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Inflammatory bowel disease (IBD) is a chronic and life-treating inflammatory

disease that can occur in multiple parts of the human intestine and has become

a worldwide problem with a continually increasing incidence. Because of its

mild early symptoms, most of them will not attract people’s attention and may

cause more serious consequences. There is an urgent need for new

therapeutics to prevent disease progression. Natural products have a variety

of active ingredients, diverse biological activities, and low toxicity or side effects,

which are the new options for preventing and treating the intestinal

inflammatory diseases. Because of multiple genetic models, less ethical

concerns, conserved signaling pathways with mammals, and low

maintenance costs, the fruit fly Drosophila melanogaster has become a

suitable model for studying mechanism and treatment strategy of IBD. Here,

we review the advantages of fly model as screening platform in drug discovery,

describe the conserved molecular pathways as therapetic targets for IBD

between mammals and flies, dissect the feasibility of Drosophila model in

IBD research, and summarize the natural products for IBD treatment using

flies. This review comprehensively elaborates that the benefit of flies as a perfact

model to evaluate the therapeutic potential of phytochemicals against IBD.
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Introduction

Inflammatory bowel disease (IBD) is a chronic, progressive, life-long disease that leads

to bowel damage and disability, including Crohn’s disease (CD) and ulcerative colitis

(UC) (Salas et al., 2020). In recent years, the incidence of IBD has generally increased in

many countries around the world, and is closely related to genetic susceptibility,
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environmental factors and dysbiosis, but it also brings great

economic and social pressure (Guzzo et al., 2022). To date,

IBD is not easy to completely cured, which encourages

researchers to investigate more effective therapeutics for this

disease (Che et al., 2022; Zilbauer, 2022). At present, some

immunosuppressants, 5-aminosalicylic acid, and steroids have

been clinically used to alleviate patients’ syndromes. However,

they have serious adverse reactions in patients, such as anemia,

diarrhea, and glaucoma (Zhang et al., 2021). Therefore, the

development of effective and safer drugs for IBD treatment

are urgently needed.

Most of research objects on drug screening and evaluation

are model organisms, such as cells, C. elegans, Drosophila,

zebrafish, mammals (Mccammon and Sive, 2015; Maitra and

Ciesla, 2019). Model organisms are essential for investigating the

pathogenesis and drug screening for human diseases. Cell culture

is often used model for drug screening, but the drug toxicity

reactions in the screening process cannot fully reflect the body

tissue-specific responses. Although mammal models have

provided crucial materials for the study of pathogenesis,

pathological process and the mechanisms underlying drug-

related behaviors, they are not ideal. This is mainly due to the

expensive and long-term experimentations, breeding and ethical

implications. Recently, Drosophila has been proved as an

excellent model organism for dissecting the mechanism and

drug library screening, such as cancer, aging, nociception,

neurodegenerative diseases. Until now, Drosophila as a model

helps researchers get the Nobel Prize in Physiology or Medicine

for six times (Kitani-Morii et al., 2021). The advantages of fly are

small size, genetic amenability, low-cost maintenance, and

excellent genetic and molecular tools. Meanwhile, fly has a

high homology with human at the organ and gene level

(Maitra and Ciesla, 2019). These classcial advantages provide

great opportunities for researchers to investigate the mechanism

of IBD and drug discovery research (Apidianakis and Rahme,

2011; Su, 2019; Madi et al., 2021).

The pathogeny of IBD is very complicated and has not

been completely understood. Disruption of intestinal

homeostasis is closely related to the occurrence and

development of IBD. Many signaling pathways related with

IBD such as JAK/STAT, Wnt/Wg, Nrf2/Keap1, TLR4/NF-κB,
Notch pathways were identified in flies, and are conserved in

humans (Hu et al., 2021; Yang et al., 2022). Various natural

products have shown that various natural molecules or herbal

extractions are widely applied in the prevention and treatment

of IBD in various animal models (Yang et al., 2022).

Consistently, the similar function of natural products

treating intestinal inflammatory diseases are found in flies

and mammals (Pereira et al., 2017). In this article, we

discussed the advantages of fly model as screening

platforms in drug discovery, and described the conserved

modelcular pathways as therapetic targets for IBD in fly

and mammal. Nextly, we dissected the feasibility of

Drosophila model in IBD research and summarized the

natural products for IBD treatment in fly model.

Use ofDrosophilamodel as screening
platforms in drug discovery

Screening thousands of drug candidates need to speed

various time and money, and often leads to uncertain success.

At present, many models are used for screening potential drugs,

such as cells, yeast, C. elegans, D. melanogaster and mammals, in

which some can accelerate the process of drug discovery, when

some are easy to collect valuable data (Figure 1). High-

throughput screening of cell cultures is one of the most

widely used methods for potential drug screening (Maitra and

Ciesla, 2019). However, cell culture belongs to drug

administration experiments in vitro, and the drug toxicity

reactions in the screening process cannot fully reflect the body

tissue-specific responses. Unbiased drug experiments using

appropriate model organisms in vivo enable rapid and specific

screening of drug candidates with therapeutic potential

(Willoughby et al., 2013). Rodents such as rats and mice are

the most common models for drug screening, but they often

result in economic and ethical pressures, also have low

reproductive rates and long lifespan (Bilen and Bonini, 2005).

An ideal drug-screening model should be highly manipulable

while reflecting human biology (Hergovich et al., 2006). Fruit fly

has been universally used by researchers to investigate genetics

and human diseases, such as neurodeneration, cancer, and

nociception (Hwang and Lu, 2013; Kitani-Morii et al., 2021;

Chiang et al., 2022; He et al., 2022). Compared to cell culture

model, fruit fly is a complex “whole animal” model with organs

and tissue systems functioning synergistically. Fly can be

administered in a variety of ways, and its behavioral activity

can be easily monitored to analyze the therapeutic and toxic

effects of drugs (Shahzad et al., 2021). Compared to rodents, fly is

relatively economical and easy to manipulate, and it has short

generation time, large collections of transgenetic strains, and less

ethical concerns (Hwang and Lu, 2013). Therefore, Drosophila is

an ideal model for economical and rapid large-scale screening of

therapeutically useful natural products.

