPPs were conjugated to multilamellar

liposomes carrying LCP-1 antigen (i.e., LCP-1/liposomes/TAT47-

57 or LCP-1/liposomes/KALA), and their immunostimulatory

potential was studied following intranasal administration in

mice. The data showed that both constructs could elevate

antibody titers, and offer high opsonic activity against

clinically isolated GAS strains GC2 203 and D3840 (Yang

et al., 2021).

Mycobacterium tuberculosis (MTB) infection remains a

significant reason of morbidity and mortality worldwide

(World Health Organization, 2013). The current vaccine,

mycobacterium bovis Bacille Calmette-Guérin (BCG) has failed

to prevent the adult pulmonary tuberculosis (TB) epidemic with a

broad range of efficiency (Ritz et al., 2012). Thus, more influential

vaccines are urgently required to prevent disease. In an attempt

to generate an anti-tuberculosis subunit vaccine, Dong et al.

generated a plasmid expressing the recombinant TAT-Ag85B

fusion protein. Ag85B is the main protein secreted by all

Mycobacterium species and is responsible for influencing

defensive responses against MTB. Mice immunized with the

recombinant TAT-Ag85B fusion protein produced higher

levels of antigen-specific total IgG, IgG2a, and cytokines

(TNFα and IFN-γ) than mice immunized with the

recombinant Ag85B protein about 5 months after the last

vaccination. Moreover, the MTB H37Rv (a virulent MTB
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TABLE 1 Examples of different CPP-conjugated vaccines against viral infections.

CPP Cargo Antigen/adjuvant Virus Vaccine
strategy

Model Effect References

TAT, Pep-1,
Cady-2

DNA,
Protein

Nef/Gp96 HIV Heterologous DNA
prime/protein boost

Mice • High cellular and humoral immune
responses • Enhancement of T cell
responses
• High rates of IgG2a and IFN-γ
directed toward Th1 responses, and also
CTLs activity

Kadkhodayan
et al. (2017)

TAT Peptide LCP-1 GAS Homologous
peptide prime/
peptide boost

Mice • High antibody titers • Increased opsonic
activity

Yang et al. (2021)

PEI 600-TAT DNA E7 HPV Homologous DNA
prime/DNA boost

Mice • Enhancement of cellular and humoral
immune responses • Elevated
Th1 response

Bolhassani et al.
(2009)

MPG DNA E7 HPV Homologous DNA
prime/DNA boost

Mice • Induction of a powerful Th1 cellular
immune response with a prevailing IFN-
γ profile

Saleh et al. (2015)

MPG DNA Core or coreE1E2/
Montanide 720

HCV Homologous DNA
prime/DNA boost

Mice • High levels of IgG1 and IgG2a isotypes •
IFN-γ secretion in low concentrations
•Development of Th1 immune
responses

Mehrlatifan et al.
(2016)

MPG, HR9,
CyLoP-1,
LDP-NLS

DNA,
protein

Nef-Vpr- Gp160-P24
multiepitope construct

HIV Heterologous DNA
prime/protein boost

Mice • Elevated secretion of Granzyme B, IFN-
γ, IgG2a and IgG2b • Direction of
immune responses toward Th1 and CTL
activity

Davoodi et al.
(2021)

DNA,
Protein

Nef-Rev- Gp160-P24
multiepitope construct

HIV Heterologous DNA
prime/protein boost

Mice • High rates of Granzyme B and IFN-γ
secretion, and low amounts of IL-10
secretion • High levels of IgG2a and
IgG2b secretion

Shabani et al.
(2022)

MPG, HR9,
CyLoP-1,
LDP-NLS

DNA,
Protein

Nef-Vif-Gp160-P24 or Nef-
Vpu-Gp160-
P24 multiepitope constructs

HIV Heterologous DNA
prime/protein boost

Mice • High levels of antigen-specific IgG2a
and IgG2b responses • Elevated levels of
Granzyme B and IFN-γ secretion •
Direction of immune responses toward
Th1 immune responses

Kardani et al.
(2020)

MPG, M918 DNA,
Protein

Nef/sHsp20 HIV Heterologous DNA
prime/protein boost

Mice • High rates of Granzyme B, IFN-γ,
IgG2a, and IgG2b secretion directed
toward Th1 responses • Increased
immune responses against HIV-1 Nef
antigen

