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Paclitaxel is an herbal active ingredient used in clinical practice that shows anti-

tumor effects. However, its biological activity, mechanism, and cancer cell-

killing effects remain unknown. Information on the chemical gene interactions

of paclitaxel was obtained from the Comparative Toxicogenomics Database,

SwishTargetPrediction, Binding DB, and TargetNet databases. Gene expression

data were obtained from the GSE4290 dataset. Differential gene analysis, Kyoto

Encyclopedia of Genes and Genomes, and Gene Ontology analyses were

performed. Gene set enrichment analysis was performed to evaluate disease

pathway activation; weighted gene co-expression network analysis with diff

analysis was used to identify disease-associated genes, analyze differential

genes, and identify drug targets via protein-protein interactions. The

Molecular Complex Detection (MCODE) analysis of critical subgroup

networks was conducted to identify essential genes affected by paclitaxel,

assess crucial cluster gene expression differences in glioma versus standard

samples, and perform receiver operator characteristic mapping. To evaluate the

pharmacological targets and signaling pathways of paclitaxel in glioblastoma,

the single-cell GSE148196 dataset was acquired from the Gene Expression

Omnibus database and preprocessed using Seurat software. Based on the

single-cell RNA-sequencing dataset, 24 cell clusters were identified, along

with marker genes for the two different cell types in each cluster.

Correlation analysis revealed that the mechanism of paclitaxel treatment

involves effects on neurons. Paclitaxel may affect glioblastoma by improving

glucose metabolism and processes involved in modulating immune function in

the body.
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1 Introduction

The most common primary malignant brain tumors of the

central nervous system are gliomas, which originate from

neuroectodermal cells (Jiang et al., 2011a; Wang et al., 2016)

and are responsible for 74.6% of malignant tumors and 24.7% of

initial brain tumors (Mat Zin and Zulkarnain, 2019). Gliomas are

characterized by rapid growth, aggression, relapse after surgery,

and a high death rate (Liu et al., 2012). Surgery, chemotherapy,

radiation, and other methods are the main treatment options for

glioblastoma (Yang et al., 2013). Treatments for glioblastoma

have advanced in recent years through the development of

chemotherapeutic medicines. Chemical drugs improve

outcomes following surgery or radiation therapy and prolong

the survival time and tumor-free survival time (Chen et al., 2017).

However, the targets of chemotherapeutic drugs are unclear, the

drugs do not easily cross the blood-brain barrier, and their effects

are insufficient; additionally, effective drugs do not concentrate at

the lesion site and do not remain at this site long-term (Johnson

and Phillips, 1996). These drugs also show low bioavailability

(Talibi et al., 2014). Thus, new treatment options for

glioblastoma are needed (Bush et al., 2017).

The anticancer drug paclitaxel is extracted from the bark of

the yew tree and targets microtubule proteins (Bastiancich et al.,

2019). Paclitaxel accelerates the formation of microtubules from

microtubule dimers and prevents their separation, which induces

abnormal mechanical reorganization of the microtubules and

inhibits normal cell division. This drug also inhibits the effects of

other factors on the microtubule system and, together with the

stable binding of microtubule proteins, eventually induces

apoptosis (Liu et al., 2017a). In clinical applications, paclitaxel

has shown good efficacy in treating non-small cell lung cancer

(Hoang et al., 2012), breast cancer (Manhas et al., 2022), gastric

cancer (Tu et al., 2022), nasopharyngeal cancer (Xia et al., 2022),

ovarian cancer (Kong et al., 2023)and cervical cancer (Yasunaga

et al., 2022), particularly for drug-resistant tumors (Song et al.,

2018; Kawiak et al., 2019). Although the therapeutic efficacy of

paclitaxel in glioma has been confirmed, its therapeutic

mechanism remains unclear.