The advantages of genetic
manipulation

The key reason why fly can serve as a classic biological model

is its highly conserved molecular pathways and powerful

molecular tools that easily manipulate the expression of

specific genes (Senturk and Bellen, 2018). Fly gene sequencing

in 2000 shows that many basic physiological and functional

characteristics are highly conserved between flies and humans,

meanwhile about 75% genes of human-related diseases are
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homologous in flies (Bier, 2005). Homologues or orthologues of

human genes in flies are easily knocked in or knocked out using

genetic tools to mimic specific disease-associated phenotype. One

of the widely used genetic tools is the GAL4/UAS system.

GAL4 as a yeast-derived transcription factor bind to

Upstream Activating Sequence (UAS), driving the

downstream gene expression (Takano-Shimizu-Kouno and

Ohsako, 2018). Many strains that express GAL4 can target

diverse tissues, specific cells and given genes. The progeny of

crosses between the targeted GAL4 and UAS strains are used to

analyze the function. UAS targeted RNA interference (RNAi) or

green fluorescent protein (GFP) combines with GAL4 drive to

suppress specific gene expression or label fluorescent marker in

any tissue or cell, which is beneficial for studying various organ

and tissue diseases (Pagliarini and Xu, 2003; Weasner et al., 2017;

Xie et al., 2018). This system is widely used to label specific

FIGURE 1
Comparison of experimental models in different species in multiple aspects.
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intestinal cells and regulate signaling in intestinal cells in flies. For

example, Escargot (Esg) as a specific marker for enteroblasts and

intestinal stem cells (ISCs) can generate esg-Gal4; UAS-GFP

reporter flies, in which the enteroblasts and ISCs are marked as

GFP. External stimulation or infection significantly enhance stem

cells proliferation followed by intensity of GFP increasing

(Micchelli and Perrimon, 2006; Buchon et al., 2009). Drice is

a negative regulator of Imd signaling and is required for intestinal

homeostasis. When esg-Gal4 driver flies cross with UAS targeted

Drice-RNAi flies, the offspring has decreased Drice expression in

ISCs. Developed from this technique is the temporal and regional

gene expression targeting (TARGET) system, in which

temperature sensitive GAL4-inactivating protein GAL80 could

repress GAL4 activity at permissible temperatures, which is

beneficial for precise temporal control of transgene expression

(Mcguire et al., 2004). The FLP recombinase/FLP recognition

target (FLP/FRT) system is also commonly used to regulate gene

expression or induce somatic recombination in homologous

chromosomes of flies (Theodosiou and Xu, 1998). In addition,

other tools such as CRISPR-Cas9 and Cre/LoxP that developed in

mammalian system have also been used in flies (Nakazawa et al.,

2012; Bier et al., 2018). The availability of these genetic tools

makes flies as a favorable model for potential drug screening.

The advantages of phenotype-based
research

Most of the drug discovery efforts carried out in flies begin

with phenotype-based research, and the related phenotypes are

simple and easy to detect, and reliable conclusions can be drawn

in a short time (Giacomotto and Segalat, 2010; Maitra et al.,

2022). For example, various neurodegenerative diseases exhibit

slowness of locomotor ability and loss of a specific subset of

neurons. The locomotor ability in flies is monitored by the

negative geotaxis climbing test. The specific subset of neurons

can be easily marked as fluorescence by using genetic methods,

and are monitored by microscopy techniques (Maitra and Ciesla,

2019). Eye degeneration in Alzheimer (AD) and Parkinson (PD)

transgenic fly models is used as a tool for pharmacological

screening (He et al., 2021). Survival assays in flies are used to

determine the role of potential drugs on lifespan, stress resistance

and developmental defects (Dai et al., 2020). Simple feeding

assays are used to investigate the therapeutic effect of drug

candidates (Yang et al., 2022). In addition, survival assays,

development and reproduction assays in flies are used to

evaluate the toxicity of drug candidates and determine the

optimal drug concentrations. Importantly, with easily

observable phenotypes associated with gut diseases, flies have

significant advantages for discovering drugs that treat IBD

disease (Maitra and Ciesla, 2019). For example, the intestinal

length is easily measured; integrity of the intestinal epithelial

barrier is evaluated by using the “smurfs” experiments; the

midgut digestive function is characterized by the

gastrointestinal acid-base homeostasis (Sheng Q. et al., 2021).

Thus, using Drosophila model to screen natural drugs will

help to overcome the limitiations of cell culture assays regarding

toxicity and pharmacological assessment, and will also quickly

reduce the scope from huge potential drug candidates. In

addition, fly can be widely used to dissect the mechanism of

functional compounds on disease pathogenesis.

Conserved molecular pathways as
therapetic targets for intestinal
inflammatory disease

The intestinal epithelium is the first line of defense in the

digestive tract against pathogens entering the body, and

maintains the intestinal homeostasis. Intestinal homeostasis in

flies is regulated by evolutionarily conservedmolecular pathways,

such as JAK/STAT, Nrf2/Keap1, TLR4/NF-κB, Wnt/Wg and

Notch signling pathways. An imbalance among these types of

pathways in epithelium could result in IBD.