Rostami et al.
(2019)

HR9, Cady-2 DNA,
Protein

NS3/Hsp27 HCV Heterologous DNA
prime/protein boost

Mice • Induction of a predominant IFN-γ,
IgG2a, IgG2b profile with a high
Th1 cellular immune response, and
strong Granzyme B secretion

Alizadeh et al.
(2019)

MPG, hPP10 DNA,
Protein

E7/Hsp27 or Hsp20 HPV Heterologous DNA
prime/protein boost

Mice • Induction of the E7-specific T cell
responses

Bolhassani et al.
(2018)

Pep-1 Protein E7 HPV Homologous
protein prime/
protein boost

Mice • High Th1 cellular immune response
with the predominant IFN-γ and IgG2a
levels

Mardani et al.
(2016)

LALF32–51 Protein E7 HPV Homologous
protein prime/
protein boost

Mice • Ameliorate the presentation of E7-
derived peptides to T cells

Granadillo et al.
(2011)

Tat 47–57 Protein E7/CFA and IFA HPV Homologous
protein prime/
protein boost

Mice • High titer of antibody • High
frequencies of E7-specific CD8+T cells •
Secretion of IFN-γ and CD107a
expression • Long-term life span in
animal model

Mousavi et al.
(2021)

Abbreviations: CFA, complete freund’s adjuvant; CTL, cytotoxic T lymphocyte; GAS, group A streptococcus; Gp96, glycoprotein 96; HCV, hepatitis C virus; HIV, human immunodeficiency

virus; HPV, human papillomavirus; Hsp27, heat shock protein 27; IFA, incomplete Freund’s adjuvant; IFN-γ, interferon-gamma; LALF32–51, the Limulus polyphemus protein; sHsp20,

small heat shock protein 20; NS3, non-structural protein 3.
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strain) load was remarkably decreased in TAT-Ag85B-treated

mice compared to that in Ag85B-vaccinated mice (Dong et al.,

2015).

Helicobacter pylori (H. pylori) infection is intensely related to

peptic ulcers, chronic gastritis, and gastric cancer. Antibiotic

resistance in H. pylori is a progressively intense danger to global

public health. Although, oral vaccination is believed to be a

profitable strategy for defense against H. pylori infection, their

poor effectiveness remains a considerable challenge because of

their inadequate potency to penetrate mucus, and transit

transepithelial absorption barriers (Lycke, 2012; Lopes et al.,

2014). Zhang et al. (2018) generated a well-designed

nanoparticle that is electrostatically self-assembled with CPP

and antigen, and then coated with a “mucus-inert”

polyethylene glycol (PEG) derivative. They indicated that

polyarginine-containing nanoparticles loaded with the

recombinant urease subunit B (rUreB) are more effective in

triggering humoral immune responses against H. pylori

infection than rUreB antigen sole upon oral delivery (Zhang

et al., 2018).

Leishmaniases are disregarded diseases provoked by

infection with Leishmania parasites, and there are presently

no preventive vaccines against these parasites. A cell-mediated

immune response against Leishmania is considered to defend

against infection (Rodrigues et al., 2016). One of the most

promising therapeutic processes is the use of CPPs in the

dendritic cell (DC)-based vaccine (i.e., CPP-antigen-based DC

vaccination). CPP conjugation to antigens would improve DC

uptake, antigen processing, and presentation on MHC class I and

MHC class II molecules, conducting antigen-specific CD4+ and

CD8+ T cell responses (Tacken et al., 2007; Palucka and

Banchereau, 2012). For instance, TAT CPP fused to

Leishmania homolog of receptors for activated C kinase

(LACK) was used to induce immune responses against

Leishmaniasis via DC vaccination. The TAT-LACK-pulsed

DCs triggered the higher proliferation of CD8+T cells and

IFN-γ releasing Th1 or T cytotoxic type 1 (Tc1) cells than

LACK-pulsed DCs, showing that TAT increased the efficiency

of vaccination (Kronenberg et al., 2010).