In addition, the activity of paclitaxel against brain tumors was

disappointing in phase II experiments due to the presence of the

blood-tumor barrier (BTB) and/or blood-brain barrier (BBB)

(Zhang et al., 2012). In recent years, more and more studies have

been devoted to the combined administration to break through

the blood-brain barrier and act precisely on gliomas, and

p-glycoprotein has been confirmed to be an important

obstacle to preventing paclitaxel from entering the brain

through studies of paclitaxel crossing the blood-brain barrier

in vitro and in vivo (Fellner et al., 2002; Zhang et al., 2012; Li et al.,

2016). One study showed angiopep-2 modified cationic

liposomes for effective co-delivery of therapeutic genes

encoding human tumor necrosis factor-related apoptosis-

inducing ligand (pEGFP-hTRAIL) and paclitaxel to gliomas

(Sun et al., 2012). Local delivery of brain-penetrating

nanoparticles significantly improved the efficacy of paclitaxel

for malignant gliomas and substantially delayed tumor growth

(Nance et al., 2014). These studies and methods provide great

help for paclitaxel to break through the blood-brain barrier and

act as a precise drug-targeted therapy, and also make our study

meaningful. This study was conducted to evaluate the specific

effects of paclitaxel on glioblastoma and provide a new approach

for treating this disease in clinical settings.

In this study, we investigated the mechanism of action of

paclitaxel in glioblastoma therapy by using network,

pharmacology, and genetics analyses. We determined the

crucial role of immune function regulation in the prognosis of

patients with glioblastoma. Analysis of transcription data from

the Gene Expression Omnibus (GEO) database and

corresponding clinical information revealed differentially

expressed genes (DEGs). We also explored the correlations

between drug- and disease-acting genes and levels of immune

function activation, constructed a glioblastoma predictionmodel,

and identified several different genes associated with immune

activation as potential biomarkers. The findings were validated

using the GEO single-cell dataset. Our findings revealed a crucial

role for immunomodulation in treating glioblastoma with

paclitaxel, which may act on neuronal cells and improve

processes such as glucose metabolism to regulate the body’s

immune function.

2 Materials and methods

Flowchart was shown in Figure 1.

2.1 Identification of targets of paclitaxel

The SwissTargetPrediction database (https://www.

swisstargetprediction.ch/) was used to query paclitaxel for its

targets and associated target genes. The Comparative

Toxicogenomics Database (CTD; https://ctdbase.org/),

BindingDB (http://bindingdb.org/bind/index.jsp), and

TargetNet database (https://targetnet.scbdd.com/) were also

used to identify potential target genes. Additionally, we used

the UniProt database (https://www.uniprot.org/uploadlists/) to

query genes corresponding to potential target proteins to screen

for active ingredients. Our results were used to locate paclitaxel

lactones through Excel searching and sorting. Gene Ontology

(GO) was used for functional annotation. The Database for

Annotation, Visualization, and Integrated Discovery (DAVID)

(https://david.ncifcrf.gov/) was employed for functional

annotation, Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis, and Disease Ontology (DO)

functional annotation of the target genes. DAVID integrates

biological information and statistical tools to help researchers
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identify gene and protein material. The bioinformatics tool GO

analyzes and classifies biological processes into genes, with

molecular functions, biological processes, and cells as the

three GO components. Molecular data obtained using high-

volume experimental techniques can be utilized to investigate

signaling pathways, including numerous protein interactions and

activities that regulate cellular function and metabolic activity.

The ggplot2 tool in R was used to visualize the data, and an

adjusted p < 0.05 was utilized for barrier testing.

2.2 Identification of DEGs in glioblastoma

77 glioblastoma samples and 23 healthy controls comprised

the GSE4290 microarray dataset downloaded from the GEO

database (http://www.ncbi.nlm.nih.gov/geo). To obtain a gene

expression matrix for the samples, it was first normalized and

integrated. The genomes of glioblastoma samples and healthy

controls were analyzed using the R package “limma (version 3.5.

1)". p-values were adjusted using the Benjamin–Hochberg

method. The segmentation criteria were modified to |

[log2 fold-change]| >1 and p < 0.05. Using the R packages

“ggplot2 (version 3.3.2)” and “heatmap (version 0.3.2),” all

genes were displayed in a volcano plot. Heatmap (version 0.7.