JAK/STAT pathway

The Janus kinase/signal transducer and activator of

transcription (JAK/STAT) signaling pathway is a transport

hub that transduces cues from extracellular cytokines into

transcriptional changes in the nucleus, which participates in

many cellular processes, such as cell growth, differentiation

and migration of immune cells (O’Shea et al., 2013). The

inappropriate activation or delection of JAK/STAT pathway is

associated with inflammatory and autoimmune diseases,

including IBD, Parkinson’s disease (PD) and psoriasis (Xin

et al., 2020). Inhibition of this pathway can suppress multiple

cytokine pathways in the treatment of IBD. JAK is a key

intracellular signaling mediator in IBD, which transduces

signals from cytokine receptors on the cell surface to the

nucleues, and its dysregulation leads to the pathological

process of IBD (Dudek et al., 2021). Presently, several JAK

inhibitors are used to treat IBD patients (Wang L. et al.,

2021). Tofacitinib as a JAK inhibitor is clinically used for UC

patients, and various other inhibitors such as filgotinib, TD-1473

and upadacitinib are currently being investigated in preclinical

and clinical trials (Salas et al., 2020; Harris and Cummings, 2021).

In addition, STAT is the final effector of JAK-STAT signaling

pathway (Moon et al., 2021). Some STAT inhibitors have also

been studied in treating IBD, although no clinical trials have been

conducted in patients with IBD (Kasembeli et al., 2018) Various

plant-derived natural compounds such as curcumin, ellagic acid

and paeonol have been proved to alleviate IBD by affecting the

JAK-STAT pathway in IBD animal models (Marin et al., 2013;

Yang et al., 2013; Moon et al., 2021). Thus, therapeutic
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intervention of the JAK-STAT pathway can efficiently regulate

the complex inflammation driven by diverse inflammatory

cytokines in IBD.

The JAK/STAT pathway in flies has the same essential

signaling components as in mammals (Herrera and Bach,

2019). When enterocytes (ECs) in fly midgut are subjected to

stress signaling mediated by apoptosis, chemical injury, or

pathogen infection, pro-inflammatory ligands (Upd, Upd2,

Upd3) are rapidly produced and released. These ligands

activate one receptor Domeless (Dome), leading to the

activation of one JAK and one STAT transcription factor,

termed Hopscotch (Hop) and Stat 92E, respectively. The

pathway activity is downregulated by Socs36E in a negative-

feedback loop. Socs36E is a suppressor of cytokine signaling

protein. Core components of the JAK-STAT pathway in flies are

homologous to interleukin 6 (IL-6), the JAK2 and STAT5 in

mammals (Myllymaki and Ramet, 2014). The JAK/STAT

pathway plays an important role in fly midgut homeostasis

and tissue regeneration following various challenges, such as

bacterial infection, directed cell ablation or stress signaling

(Buchon et al., 2009). Under normal conditions, JAK/STAT

pathway facilitates the rapid proliferation and differentiation

of ISCs to drive epithelial regeneration (Jiang et al., 2009).

The over-activation of JAK/STAT pathway causes excessive

proliferation of ISCs and abnormal differentiation of EC cells,

which disrupts the balance of intestinal homeostasis, and

promotes the deterioration of intestinal epithelium (Herrera

and Bach, 2019).

Nrf2/Keap1 pathway

Nuclear factor-erythroid-derived 2-related factor 2 (Nrf2), a

member of the basic-region leucine zipper (bZIP) transcription

factor, is one of the most important regulators of the cell defense

system against oxidative stress and inflammatory damage (Mou

et al., 2020). Nrf2 regulates the transcription of more than

200 genes, including antioxidant proteases and inflammatory

regulators, by binding antioxidant response elements (AREs) in

the promoter region (Raghunath et al., 2018). The activity of

Nrf2 is negatively mediated by Kelch-like ECH-associated

protein 1 (Keap1) that is a protein rich in cysteine (Sekhar

et al., 2010). Various studies have shown that activation of the

Keap1-Nrf2-ARE signaling pathway can provide protection

against various stress and inflammation-related diseases,

including IBD (Cuadrado et al., 2018; Piotrowska et al., 2021).

Previous studies found that DSS-induced Nrf2 knockout mice

had higher expression of colonic inflammatory markers and

cytokines, and more severe colonic injury compared to control

colitis mice (Cheung et al., 2014). Administration of

Nrf2 activator dimethyl fumarate (DMF) alleviated DSS-

induced experimental colitis in mice (Li et al., 2020). The

activator of Nrf2, 5-aminosalicylic acid, has been used

clinically in the treatment of IBD (Kang et al., 2017; El-Baz

et al., 2020). Meanwhile, various plant-derived natural

compounds have been demonstrated to alleviate IBD by

affecting the Keap1-Nrf2-ARE pathway in animal model

systems of IBD, such as luteoline (Li et al., 2016), curcumin

(Lin et al., 2019) and Flos puerariae extract (Yang et al., 2022)

Therefore, the Nrf2 activator is considered as a potential drug for

the treatment of IBD.

Nrf2 is highly homologous to CncC in Drosophila (Loboda

et al., 2016). There are three isoforms of Cnc: CncA, CncB and

CncC, of which CncC plays an important role in the oxidative

stress process in flies (Pomatto et al., 2017). The mechanism of

the oxidative stress response in flies is similar to that in

mammals. Under non-stress conditions, CncC activity is

restricted by dKeap1 (Sykiotis and Bohmann, 2008). When

flies are under oxidative stress and intestinal damage,

electrophile and ROS interrupt the interaction between CncC

and Keap1. CncC forms a heterodimer withMaf-S in the nucleus,

binds to the ARE and activates transcription of the target gene

(Misra et al., 2013). Nrf2 can promote intestinal homeostasis by

specifically controlling the proliferation activity of ISCs. Loss of

Nrf2 in ISCs led to accumulation of ROS and accelerated

degeneration of the intestinal epithelium (Hochmuth et al.,

2011).