CPP-conjugated vaccines against non-
infectious diseases

The capacity of CPPs to translocate across membranes plays

a vital role in the treatment of various non-infectious disorders

such as ophthalmic illnesses (Liu et al., 2014; Tai et al., 2017;

Pescina et al., 2018), central nervous system (CNS) disorders

(Kim et al., 2015), inflammation (Derakhshankhah and Jafari,

2018; Kim et al., 2018), cancer, etc. Although CPPs have shown a

positive potential in the context of drug delivery in a variety of

non-infectious disorders, it seems that their use in the vaccine

development has been limited to cancer. Due to growing

advancement in this area, it is expected that CPPs are

employed in the development of vaccines for other non-

infectious disorders shortly.

Cancer is still one of the worst diseases, accounting for most

fatalities globally. Thereby, finding the appropriate therapeutic

strategy has high importance. In addition to using small molecule

medications, macromolecules including proteins, monoclonal

antibodies, NAs, and their combinations are now being used

as anti-cancer vaccines. Despite many benefits, a significant

difficulty still exists in the bio-distribution and translocation

of these hydrophilic macromolecular medicines. Recent

advancements in CPP have allowed the direct transfer of

macromolecules into cells (Feni and Neundorf, 2017; Zhou

et al., 2022). Pouniotis et al. (2006) and Pouniotis et al. (2016)

demonstrated that penetratin in conjunction with cytotoxic T

lymphocyte epitopes derived from ovalbumin or mucin-1 tumor-

associated antigens could stimulate CD4+ and CD8+ T cells

in vitro. Also, T cell-mediated cytokine release limited

B16.OVA melanoma cell proliferation in vivo. On the other

hand, pre-immunization with penetratin-OVA protected mice

against a later tumor invasion.

Wu et al. (2019) developed a new kind of cancer DNA

vaccine by combining a special CPP, cytosol-localizing

internalization peptide 6 (CLIP6), with the model antigen

ovalbumin (OVA) and CpG as an adjuvant. As compared to

the naked OVA, the CLIP6-OVA conjugates exhibited a higher

DC uptake, an enhanced antigen cross-presentation, and a

stronger cytotoxic T lymphocyte (CTL)-driven immune

response. They showed that the CLIP6-OVA/CpG formulation

could elicit robust antigen-specific immune responses to slow the

progression of challenged B16-OVA tumors in mice.

Furthermore, such a CLIP6-OVA/CpG formulation is capable

of acting as a therapeutic vaccination when coupled with PD-1

immune checkpoint blockade leading to considerable tumor

regression for previously existing tumors. Until now, CPPs

have been extensively used in many anti-cancer therapy

approaches that make them a fantastic potential option for

cancer treatment. CPPs could promote DC uptake of antigen

peptides in vitro, increase vaccine immunogenicity in animal

models, and improve the antitumor potency of cancer vaccines in

mice. Early clinical trials of antigen-CPP vaccines are ongoing

(clinicaltrials.gov: NCT04046445) (Backlund et al., 2022). Table 2

offers the examples of CPPs-conjugated vaccines in different

cancers. Some CPPs were used with other nanocarriers for

increasing cell specificity. For instance, pH-sensitive CPP-

mediated endocytosis of nanocarriers was performed by

replacement of the positively charged amino acids (lysines) of

the CPP sequence by protonable ones (histidine) to convert it

into a pH-sensitive CPP especially in tumor cells due to acidosis

of tumor tissues (e.g., high efficiency of TP10 CPP for DNA

delivery after changing lysine residues to histidine residues). On

the other hand, redox-responsive CPP-modified nanocarriers

(nanocarriers with reduction-responsive units) have been
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often used for tumor-targeted delivery due to higher glutathione

(GSH) concentration in tumors versus normal tissues (Sawant

et al., 2013; Perche, 2019).

Challenges of using CPPs and
suggested solutions

Despite the high potential of CPPs in vaccine delivery, the

FDA has not yet licensed any CPP-conjugated compounds, but

numerous current clinical trials in various phases are studying

them. These peptides have a variety of significant limitations that

restrict their usage as mentioned below.

1) The primary problem with CPP clinical use is non-

specificity. Practically every cell or tissue in the body can be

exposed to CPP or CPP-cargo conjugate. Several delivery

methods require CPPs directed to a specific area for reducing

side effects and increasing preventive and therapeutic efficacy. In

vaccine development, CPPs were known as promising tools for

gene delivery. CPPs designed to target tumor tissues are used in

developing a novel class of mRNA delivery tools in cancer

therapy. Indeed, the presence of hydrophobic moieties, amino

TABLE 2 Examples of different CPP-conjugated vaccines against cancers.