7) was used to show the top 20 DEGs (Ito and Murphy, 2013).

Ridge plots were designed, and the defined genomes were

analyzed using gene set enrichment analysis (GSEA) to

identify significant differences between the two characteristics

(Subramanian et al., 2007). The biological pathways and

processes involved in the pathogenesis of module membership

(MM) were predicted using GSEA (version 3.0, http://www.gsea-

msigdb.org/gsea/index.jsp). Hub gene expression values were

employed as phenotype files to calculate Pearson correlation

coefficients, and the KEGG pathway gene set was used as an

enrichment background. The above gene sets were used as

background genes for enrichment analysis, and the correlation

coefficients of each hub gene with other genes were sorted in

descending order as scan sequences. Analyses were performed

using the following settings: false discovery rate <0.25, nominal

p-value < 0.05, |normalized enrichment score| > 1.

2.3Weighted gene co-expression network
analysis of GEO

In the weighted gene co-expression network analysis

(WGCNA) package of the R software, 5,000 genes with the

highest average expression were selected to construct a

weighted gene co-expression network using expression as a

screening condition. The screening threshold was set to

convert the paired correlation matrix into a neighborhood

correlation matrix to ensure that the scale-free network

calculated the paired Pearson correlation coefficients between

all genes individually. The minimum number of genes per gene

FIGURE 1
Flowchart.
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module was set to 30 using the dynamic hybrid shear tree

algorithm criterion, and eigenvector values were calculated for

each module. The modules were analyzed by clustering, and close

modules were combined into a new module. The WGCNA

algorithm calculates the module feature correlation to

determine the correlation between module genes and disease

subgroup phenotypes, and the heat map reflects the strength of

the correlation. Individual modules were considered as

significantly correlated with the phenotype when p < 0.05.

The module showing the highest correlation coefficient with

glioblastoma was selected as the key module. Pearson’s

correlation coefficients were calculated for each co-expression

module with gene identity values to screen for key genes. Genes

with module membership (MM) > 0.8 and gene importance

(GS) > 0.65 were selected as key genes. Differential genes were

intersected with WGCNA as disease-related genes and imported

into DAVID 6.8 for GO and KEGG pathway enrichment

analyses. Pathway enrichment analysis was performed to

validate the significant gene functional categories (p < 0.05).

2.4 Generation of protein-protein
interaction networks

Protein-protein interactions (PPIs) were investigated using

the cross-targets identified in STRING (version 10.5, https://

string-db.org/). The network nodes and edges depict protein and

high-binding conversations, respectively. Cytoscape software was

used to create and visualize the PPI interaction networks (version

3.6.0). The Molecular Complex Detection (MCODE) algorithm

detects dense regions of tightly linked protein or PPI networks

and is used to screen for critical subnetworks that contribute to

glioblastoma development, derive essential subpopulation genes,

and perform GO enrichment analysis.

2.5 Differential expression of crucial
subpopulation genes in glioblastoma and
normal tissues

Differential expression analysis of crucial subpopulation

genes was performed on the GEO dataset using statistical

software R4.1.3 (The R Project for Statistical Computing,

Vienna, Austria). Differential expression of crucial

subpopulation genes between disease and control groups was

explored under screening conditions of p-value < 0.05 and |

[(log2 fold-change)]| > 1 and visualized as heat maps in R

language. Data from GSE4290 were used to construct a

disease control model validation set to assess the association

of critical genes with glioblastoma in R language software (Robin

et al., 2011). Receiver operating characteristic (ROC) curves were

plotted, and screened core genes were evaluated by calculating

the area under the ROC curve.

2.6 Single-cell RNA sequencing data
analysis and identification of
glioblastoma-associated genes

The original expression profile dataset (GSE148196) used for

analysis was screened using the GEO public database. The dataset

consisted of biopsies from four patients with active glioblastoma.

Tissues were extracted and then analyzed using expression

profiling microarrays on the Illumina NextSeq assay platform.