TLR4/NF-κB pathway

TLR4/NF-κB is an important inflammatory signaling

transduction pathway, which closely participates in cell

differentiation and proliferation, apoptosis, and pro-

inflammatory response (Yu et al., 2022). Toll-like receptors

(TLRs) play an important role in recognizing invading

microbial pathogens and leading to innate immune response

for the host defense, and also involved in the pathogenesis of

IBD (Frantz et al., 2018; Lu et al., 2018). As one class of TLRs,

TLR4 is the first characterized TLR in the mammalian, and

mainly regulates the intestinal inflammation. The expression of

TLR4 significantly increases in the intestinal epithelium of

patients with active UC (Toiyama et al., 2006). Nuclear

factor kappa B (NF-κB) is the final transcription factor of

the TLR4 pathway. Upon activation, NF-κB dimers

translocate to the nucleus, and promotes the transcription

and translation of inflammatory mediators, which results in

the development of intestinal diseases in mammals (Chen et al.,

2018). Many components of natural products such as apigenin,

luteolin and hesperidin have been proven to ameliorate

intestinal inflammation by inhibiting the TLR4 receptor

activation and blocking the nuclear translocation of NF-κB
in mammals (Guazelli et al., 2021; Zuo et al., 2021; Begum

et al., 2022; Zhang et al., 2022). Thus, downregulation of the

TLR4/NF-κB pathway is a potential therapeutic strategy

against IBD.
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Toll signaling pathway is first identified in Drosophila (Lye

and Chtarbanova, 2018). The first identification of TLRs in

1988 and then subsequent recognition of its one homolog

called TLR4 in humans in 1997 (Hashimoto et al., 1988;

Medzhitov et al., 1997). Activation of Toll in flies results in

the formation of a signaling complex containing the adaptor

proteins MyD88, Tube and the kinase Pelle via a homotypic TIR

interaction (Tauszig-Delamasure et al., 2002). This complex

indirectly promotes the NF-κB-like transcription factors Dif

and Dorsal to the nucleus, leading to the expression of

cytokines and antimicrobial peptides (AMPs) (Lamiable et al.,

2016; He et al., 2022). Intestinal epithelial cells have the

evolutionarily conserved TLR pathway in flies and mammals

(Ferguson and Foley, 2022). Toll signaling in flies plays a role in

the maintance of gut homeostasis via regulating the balance

between microbe-induced epithelial cell damage and stem cell

repair (Buchon et al., 2009).

Wnt/Wg pathway

Wnt signaling pathway is an important pathway for the

maintenance of stem cells, which controls cell proliferation,

impacts the cell cycle and regulates the self-renewal of some

tissues in mammals (Nusse and Clevers, 2017; Liu et al.,

2022). Wnt signaling pathway regulates the stem cell

proliferation, differentiation and migration in the

intestinal epithelium, and participates in the pathogenesis

of IBD (Flanagan et al., 2018). Decreased the Paneth cell

alpha-defensin is one of the factors in IBD pathogenesis

(Khoramjoo et al., 2022). Diminished the Wnt pathway

transcription factor (Tcf-4) expression could weaken

enteric antimicrobial defense by reducing the Paneth cell

alpha-defensin (Pu et al., 2021; Khoramjoo et al., 2022). In

addition, studies have shown that in Tcf-4 knockout mice,

reduced level of Paneth cell alpha-defensin in intestine

permitted bacteria to invade the epithelium and result in

colitis (Wehkamp et al., 2007). Inhibition of Wnt signaling

pathway could disrupt the intestinal-stem-cell homeostasis,

consequently leading to intestinal diseases in mammals

(Kuhnert et al., 2004; Perochon et al., 2018). Various

natural molecules, such as Astragaloside IV and

procyanidin, have been reported to promote mucosal

healing and alleviate colitis symptoms by activating the

Wnt pathway in mice (Pu et al., 2021). Thus, it is

worthwhile to increase the window of opportunities for

IBD treatment by activating Wnt pathway.

Fly and mammalian guts not only have similar

morphology, but also share the same Wnt signaling

pathway. The Drosophila genome encodes seven Wnt genes

including Wingless (Wg), Wnt2, Wnt4, Wnt5, Wnt6, Wnt10,

and WntD (Tian et al., 2018). Only Wg and Wnt4 are

expressed in the fly midgut (Perochon et al., 2018). Wnt

pathway plays an important role in the self-renewal of the

fly gut. When flies are exposed to damage from chemical

toxins, bacterial infection and mechanical stress, the

expression level of Wg protein increases in EBs of the

midgut epithelium, leading to compensatory ISC

proliferation and differentiation to re-establish homeostasis

(Jiang et al., 2016; Liu et al., 2017). Meanwhile, the inhibition

of Wnt signaling in the intestinal epithelium abolishes gut

regeneration (Jiang et al., 2016; Liu et al., 2017).

Notch pathway

Notch signaling is a highly conserved cell-cell

communication pathway. It regulates the development and

differentiation of cells, tissue function, organs formation, and

maintains the homeostasis of the body through interactions

between adjacent cells (Artavanis-Tsakonas et al., 1999;

Herbert and Stainier, 2011). Notch signaling pathway is

critically linked to the pathogenesis of several diseases such

as IBD, cancer, and autoimmune diseases (Okamoto et al.,

2009). In the intestine, Notch pathway regulates the secretory

of intestinal cells such as Paneth cells and goblet cells.

Increased Notch pathway leads to a deficiency of Paneth

cells, and ultimately induces a collapse of the intestinal

barrier in patients with IBD (Gersemann et al., 2011).

Activated γ-secretase promotes the generation of Notch

intracellular domain (NICD) (Kumar et al., 2016). Aberrant

expression of NICD leads to decrease in the quantity of goblet

cells in patients with UC (Zheng et al., 2011). Consequently,

studies have shown that the γ-secretase inhibitor

dibenzoazepine alleviates IBD by suppressing the Notch

pathway (Shinoda et al., 2010). L. acidophilus could

regenerate goblet cells by inhibiting Notch transcriptional

program factors to alleviate Salmonella-induced-colitis in

mice (Wu et al., 2018). Thus, inhibiting Notch pathway is

considered to be an effective strategy in the treatment of IBD.