CPP Cargo Antigen/
adjuvant

Cancer Vaccine strategy Model Effect References

CLIP6 Protein OVA/CpG B16-OVA
melanoma

CLIP6-OVA protein along
with CpG adjuvant

Mice Increased uptake by dendritic
cells—Enhanced antigen
cross-presentation eliciting
stronger cytotoxic T
lymphocyte-mediated
immune responses

Wu et al.
(2019)

MPGΔNLS Protein OVA/CpG EG7-OVA tumor MPGΔNLS-OVA-loaded
PLGA nanoparticles

Mice The expansion of OVA-
specific T-cells—Generation
of OVA-specific
IgG—Proliferation of OVA-
specific memory T cells -
Suppression of tumor growth
and prolonged survival
periods of the mice

Liu et al.
(2019)

AntpMAPMUC1tet DNA CpG MUC1+ve melanoma AntpMAPMUC1tet along
with CpG

Mice Enhanced antigen-specific
interferon-gamma (IFN-γ)
and IL-4 T cell
responses—Induced
Th1 response—Generation of
long-term MUC1-specific
antibody and T cell responses
and delayed growth of
MUC1+ve tumors in mice

Brooks et al.
(2018)

Polyarginine Protein FOXM1 N-terminal
domain

Breast cancer A recombinant
FOXM1 N-terminal domain
(1-138aa) fused with a nine
arginine cell-penetrating
peptide

Mice Decreased the proliferation
and migration abilities of
cancer cells through binding
to FOXM1 and FOXM1-
interacting factor
SMAD3 Prevention of
tumorigenicity of cancer cells
and inhibition of tumor
growth in nude mouse
xenograft models with no
obvious signs of toxicity

Zhang et al.
(2019b)

Arg8 Protein OVA/Freund’s
adjuvant

---- Cys-Trp-Trp-Arg8-Cys-
Arg8-Cys-Arg8-Cys/OVA

Mice Increased IgG titer and
secretion of IFN-γ, IL-12, IL-
4, and IL-10 cytokines
Activation and maturation of
dendritic cells

Wang et al.
(2018)

Tat49-57 DNA Survivin/IL-15 fatal colon
carcinoma

Tat49-57/CTL epitope
peptide surviving 85–93/
plasmid encoding murine
IL-15

Mice A robust memory CTL-
mediated long-term
response—Improving the
survival rate

Yang et al.
(2008)

Abbreviations: AntpMAPMUC1tet, mucin 1 (MUC1) variable number of tandem repeat (VNTR) containing multiple T cell epitopes and tetanus toxoid universal T helper epitope peptide

(tetCD4); CLIP6, cytosol-localizing internalization peptide 6; CpG, unmethylated cytosine-guanine dinucleotides; MPGΔNLS, a mutated version of MPG; OVA, ovalbumin; PLGA, poly

(lactide-co-glycolide) acid; Arg8, arginine octamer; IL-15, interleukin-15.
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acid composition, and structure of CPP play a major role in

complex formation with mRNA and the transfection efficiency of

cancer cells (Kim et al., 2022). This strategy is important to

develop tumor cells-based vaccines against a variety of cancers.

On the other hand, the reports showed that intratumoral

injection is more efficient than subcutaneous delivery in

suppressing tumor growth using improvement of the tumor

microenvironment (Che et al., 2021). Thus, the use of cell-

specific CPPs can be effective for delivery of antigens

intratumorally.