The raw dataset was preprocessed using the Seurat R package to

ensure the quality of the results. The total number of molecules

within the cell (nCount RNA) and genes detected in each cell

(nFeature RNA) were determined, and the number of genes was

compared to the number of reads obtained from sequencing of

each cell. Widespread mitochondrial genomic contamination in

low-quality or dead cells was assessed by calculating the number

of reads paired with the mitochondrial genome using a

percentage feature set function. Cells were clustered based on

the filtered principal components and visually classified using the

unified manifold approximation and projection dimensionality

reduction technique. Immune cell marker genes with adjusted

p-values < 0.05 were screened. Immune cell marker genes were

retrieved using the PanglaoDB database and intersected with the

corresponding genes for each class group to identify the class

group of the immune cells. The results revealed the potential

targets of paclitaxel in glioblastoma.

2.7 Statistical analysis

A two-sided p-value of 0.05 was considered to indicate

statistically significant results. Rstudio (www.r-project.org;

version 4.2.1) was used to sort and observe the data

(Packages: limma, edgeR, ggplot2, survminer, survival, RMS,

randomForest, pROC, glmnet, heatmap, timeROC, via

storyline, complot, ConsensusClusterPlus, forest plot, survival

rock, beeswarm, edgeR, “TxDb.Hsapiens.UCSC.hg38,” “known

gene,” “cluster profile,” “org.Hs.eg.DB,” “karyoploteR,” “GSVA,”

“GSEABase,” “stringr,” “GEOquery,” “dplyr,”

“ComplexHeatmap,” and “RColorBrewer”).

3 Results

3.1 Target genes of paclitaxel

Using the SwissTargetPrediction, CTD, BindingDB, and

TargetNet databases, we identified and retrieved 1,010 target

genes associated with paclitaxel lactone (Figure 2A;

Supplementary Table S1). We performed GO and DO

functional enrichment and KEGG pathway enrichment

analyses. The GO biological process category was mainly

enriched in regulation of peptidase activity, response to
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FIGURE 2
Screening analysis of paclitaxel targets. (A) Venn diagram of paclitaxel in the four databases. (B) Gene Ontology (GO) enrichment analysis of
paclitaxel targets. (C,D)DOenrichment analysis of paclitaxel targets. (E,F) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of
paclitaxel targets.
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FIGURE 3
Expression of differentially expressed genes (DEGs) in the GSE4290 dataset. (A,B) Datasets were compared before and after normalization. (C)
Volcano plot of DEGs in the GSE4290 dataset. (D) Ridge plots with normalized enrichment scores show the pathways where DEGs aremost enriched
in gene set enrichment analysis (GSEA). (E,F) GSEA analysis based on KEGG analysis.
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peptides, and endopeptidase activity. The GO cellular

component category was mainly enriched in collagen-

containing extracellular matrix, vesicle lumen, and cytoplasmic

vesicle lumen. The molecular function category was mainly

enriched in protein serine/threonine/tyrosine kinase,

endopeptidase, and protein serine/threonine kinase activities

(Figure 2B). DO upregulation was mainly enriched in

musculoskeletal system cancer, connective tissue cancer, non-

small cell lung carcinoma, bone cancer, female reproductive

organ cancer, and breast carcinoma (Figures 2C,D). KEGG

analysis revealed enrichment mainly in the pathways of

neurodegeneration, multiple diseases, Alzheimer’s disease,

PI3K-Akt signaling pathway, lipid and atherosclerosis, and

Epstein-Barr virus infection (Figures 2E,F).

3.2 Target genes in glioblastoma

Using normalization between arrays based on the

GSE28424 dataset (Figures 3A,B), 3,135 genes were

screened for differential expression between glioblastoma

samples and normal tissue. Among the genes, 1,345 were

upregulated and 1790 were downregulated (Supplementary

Table S2); the top 20 genes are shown in a volcano plot

(Figure 3C) and ridge plot (Figure 3D) drawn using R

language for the glioblastoma group. Pathway enrichment

was evaluated using GSEA pathway between the

glioblastoma and control groups. The results showed that

allograft rejection, asthma, DNA replication, mismatch

repair, and Staphylococcus aureus infection activation were

enriched in glioblastoma (Figure 3E). GABAergic synapses,

insulin secretion, morphine addiction, nicotine addiction, and

synaptic vesicle cycle were significantly inhibited (Figure 3F),

suggesting that immune dysfunction plays an essential role in

glioma development.