The Notch gene is first named in flies in the 1910s (Stubbs

et al., 1990). Most essential components of the Notch signaling

pathway are conserved between flies and humans (Yang et al.,

2022). Notch pathway participates in regulating the self-

renewal and differentiation of ISCs. In adult Drosophila

intestines, the Notch ligand Delta is specifically expressed

in ISCs (Ohlstein and Spradling, 2007). Upon division of the

ISC, Delta promotes the expression of Notch target genes by

activating the Notch receptor in its sister cell (Fre et al., 2011).

Notch pathway is closely associated with gut homeostasis.

Under normal conditions, Notch pathway promotes ISCs to

replenish the loss of EE and EC to maintain intestinal

homeostasis (Fre et al., 2011). Ingestion of chemicals or

pathogenic bacteria could disrupt stem cell differentiation

and midgut homeostasis by activating Notch pathway in

the Drosophila intestine (Kux and Pitsouli, 2014).
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The feasibility of Drosophila model in
IBD research

The Drosophila fly has been demonstrated to be an

excellent model for dissecting the mechanisms of intestinal

disease, due to its similar anatomical features with mammal

intestine, and its genetic and functional conservation with

mammals (Lin and Hackam, 2011; Medina et al., 2022). A

suitable method for investigating the pathogenesis of human

IBD and screening candidate drugs from natural products is to

produce animal model of IBD, including fly, zebrafish, and

rodents.

Conserved structure of midgut between
fly and mammalian

The gastrointestinal (GI) tract is a first layer of defense against

the various microbes. The fly GI tract is the tissue of digestion and

absorption, and shares many properties with the mammalian

FIGURE 2
Comparison of intestinal tract anatomy between adult Drosophila melanogaster and human. The adult Drosophila (A) and human (B) intestinal
tracts share structural and functional homology.
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counterparts, including the stomach, small intestine, and colon

(Figure 2) (Liu et al., 2017). Fly midgut has emerged as an

attractive system to investigate the intestinal inflammatory

disease due to not only the cell lineage of this tissue is simple

and well-defined, but also it shows similarites to the mammalian

intestine (Jiang and Edgar, 2012). The flies intestine is composed of

three main regions: foregut, midgut and hindgut (Lemaitre and

Miguel-Aliaga, 2013). The foregut encompasses pharynx,

oesophagus and crop, which is an organ involved in food

storage. The midgut extends from the cardia to the junction with

the hindgut, while the Malpighian tubules connect to the gut. The

hindgut fulfills the excretory functions of the fly gastrointestinal

system, which is similar with the mammal large intestine (Miguel-

Aliaga et al., 2018). The copper cell region (CCR) is located

approximately in the middle of the midgut and is acidic similar

to the mammalian stomach (Strand and Micchelli, 2013). The

posterior midgut is the most metabolically active and immune

responsive region of the fly gut and is similar with the mammal

small intestine, where the hindgut corresponds to the mammal

colon (Micchelli and Perrimon, 2006; Capo et al., 2019).

The epithelium of the fly midgut and mammal gut contains

uniform ISCs that undergo division and asymmetric cell fate

decision (Liu et al., 2017). The adult Drosophila gut is

composed of an epithelial monolayer consisting of 4 cell types:

intestinal stem cells (ISCs), absorptive enterocytes (ECs),

enteroblasts (EBs) and secretory enteroendocrine (EE) cells

(Medina et al., 2022). Each ISC divides symmetrically into two

ISCs or asymmetrically into an renewed ISC and EB. EBs

differentiate into diploid EEs or polyploid ECs (Chen et al.,

2018). Similarly, ISCs self-renew and differentiate into the

transit amplifying cells in mammals, and then proliferate and

differentiate into secretory cells and ECs, and dedicate Paneth cell

progenitors (Liu et al., 2017). ISCs are characterized by expression

of high levels of cytoplasmic Delta-rich vesicles, triggering Notch

signaling in neighboring EBs (Ohlstein and Spradling, 2007).

Su(H)Gbe-lacZ as a transcriptional reporter of Notch signaling

is used as EB cell marker (Micchelli and Perrimon, 2006). The

enhancer trap fly snail family gene escargot (esg) targets both ISC

and EB (Micchelli and Perrimon, 2006). Brush border Myosin

(MyolA) marks the ECs and Prospero (Pros) marks the EEs (Jiang

et al., 2009). Chemicals such as dextran sulfate sodium (DSS) and

sodium dodecyl sulfate (SDS), or bacterial infection can damage

the midgut, and also stimulate ISC proliferation (Amcheslavsky

et al., 2009). Compared tomammalian stem cells, the flies possess a

much simpler lineage in intestinal epithelium. However, the

cellular functions and molecular principles that dictate ISC

proliferation and differentiation are well conserved from flies to

mammals (Medina et al., 2022). For example, JAK-STAT pathway

(Xu et al., 2011), Wg/Wnt pathway (Liu et al., 2017), Hippo

pathway (Ren et al., 2010) and EGFR pathway (Jiang et al.,

2011). All these pathways have been implicated in human IBD.

Thus, investating the role of ISC proliferation in flies will help us to

find the way for human IBD mechanism.

Intestinal inflammatory model in flies

Many preclinical models of IBD are currently estabolished to

investigate the pathogenesis and therapy. In rodents, DSS, SDS

and 2,4,6-trinitrobenzene sulfonic acid (TNBS) have been

frequently employed (Yu et al., 2022; Zhang et al., 2022).