Up to now, three general controlled delivery strategies have

been proposed and developed to address the non-specificity

problem of CPPs (Figure 1). These strategies include

designing cell- and tissue-specific CPPs: A) Conjugating CPPs

with targeting moieties and modulating CPP uptake by a

stimulus-sensitive signal. These strategies aim to control CPP-

cargo delivery only at the target site. Target-specific CPPs for

cancer cells have been widely isolated using the phage display

technique. Tumor targeting peptides (TTPs) are examples of this

kind of peptides with high specificity and great affinity for a

specific target (Kapoor et al., 2012). It is necessary to have a

thorough understanding of the physicochemical features and

internalization mechanisms of CPPs to rationally develop CPPs

with high selectivity and efficiency; B) Targetable CPPs can be

generated through conjugation with diverse cell-specific

targeting ligands by covalent or noncovalent bonds. Folic acid

(Meng et al., 2019), RGD peptides (Chu et al., 2017), transferrin

(Yang et al., 2015), and antibody (Ye et al., 2015) are some

examples of such targeting ligands; C) In the third and influential

technique, various “smart” approaches have been devised to

activate CPP function in a specific area of disease after

systemic administration, utilizing various stimuli-responsive

mechanisms (Huang et al., 2013). In this technique,

activatable CPPs (ACPPs), stimulus-sensitive component, such

as pH-sensitive, enzyme-sensitive, temperature-sensitive,

electricity-sensitive, and light-sensitive materials, mask the

CPP’s cell-penetrating function. When the CPP reaches a

particular tissue environment, the ACPP receives a stimulator,

the masking component is removed, and the CPP resumes its

regular activity (Xie et al., 2020). In this respect, pH has been the

FIGURE 1
Different mechanisms of CPPs specificity on the normal and cancer cells: (A) The use of tumor targeting peptide (TTP) that has receptor only on
the surface of tumor cells resulting in the effect of CPPs on specific target cells; (B) The use of activated CPP (ACPP) mechanism that causes
activation of CPPs just in response to amotivating factor; (C) The use of polyanionic inhibitor and linker, which linker is only removed by the protease
present in the target site, and then CPP interacts with the membrane to enter the cells.
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most frequent factor in activating CPP at the target location, and

pH-responsive peptides have frequently been used for

therapeutic agent administration at the tumor site. Typically,

tumor tissues have a lower pH than physiological pH (between

5.8 and 7.2) (Orange and May 2008). This method involves

chemical modification or the use of pH-sensitive materials to

reduce the capacity of CPPs to penetrate cells (Farkhani et al.,

2014). The protected CPP recovers its capacity to penetrate cells

once it reaches the acidic location (tumor site), leading to

improved cellular entry into cancerous cells (Zhang et al.,

2013). The development of such techniques is also possible

using different triggers, including proteases, ultraviolet light,

ultrasound, and temperature. As a sample, various ACPPs

were created based on protease sensitivity. This method uses a

polycationic CPP (such as R9 and TAT) whose cellular uptake is

shielded by a polyanionic inhibitory domain that is covalently

linked. When tissue-specific proteases (in the tumor tissues with

elevated proteases) cleave the linker between the CPP and

polyanionic inhibitory domain, the inhibitory domain will be

removed, allowing the cleaved ACPP to enter cells. This method

has mostly been applied to target the tumor tissues with a unique

microenvironment containing hyperactive proteases (Zhu et al.,

2012).

Generally, fusion or co-delivery of antigen with CPPs can

increase antigen uptake, processing and presentation by antigen

presenting cells (Yang et al., 2019). CPPs are an efficient system

for cell-impermeable compounds to enter intracellular targets.

Some CPPs indicated cell type specificity while some of them

need modifications or form part of other delivery systems (e.g.,

linkage of CPP to liposome or polymer). CPP-mediated strategies

used to achieve cell selectivity include cell-penetrating-homing

peptides, CPP-coupled cell-targeting peptide, targeting drug/

cargo-coupled CPPs, directing CPPs using physical changes in

the environment, and CPPs as a part of other delivery systems

(Martín et al., 2010). These methods have been often used in drug

delivery, but they can be applied in delivery of other cargoes such

as vaccines.

CPPs can be classified into cell/tissue-specific and non-cell/

tissue specific peptides (Zahid and Robbins, 2015; Taylor and

Zahid, 2020). Cell/tissue-specific peptides (or transduction

peptides) identified by screening of large peptide phage

display libraries showed special potential in the diagnostic and

therapeutic applications such as delivery of fluorescent or

radioactive compounds for imaging, delivery of therapeutic

peptides and proteins, and improvement of the DNA/RNA/

siRNA/viral particles uptake (Zahid and Robbins, 2015; Taylor

and Zahid, 2020). In addition, CPPs were used for immune

modulation in several approaches including: 1) delivery of

dominant-negative signaling molecules that can competitively

inhibit the function of endogenous proteins in immune cells; 2)

delivery of dominant negative molecules into cells; 3)