3.3 WGCNA

GSE4290 microarray data and clinical information were

downloaded and pre-processed to obtain a final expression

matrix of 100 samples corresponding to 23,323 genes. The

5,000 genes with the highest average expression were selected

to create a gene co-expression module. The dataset was processed

for outlier detection, which showed no significant outliers. Next,

we directly analyzed the gene clustering module against the

clinical grouping phenotypes. The soft threshold power was to

1–30, with R2 > 0.9. The soft threshold power and mean

connectivity were close to zero, indicating that the network

was scale-free. Therefore, a soft threshold of 9 was chosen

(Figure 4A). The topological overlap matrix and correlation

matrix between genes were also computed. The topological

overlap matrix was used to build a hierarchical clustering tree

between genes, and merging of similar modules produced eight

modules. The turquoise module showed the strongest correlation

with glioblastoma (r = 0.78, P 0.01), as shown in Figures 4B,C.

The scatter plot revealed a strong correlation between GS and

MM within the turquoise module (correlation = 0.93, p < 0.01)

(Figure 4D). Thus, the turquoise module may be a pivotal module

linked to glioblastoma.

3.4 Functional enrichment analysis of
genes within modules

Genes in the turquoise module were compared with differential

genes to identify disease-related genes in GO and KEGG analyses

(Figure 5A). According to the GO enrichment results, the enriched

pathways were mainly involved in modulation of chemical synaptic

transmission, regulation of transsynaptic signaling, synapse

organization, presynaptic membrane, and glutamatergic synapses.

According to KEGG enrichment analysis, the enriched pathways

were mainly involved in GABAergic synapses, glutamatergic

synapses, MAPK signaling pathways, and morphine addiction

(Figures 5B–F).

To construct the PPI network, 155 disease-related genes and

molecular drug targets were imported into the STRING online

database (version 11.0) (Figure 6A). Aberrant proteins were

removed, resulting in a 154-protein interaction network.

Cytoscape’s plugin code was used to identify 17 essential

subpopulation genes (score = 13) (Figure 6B). Key cluster genes

were upregulated for proteoglycans in cancer, bladder cancer, PI3K-

Akt signaling pathway, AGE-RAGE signaling pathway in diabetic

complications, HIF-1 signaling pathway, Kaposi sarcoma-associated

herpesvirus infection, endocrine resistance, small cell lung cancer,

pancreatic cancer, and human cytomegalovirus infection (Figures

6C,D). In addition to acting on cellular metabolic pathways,

paclitaxel may be useful for diagnosing glioblastoma.

3.5 Differential expression of critical genes
in tumor tissue and controls and
prognostic analysis

As shown in the box plots, individual essential sub-cluster

genes were significantly different between the disease and control

groups (Figure 7A), and the ROC curves showed that all

17 essential sub-cluster genes had excellent robustness for

glioblastoma (area under the ROC curve >0.6) (Figure 7B).

The immune heat map showed that the significant regulatory

targets of the critical cluster genes were mainly in the immune

pathways of Macrophages_M0, Macrophages_M2,

Mast_cells_activated, and T_cells_follicular_helper (Figures

7C,D), indicating that these genes are involved in regulating

glioma immune function, which is consistent with previous

studies (Wang et al., 2022).
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3.6 Single-cell assay analysis