Because of the high conservation with mammals, flies are also

used to induce intestinal inflammation model via feeding DSS or

SDS (Figure 3) (Lee et al., 2021; Wei et al., 2022; Yang et al.,

2022). Briefly, newly ecolosed (3–5 day old) female or male flies

were maintained on control diet or natural products diet for

7 days. Then flies was transferred into the empty vial containg 1%

agar to starve for 2 h, flies were moved into vials containing filter

papers soaked with 5% sucrose solution with or without DSS (3%

or 4%) or SDS (0.5% or 0.6%), respectively. Filter papers were

replaced every 2 days. For survival studies, adult flies were fed

with DSS or SDS until all flies died, and number of dead flies was

recorded twice per day. For intestinal morphology analysis, flies

treated with DSS or SDS for 72 h were dissected in the cold PBS

and immediately observed under a microscope. After flies were

fed with DSS or SDS for 60 h, the intestine integrity and

gastrointestinal acid-base homeostasis were investigated.

Smurf assay was widely used to detect the intestine integrity,

in which flies were fed with food containing a blue dye (2.5% w/v)

for 12 h, fly was remarked as a Smurf when the dye coloration

could be observed outside the digestive tract. The bromophenol

blue assay was used to measure gastrointestinal acid-base

homeostasis, in which flies were fed with 2% Brmophenol

blue sodium (Sigma, B5525) for 12 h, images were captured

after dissection. For observation of midgut epithelial cells, flies

were fed with DSS or SDS for 72 h, then the nucleus and

microvilli of midgut epithelial cells were observed by using

transmission electron microscope. For dead intestinal cells

detection, the dissected guts of flies fed with DSS or SDS for

72 h were stained with 7-amino-actinomycin D (7-AAD) for

30 min. The imaged were observed under confocal microscope.

For reactive oxygen species assay, flies were exposed to SDS or

DSS for 48 h, the intestines were dissected in cold PBS, incubated

in 5 μMH2DCFDA or 5 μM dihydroethidium (DHE) for 10 min

in dark environment, then washed in PBST, and immediately

observed under a confocal microscope. For detecting

proliferation and differentiation of ISCs, the guts of esg-GAl4;

UAS-GFP flies or Dl-GAl4; UAS-GFP flies were dissected, and

observed under a confocal microscope. The number of

progenitor cells or ISCs was performed by counting the

number of GFP positive cells per unit area.

Some of the less common agents such as bleomycin, P.

aeruginosa, Erwinia carotovora 15 (Ecc15), and paraquat

could also lead to gut injury in Drosophila (Amcheslavsky

et al., 2009; Apidianakis et al., 2009; Lei et al., 2022). For

example, bleomycin leaded to enterocyte-specific damage and

cell loss in gut of flies, which in turn caused ISC to divide faster

and facilitated enteroblast differentiation into new enterocytes
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(Amcheslavsky et al., 2009). Oral administration of P. aeruginosa

and Ecc15 strains could increase the number of intestinal

progenitors and induced apoptosis of mature cells to establish

an intestinal injury model (Apidianakis et al., 2009; Lei et al.,

2022). Overall, the current methods used to estabolish the IBD

model in flies are easy and simple to operate. It is beneficial for

researchers exploring the occurrence and development

mechanism of IBD in human and screening the potential

drugs from nature products.

Natural products screening for IBD
treatment in flies

Currently, the clinical drugs for IBD treatment are mainly

synthetic compounds such as aminosalicylic acids,

corticosteroids, immunosuppressants, biological agents, etc.,

which have many side effects (Neurath, 2017). Natural

products as secondary metabolite have a wide range of

biological activities and a high degree of bio-availability. Their

multi-component and multi-target action characteristics have

unique advantages in the prevention and treatment of IBD. Until

now, various natural molecules and herbal extractions have been

found to treat IBD (Duan et al., 2021). Therefore, it is very

important to further screen natural products that have

therapeutic effects on IBD using different animial model

(Ding et al., 2017; Shao et al., 2019). Here, we summarized

the natural molecules and herbal extractions that have

significantly protective and therapeutic effects on intestinal

inflammation in flies (Figure 4).

Natural molecules for protecting intestinal
injury

Natural molecules have exhibited efficiency in protecting

intestinal injury and improving symptoms in flies. For

example, Acanthopanax senticosus polysaccharides (ASPS)

supplementation could improve the disrupted intestinal

homeostasis in flies under SDS stimulation, in which reduced

FIGURE 3
Different chemical inducers were used to construct IBD models in Drosophila, and effective natural products were screened by detecting
corresponding indicators in adults and intestines.
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the intestinal epithelial cell death, decreased ROS accumulation

and antimicrobial peptide (AMP) expression (Zhang et al., 2020).

Administration of ASPS also reduced the excessive ISCs

proliferation and differentiation mainly by epidermal growth

factor receptor (EGFR), JNK and Notch signaling pathway when

flies were exposed to DSS (Lei et al., 2022). Consistently, ASPS

supplementation in mice could also ameliorate LPS-induced

intestinal injury, including decreased intestinal morphological

deterioration, elevated the mucosal barrier and enhanced

intestinal tight junction proteins expression, which mainly

through inhibiting TLR4/NF-κB signaling pathway (Yasueda

et al., 2020). Safranal as one of the main components of

saffron significantly alleviated the DSS or Ecc15 induced

intestinal epithelial cell death and excessive proliferation of

ISCs to protect intestinal integrity in flies (Lei et al., 2022).

This protective process was regulated through inhibition of

the JAK/STAT signaling, EGFR signaling, and JNK signaling

pathways in flies (Huang et al., 2022). The protective function of

safranal were also reported in vitro and mice (Lertnimitphun

et al., 2019), in which safranal supplementation decreased NO

production, COX-2 and iNOS in LPS-stimulated RAW264.