intracellular delivery of negative regulators of key signaling

pathways of the immune system; 4) chimeric peptide-based

immune modulation by targeting transcription factors; 5)

delivery of nucleotides into cells using CPPs for immune

regulation (Lim et al., 2016). Although ex vivo DC

manipulation has shown clinical success, but its potency has

not been effective. It was shown that the use of CPP-conjugated

antigens could overcome this disadvantage through

enhancement of antigen delivery efficiency and long-time

antigen presentation. For instance, DCs pulsed with CPP1-

conjugated peptide antigen induced successful anti-tumor

responses in vivo with higher efficiency than DCs pulsed with

antigen alone. In fact, antigen delivery using CPP in the

cytoplasm facilitated antigen presentation by MHC class I

molecules leading to cytotoxic T lymphocyte activation likely

through cross-presentation, and long-term immunological

responses. These studies suggest that CPP can be used for DC

vaccination against infectious diseases or various cancers, as well.

Generally, the direct application of CPP-antigen for in vivo

targeting has been successful in generating antigen-specific

immune responses (Lim et al., 2016).

2) Another negative point of CPPs might be their ability to

enter endosomes, which can result in the destruction of the

CPP or its cargo by lysosomes (Erazo-Oliveras et al., 2012).

For an effective CPP-based delivery, CPPs or CPP-cargo

must successfully escape from the endosome and enter the

cytosol before being degraded by lysosomes. There are

various solutions to address this issue (Figure 2). A) One

method is the combination of the CPPs with endosomolytic

compounds such as sucrose, calcium, and chloroquine

(Farkhani et al., 2014). In addition, some peptides

known as fusogenic peptides including GALA peptide

(Akita et al., 2010), melittin (Boeckle et al., 2006), and

influenza virus hemagglutinin-2 (HA2) (Liou et al., 2012)

have been used as noncovalent conjugation or as a covalent

fusion with CPPs to enhance the endosomal escape of CPP

complexes. These endosomolytic peptides alter their

characteristics in reaction to the acidic endosome

environment, which damages the endosome membrane

(Martin and Rice, 2007); B) Another method to enhance

the endosomal release of CPPs is the use of fusogenic lipids.

By breaking the endosome membrane, fusogenic lipids like

dioleoyl phosphatidylethanolamine (DOPE) have

significantly accelerated cargo’s release from endosomes

(El-Sayed et al., 2009); C) Other technique to boost the

endosomal release of CPPs is the “proton sponge” effect.

Histidine is a frequently employed compound that may be

protonated to produce lysosome osmotic swelling (Beloor

et al., 2015). In a research, TAT was coupled to

polyhistidine (TAT-10H), and as a result, the histidine

imidazole group, which has a pKa of 6.0, may function

as a proton sponge in acidic endosomes (pH 5–6.5).

Protonation of the histidine residues upon entrance into

the endosome would result in osmotic swelling, endosomal
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membrane breakage, and release of CPP-cargo (Lo and

Wang, 2008); D) Using the naturally existing or

intelligently created CPPs capable of non-endosomal

entrance is another strategy to prevent endosomal entry.

The CPP or CPP-cargo can enter the cytoplasm without

passing via an endosome in this method. The mechanism of

CPP/CPP-cargo internalization was reported to be

significantly dependent on many factors including type/

concentration of CPP, type/size of cargo, type of cells,

incubation time, charges, and experimental conditions

(Shi et al., 2014). It was shown that endocytosis is the

most typical uptake method at low CPP concentrations. At

high concentrations, direct translocation is thought to be

the primary main mechanisms for hydrophobic CPPs.

Numerous cationic CPPs were discovered to have

different uptake mechanisms based on the CPP

concentration. Direct translocation is seen at

concentrations over a certain threshold, but at lower

concentrations, the endocytic pathway is the main route

(Padari et al., 2010).