Analysis of biopsy specimens from four patients with active

glioblastoma showed a strong positive correlation between the

measured gene expression and number of genes detected in the

cells, both in normal and diseased tissues. In contrast, gene

expression detected in the cells was not correlated with the

percentage of mitochondria. Therefore, cells

with >2,500 and <200 genes detected per cell and cells with

a >5% mitochondrial percentage were filtered out to ensure the

quality of the analyzed cells. Quality control and screening of

single-cell sequencing of samples from patients with

glioblastoma are shown in (Figures 8A,B). Principal

component analysis plots were downscaled for cluster

analysis (Figures 8C,D); the cluster tree was scaled to a

resolution of 1.5 (Figure 8E), and the principal component

FIGURE 4
Enrichment levels in genomic weighted gene co-expression network analysis (WGCNA). (A). Selection of soft thresholds. (B,C) Correlation of
module eigengenes with glioblastoma. (D) Correlation of turquoise eigengenes with glioblastoma.
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value was 16 (Figure 8F). The heatmap shows each gene type

(Figure 9A). Unified manifold approximation and projection

showed 24 cell clusters (Figure 9B), with different categories of

cells labeled with different colors. Relevant genes were

retrieved using the Cellmaker database and intersected with

the gene corresponding to each unified manifold

approximation and projection cluster (Figure 9C). The

cellular distribution of drug target AUCell functional scores

showed that paclitaxel acts mainly on neuronal cells

(Figure 9D).

FIGURE 5
Analysis of differential genes and weighted gene co-expression network analysis (WGCNA) genes. (A) Venn diagram of differential genes and
WGCNA genes. (B–F) Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of disease genes.
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4 Discussion

Glioblastoma is a highly malignant primary malignant

tumor; and WHO grade III and IV malignant glioblastoma is

a common type of high-grade glioblastoma (Mitobe et al., 2022;

Yilmaz et al., 2022), with no apparent boundary between the

tumor tissue and surrounding tissue. Therefore, the efficacy of

surgery alone in treating malignant glioblastoma is poor and

results in a median survival of only approximately 10 months

(Liu et al., 2017b). Paclitaxel is a traditional anti-tumor drug

effective against ovarian cancer, colorectal cancer, breast cancer,

and glioblastoma (Dorsey et al., 2009). In recent years, more and

more studies have shown the therapeutic effect of paclitaxel on

glioma, and it has been verified in vivo and in vitro experiments

(Xie et al., 2006; Jiang et al., 2011b). Substantial progress has been

made in the in vitro treatment of glioma with continuous delivery

of paclitaxel through biodegradable materials (Xie and Wang,

2006). In addition, it has been shown that the treatment of

glioblastoma with tumor-targeted gene vectors and brain-

targeted micelles and paclitaxel co-delivery has achieved good

efficacy in mouse experiments (Zhan et al., 2012). In this

experiment, we used single-cell sequencing data for in-depth

mining, and advances in this next-generation sequencing

approach have enabled genomic analysis of single cells, which

is beneficial to reveal heterogeneous tumors and has an

important role in the treatment of cancer (Navin and Hicks,

2011; Zhang et al., 2016). In addition, single-cell sequencing is

likely to improve several aspects of pharmacology, including

precise targeting of drugs, cellular receptors, and deeper

mechanisms of action (Lee et al., 2014; Heath et al., 2016).

We identified 1,010 target genes related to paclitaxel using

the SwissTargetPrediction, CTD, BindingDB, and TargetNet

databases. GO analysis showed enrichment in the regulation

of peptidase activity, response to peptide, and regulation of

endopeptidase activity in the biological process category. In

the cell component category, enrichment was observed in

collagen-containing extracellular matrix, vesicle lumen, and

cytoplasmic vesicle lumen. For molecular function, we

FIGURE 6
Analysis of crucial cluster genes. (A,B) Screening for essential subcluster genes. (C,D) Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis of essential subcluster genes (top 10).
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observed enrichment in protein serine/threonine/tyrosine kinase

activity, endopeptidase activity, and protein serine/threonine

kinase activity (Figure 2B). DO enrichment analyses were

mainly enriched in musculoskeletal system cancer, connective

tissue cancer, non-small cell lung carcinoma, bone cancer, female

reproductive organ cancer, and breast cancer; pathways related to

neurodegeneration-multiple diseases, Alzheimer disease, PI3K-

Akt signaling pathway, lipid and atherosclerosis, Epstein-Barr

virus infection were enriched according to KEGG analysis. These

results suggest that paclitaxel can treat a variety of tumor cells by

regulating the body’s peptidase activity and other signaling

pathways. The 3,135 genes differentially expressed between

glioblastoma samples and normal tissues, including

1,345 upregulated genes and 1790 downregulated genes, were

enriched in allograft rejection, asthma, DNA replication,

mismatch repair, and glioblastoma. Replication, mismatch

repair, and S. aureus infection pathway were activated.