7 cells, and also alleviated severity of inflammation and crypt

damage in the DSS-induced colitis mice. These studies elucidate

that safranal may be a candidate for IBD therapy. Agar

oligosaccharides (AOS) are marine prebiotics with significant

anti-inflammatory effects (Ma et al., 2019). AOS

supplementation alleviated the injuries of microvilli and

mitochondria of gut, ameliorated the intestinal inflammation

by modulating the microbiota and the gene expression of AMPs,

mTOR and AMPK pathways that related with immune and cell

autophagy in SDS-induced inflammatory model of flies (Ma et al.

, 2021). Ursolic acid (UA) is an anti-inflammatory natural

triterpenoid widely distributed in various vegetables and fruits

(Checker et al., 2012). UA could remarkably prevent intestine

injury in SDS-stimuated flies by inhibiting ISCs

hyperproliferation, decreasing excessive activation of JNK/

JAK/STAT signaling pathway (Wei et al., 2022). Meanwhile,

UA was found to alleviate the DSS-induced intestinal damage by

reducing the upregulation of NF-κB in mice (Liu et al., 2016; Ma

et al., 2021). Caffeic acid (CA) is a widespread natural phenolic

small molecule, which also inhibited the dysregulation of ISCs,

ameliorated the gut hyperplasia defect, and reduced aging

induced mortality in flies (Sheng et al., 2021). CA could

significantly attenuate the DSS-induced murine UC mainly via

FIGURE 4
The information of partial natural products that play a crucial role in the treatment of IBD in flies.
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TABLE 1 Natural products that treat IBD in fly and mice models.

Natural products Drosophila Mice References

Phenotype Mechanism Phenotype Mechanism

Safranal ISCs proliferation ↓, ECs
death↓, gut
integrity↑ ROS↓

JNK pathway↓, EGFR
pathway↓, JAK/STAT
pathway↓

weight loss↓, crypt
damage↓, colon length↑

MAPK pathway↓ NF-κB
pathway↓

Lertnimitphun et al.,
(2019), Lei et al., (2022)

Caffeic Acid survival rate↑, ISCs
proliferation↓, gut
integrity↑, ROS↓

JNK signaling↓ colon length↑,
histopathology score↓,
MDA↓,CAT↑

Nrf-2/HO-1 pathway↑ Wan et al. (2021), Sheng
et al. (2021a); Zielinska
et al. (2021)

Ursolic Acid (UA) intestine integrity↑,
intestine length↑, cell
death↓, ROS↓,MDA↓

JNK/JAK/STAT pathway↓ colon length↑, weight loss↓,
flora abundance↓

MAPK pathway↓ IL-6/
STAT3 pathway↓, PI3K
pathway↓

Wei et al. (2022), Sheng
et al. (2021b)

Acanthopanax senticosus
polysaccharide

ECs death↓, survival rate↑,
gut homeostasis↑, ROS↓

EGFR pathway↓, JNK
pathway↓, Notch
pathway↓

villus height↑, mucosal
barrier↑, occludin-1↑, ZO-
1↑,TNF-α↓, PGE2↓

TLR4/NF-κB pathway↓ Han et al., (2016),
Zhang et al., (2020)

Polysaccharide from
Premna microphylla turcz
(PPMT)

survival rate↑, rupture of
microvilli↓, AMPs-related
genes↑

Imd pathway↑, TOR
pathway↑, Intestinal
autophagy pathway↑

— Song et al. (2021)

Flos Puerariae
extract (FPE)

survival rate↑, intestinal
integrity↑, ISCs
proliferation↓

Nrf2/Keap1 pathway↑,
JAK-STAT pathway↓,
Wnt pathway↓

— Yang et al. (2022)

Bilberry anthocyanins
(BANCs)

survival rate↑, intestinal
integrity↑, dead
ISCs ↓,ROS↓

Nrf2 pathway↑ histological score↓, colon
length↑, apoptotic score↓,
TNF-α↓IL-6↓

— Piberger et al., (2011),
Zhang et al., (2022)

Carthamus tinctorius L survival rate↑, ECs
damage↓

— intestinal integrity↑,
Firmicutes/Bacteroidetes
ratio↓

— Zhou et al., (2016), Jo
et al., (2017), Liu et al.,
(2018)

Rhodiola crenulata extract ECs death↓, survival rate↑,
ROS↓,AMP↑

— gut permeability↓, colon
length↑, ZO-1↑,occludin↑,
IL-6↓,TNF-α↓

— Zhu et al. (2014), Wang
et al. (2021a)

Larvae of the Allomyrina
dichotoma (ADL)

gut cell apoptosis↓ gut
permeability↓
E-cadherin↑

— — Lee et al. (2021)

Aucklandia lappa Decne survival rate↑, ECs
damage↓

— colon length↑, body
weight↑, IL-1β↓,IL-6↓,
TNF-α↓

NF-κB/MAPK pathway↓,
Nrf2-Hmox-1 pathway↑

Zhou et al., 2016, Lim
et al., (2020), Chen et al.,
2022

Sanguisorba officinalis L body weight↑, colon
length↑, histopathological
score↓,IL-6↓

Atg7-dependent Mφ
autophagy pathway↑

Zhou et al., 2016,
Yasueda et al., (2020)

Alpinia
katsumadai Hayata

diarrhea↓, colon length↑,
histological injury↓,
MPO↓,TNF-α↓,IL-1β↓

TLR4 pathway↓
NLRP3 pathway↓

He et al., 2016; Zhou
et al., 2016

Salvia miltiorrhiza Bunge body weight↑, colon
histology score↓, colon
length↑

TLR4/PI3K/AKT/mTOR
pathway↓

Feng et al., (2021); Peng
et al., (2021)

Raphanus sativus L body weight↑, colon
damage scores↓, TNF-
α↓,IL-1β↓

MAPK-NF-κB pathway↓ Choi et al., (2016); Zhou
et al., (2016)