3) Another concern about CPP application is the potential

toxicity and immunogenicity of CPPs. Most of the research

examining CPPs in vitro has shown that they are non-

immunogenic and have low toxicity. However, a

comprehensive study, particularly in vivo analyses, is

required due to the cationic character and origin of most

CPPs, which might impact the integrity of the cell membrane

and the possibility of triggered immune responses,

respectively (Shi et al., 2014; Derakhshankhah and Jafari,

2018). In fact, the immunogenicity of CPPs can be affected

by their various physicochemical properties including size,

surface charge, amino acids sequence, hydrophilicity,

morphology, and the type of conjugated cargo. However,

the modified CPPs showed no specific immune responses

FIGURE 2
The CPP-cargo complex enters the cytosol through different routes: (A) Normal mode: the primary endosome has turned into a secondary
endosome and finally into an endolysosome, which has led to the destruction of the complex; (B) Endosomolytic agents: There is an endosomolytic
agent along with CPP that destructs the endosome membrane and results in the release of complex into cytosol space; (C) Fusogenic peptide: the
fusogenic peptide is conjugated to CPP, which causes the degradation of the endosome membrane and the complex is released into the
cytosol space; (D) Fusogenic lipids: Fusogenic lipid interacts with the inner surface of the endosome membrane and causes destruction of the
membrane. Then, the complex is rescued into the cytosol space; (E) Proton sponge: In this mechanism, buffering agents linked to CPP-cargo
complex or the residues available in CPP sequence like histidine enter water inside the endosomes. After endosome swelling and its destruction, the
CPP-cargo complex is released into cytosol space; (F) Direct transfer of CPP: CPPs with a specific sequence lead to enter the CPP-cargo complex
into the cytosol directly without the need for the endosome escape strategies.
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(Zakeri-Milani et al., 2021). Generally, it is required to

determine the non-toxic dose of CPPs. Although, fusion of

CPPs or combination of them with vaccine/drug cargoes

significantly reduces the toxicity of CPPs, but dose

assessment will be valuable in drug and vaccine studies.

This subject is important for immunogenicity of CPPs,

as well.

4) Other drawback of CPPs is their proteolytic instability, which

contributes to their limited plasma half-life. Due to their high

instability and susceptibility to degradation, CPPs can be

degraded by several protease enzymes that find in

biological fluids such as blood, stomach or intestinal fluids,

extracellular fluids, and intracellular fluids (Kristensen et al.,

2016). Many strategies have been investigated to increase the

stability of CPPs including A) altering their stereochemistry,

B) modifying the specific amino acid residues, and C)

changing their backbone (Figure 3). For instance, Nielsen

et al.(2014) showed that switching a CPP from its L-form to

its D-penetratin isomeric form significantly increased the

half-life of the CPP in the intestinal fluid (Nielsen et al.,

2014). Further analysis revealed improving the proteolytic

resistance of octa-arginines (R8) by switching out L-arginine

residues to D-arginine residues (Ma et al., 2012); In addition

to stereochemical alterations, modifications can be made to

individual amino acid residues, which can destroy the

cleavage site of the proteolytic enzymes. TAT and MPG

were modified to boost their proteolytic resistance while

maintaining their ability to penetrate cells (Rennert et al.,

2006); Another technique that might increase the durability

of CPPs is backbone stabilization. Examples of such methods

that increased the stability of CPPs against degrading

enzymes include the incorporation of peptoid residues in

the penetrating peptide sequence (Jing et al., 2012a; Jing et al.,

2012b) and cyclization (Qian et al., 2016) of CPPs.

In addition to the factors mentioned above, it is crucial to

thoroughly determine the biological distribution and

pharmacokinetic characteristics of CPPs or CPP-cargo

complexes in tissues and the circulatory system. In

conclusion, the problems of CPPs must be resolved before

they are used in clinical applications.

Conclusion and outlook

CPPs, also known as trojan horse, are a hot topic delivery

system in recent years. In addition to their ability to transfer

across the cell membrane, they can deliver various prophylactic,

therapeutic, and imaging agents as cargo. Because of their small

size, CPPs were known as nanoparticles (NPs). The ability of NPs

was evaluated as an appropriate delivery system in infectious and

non-infectious diseases. One of the most prevalent non-

infectious diseases is related to the CNS (central nervous

system) disorders and tumors, which have more than one

FIGURE 3
Different strategies to increase the stability of CPPs: (A) Stereochemical alterationmethod: Chemical modification of the residues eliminates the
sensitivity of CPP; (B) Amino acid modification: Changing the residues to a different isomer can increase the stability of CPP; (C) Backbone
stabilization: Converting the linear form to a circular CPP reduces the CPP’s sensitivity to enzymes, and increases its stability.
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barrier for compound delivery including the BBB (blood-brain