Codonopsis pilosula
(Franch.) Nannf (C.
pilosula)

ECs damage↓, melanotic
tumor formation↓, gut
length↑
AMP↑,Dpt↑, Mtk↑

Imd pathway↑ — Zhou et al. (2016)

Saussurea lappa (Decne.)
C.B.Clarke (S. lappa)

Imperata cylindrica
Beauv.var.major (Nees)

Melia toosendan Sied. Et
Zucc. (M.toosendan)
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ameliorating the disease severity, loss of eptithelium and crypts,

mucosal ulcerations, and secretion of inflammatory cytokines

(Xiang et al., 2021). Polysaccharide from Premna microphylla

turcz (PPMT) have anti-inflammatory functions in vitro (Li et al.,

2021). In SDS-induced inflammatory flies, PPMT significantly

prolonged the lifespan, reduced the rupture of microvilli and

restored the nuclear structure in the midgut, and improved gene

expression levels of immune-related AMP pathway, mTOR

pathway and Imd pathway (Ma et al., 2021).

Herbal extractions for protecting intestinal
injury

Some herbal extractions have also been validated to have

great protective function in fly model of IBD. For example,

bilberry anthocyanins extracts (BANCs) have a wide range of

biological activities and can be used to prevent or treat

inflammation-related diseases (Farzaei et al., 2015). In DSS-

induced inflammatory flies, BANCs remarkably enhanced the

survival rate, restored the intestinal morphology and integrity,

which mainly by modulating Nrf2 signaling pathway (Zhang

et al., 2022). Consistently, BANCs could reduce intestinal

inflammation in acute and chronic DSS-colitis with decreased

histological scores and cytokine secretion in DSS-induced Balb/c

mice (Piberger et al., 2011). Our previous studies found that Flos

Puerariae extract (FPE) ameliorated the intestinal inflammation

via modulating intestinal integrity and various signaling

pathways in SDS-inflamed flies, in which FPE enhanced the

survival rate, maintained intestinal morphological integrity,

reduced the ISCs proliferation, and also rescued the altered

expression levels of gene and protein in JAK-STAT signaling,

Nrf2/Keap1 signaling and Wnt signaling pathways in the gut

(Yang et al., 2022). Larvae of the Allomyrina dichotoma (ADL) as

a high nutritional food are widely used to treat gut-related disease

in China and Korea. In DSS-fed flies, oral administration of ADL

extract remarkably increased the survival rate, reduced intestinal

cell apoptosis and gut permeability. Meanwhile, ADL extract

supplementation promoted the E-cadherin gene expression and

restored the original membrane localization of DSS-disrupted

E-cadherin contiguous with the armadillo (Lee et al., 2021).

Rhodiola crenulata is widely used in phytotherapy in Asian

countries and Eastern European (Chen et al., 2020). R

crenulata extracts supplementation could prevent

inflammatory diseases of the intestine in flies, in which

protected against shorten intestinal length and epithelial cell

death, decreased ROS levels, and increased the expression of

antimicrobial peptide genes under bacterial and SDS stimulation

(Zhu et al., 2014). Furthermore, the protective function of R

crenulata extracts were also reported in mice. Ingestion of R

crenulata extracts alleviated damage of inflammation,

maintained intestinal barrier function, inhibited cell apoptosis

and regulated gut microbiome in DSS-induced colitis mice

(Wang et al., 2021). Extracts of Crocus sativus L.

supplementation protected against SDS-induced intestinal

damage in flies mainly via decreasing epithelial cell death and

ROS levels in the gut (Liu et al., 2016). However, because of

multiple compounds in these herbal extractions, the active

ingredients and mechanisms have not been determined

clearly, which need to be further explored in various animal

model of IBD in future.

As mentioned above, the pharmacological function of many

natural molecules and herbal extractions in treating IBD is

conserved in Drosophila and rodents. Thus, Drosophila can be

used as an excellent model for screening natural products for

treating IBD that can be subsequently validated in a mammal

system (Table 1).

Concluding remarks and future
directions

The fruit fly has been proved as an excellent model organism for

investigating the mechanism and drug library screening of cancer

(Gonzalez, 2013), nociception (He et al., 2022), and

neurodegenerative diseases (Sneddon, 2018); Here, we have

emphasized that Drosophila is widely used to study the molecular

mechanisms of IBD and is a perfectmodel for high-throughput drug

screening from natural products. The major advantages of flies are

its sophisticated genetics, low cost, high fecundity, and short

generation time. The fly genome contains about 14,000 genes

and many are well-conserved in mammals (Bier, 2005).

Furthermore, it would avoid the ethical controversy if using fruit

flies as human disease model. In addition, fly as a fast-track model

could be used for screening novel compounds from the large

chemical libraies, which will shorten the time from experimental

setup to clinical use.

Despite the conservation of important basic cell processes in

flies and mammals, there are still some differences between flies

and mammals. Flies have some limitations in the study of

intestinal inflammatory disease. First of all, due to differences

in physiology and development, it is difficult to directly apply the

results of Drosophila intestinal microbiota to mammals. Second,

there are the extensive anatomical differences in gut between flies

and mammals. Flies lack specific vertebrate cell types such as

goblet cells, tuft cells, paneth cells, and M cells. Third, immune

systems are different between mammalian and fly. Drosophila

does not have the acquired immune system found in mammals,

and solely depends on general mechanisms of innate immunity

for its immune defenses (Lemaitre and Hoffmann, 2007).

However, flies have high conserved features for innate

immunity with mammals, such as immune cascades, signal

transduction pathways, and transcriptional regulators (Arch

et al., 2022).

In general, flies offer value as parallel alternatives to mammal

models in use for screening drugs that treat IBD. Its potential as
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intestinal inflammatory disease research model is important for

discovering mechanisms of intestinal disease and potential

therapeutics.
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