barrier) and cell membrane. Recently, various vectors such as

gold NPs or Quantum Dots (QDs) help the BBB transfer of the

biomolecules (Hasannejadasl et al., 2020; Hasannejad-Asl et al.,

2022). But however, these vectors have limitations (Swain et al.,

2016). CPPs as a novel NPs showed that they could transfer

across the BBB from the transcytosis pathway without affecting

the BBB and intracellular components of the barrier’s cells

(Sharma et al., 2016), and then achieve the targeting cells in

CNS. Derouazi et al. reported the development of a new class of

recombinant protein cancer vaccines that deliver diverse CD4+

and CD8+ T-cell epitopes presented by MHC class I and class II

alleles, respectively. In these vaccines, the recombinant protein

was conjugated with Z12 CPP, which elevates effectual protein

loading into the antigen-processing machinery of DC.

Z12 prompted an integrated and multi-epitopic immune

response with constant effector T cells. Treatment with Z12-

formulated vaccines significantly extended survival in an

orthotopic model of aggressive brain cancer. Analysis of the

tumor areas exhibited antigen-specific T-cell accumulation with

promising modulation of the balance of the immune infiltrate

(Derouazi et al., 2015). In addition to non-infectious diseases,

CPPs were used to deliver anti-infectious prophylactic and

therapeutic vaccines against different microorganisms. For

instance, immunization with CPP-conjugated HPV

oncoproteins such as E7 and L2 had positive outcomes in the

prevention of infection with HPV types 6, 11, 16, 18, and

produced strong immunologic and anti-tumor responses in

mouse model (Li et al., 2016; Shahbazi and Bolhassani, 2018).

CPPs were used as an appropriate delivery system; however,

there are many limitations that hampered to CPP-based

vaccines approved by FDA. To optimize the efficiency of

CPPs and resolve their limitations, some methods were

reported such as enhancement of the cell-type specificity,

endosomal escape, and masking method. Jiao et al. designed

the ch-Kn(s-s) R8-An micelles gene delivery system to dual-

target the BBB and glioma using MMP-2-responsive peptides as

the enzymatically degradable linkers. The glioma cells

overexpressed low-density lipoprotein receptor-related

protein-1 (LRP1), which specifically binds to the linker-

conjugated angiopep-2. After the extracellular overexpressed

MMP2 degraded the MMP2-cleavable linker and exposed the

R8, the micelles could successfully target the glioma cells and

enter the tumor’s center. This delivery method showed a high

gene transfection efficiency in glioma cells (Jiao et al., 2019).

Furthermore, scientists used different strategies like proton-

sponge and disruptive peptides to endosomal-escape of CPP-

cargo complex. The N-terminus of the HA2 fusogenic peptide

forms α-helix structure that can be introduced into lipids. A

conformational change in the low pH environment of

endosomes causes the α-helix structure to fuse with the

endosomal lipids, releasing CPP-HA2 complexes from the

endosomes into the cytosol. Indeed, transducible TAT-HA

fusogenic peptide increased escape of TAT-fusion proteins

after lipid raft macropinocytosis (Wadia et al., 2004).

Overall, potent adjuvants are required in experimental

vaccines based on proteins and peptides to trigger immune

responses. An adequate replacement for current adjuvants

involving MF59, ISCOMs, liposomes, etc., will be the efficient

translocation of proteins and peptides into APCs using CPPs

(Foerg and Merkle, 2008). Additionally, unlike other targeting

mechanisms for DNA delivery, CPPs can interface and bind to

DNA vaccines directly without needing a poly-linker (Mwangi

et al., 2005). (Cheng et al., 2001; Apostolopoulos et al., 2006; Rhee

and Davis, 2006; Hou et al., 2013; Xu et al., 2016; Hajizadeh et al.,

2020) Even though CPP-based vaccinations have many

advantages over different types of vaccines including low

toxicity, simple production, and non-immunogenicity in

humans (Brooks et al., 2010), the in vivo stability, safety,

improved cellular absorption, simplicity of synthesis, and cost

of manufacture must also be considered in the ongoing efforts to

offer these CPPs in clinics. It is recommended that sequences of

CPPs resistant to protease action are used to improve the serum

stability of these peptides while retaining the properties of CPPs.
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