GABAergic synapse, insulin secretion, morphine addiction,

nicotine addiction, and synaptic vesicle cycle pathways were

significantly inhibited, suggesting that immune function was

overactivated in the tumor tissues (Perelroizen et al., 2022).

We also identified 2,479 key genes involved in disease

progression. Fifty-three key subgroups of genes were enriched

in proteoglycans in cancer, bladder cancer, and PI3K-Akt

FIGURE 7
Relationship between crucial cluster genes and immune infiltration and receiver operating characteristic (ROC) prediction. (A) Differential
expression of crucial subgroup genes in tumor and control tissues. (B) ROC curves of essential subcluster genes predicting disease onset. (C)
Differential expression of immune function between tumor and control tissues. (D) Relationship between crucial cluster genes and immune
infiltration.
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signaling pathways. Cybersport analysis was used to calculate

the number of genes in 22 immune cells. The results showed

that the drug-disease critical cluster of genes was primarily

targeted by one of the major immune pathways and other

pathways to exert a therapeutic effect. Single-cell data analysis

showed that the main target of paclitaxel was neuronal cells,

FIGURE 8
Comparison of single-cell analysis before and after normalization. (A,B) Quality control analysis of single-cell data sets. (C,D) Plots of principal
component analysis (PCA) before and after standardization. (E,F) Resolution with principal components (PCs) to be confirmed.
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which is consistent with previous results (Duhamel et al.,

2018).

Our results suggest that paclitaxel improves the prognosis

of glioblastoma by acting on neuronal cells and modulating

immunity (Xue et al., 2017). We also identified ITGB1, FN1,

EGFR, SERPINE1, ACTA2,HIF1A, CDK4, CDKN1A,MAP2K1,

CASP3, VCAM1, MMP9, KIT, BDNF, CXCR4, VEGFA, and

NES as essential cluster genes, which agrees with the results of

previous related studies. Li et al. suggested that

GLIPR1 enhances the proliferation, migration, and invasion

of glioblastoma and may be involved in activation of the

TIMP1-CD63-ITGB1-AKT signaling pathway, which is a

potential target for the clinical prevention or management

of glioblastoma (Jiang et al., 2022). Wu et al. (2021) found that

the regulation of ITGB1 expression promotes progression,

suggesting an essential role for ITGB1 in glioblastoma.

Andersson et al. (2010) demonstrated that regulation of the

EGFR pathway is involved in glioblastoma progression and

that specific genotypes of the EGFR gene may be associated

with glioblastoma risk. According to Ohtaki et al. (2017),

ACTC1 is as an independent prognostic and aggressive

marker of gliomas. In addition, Wu et al. (2022)

demonstrated that CXCR4 promotes the proliferation of

GICs through the KLF5/BCL2L12-dependent pathway.

These essential cluster genes may have good predictive

efficacy for glioblastoma and are essential for glioblastoma

development. Further studies are needed to identify the

molecular mechanisms involved in the immune response to

glioblastoma.

Our experiments still have some limitations, lack

prospective cohort and in vitro experiments, and the

specific molecular mechanism of paclitaxel affecting glioma

remains unclear, but our advantage lies in the clear

description of paclitaxel target cells based on single-cell

data, which makes an important contribution to the study

of the specific molecular mechanism in the next step.

5 Conclusion

We examined the interactions and molecular mechanisms of

paclitaxel in glioblastoma. Paclitaxel and glioblastoma synergistically

FIGURE 9
Paclitaxel pathways of action. (A) Heat map of each gene table level. (B) Unified manifold approximation and projection clustering into
24 clusters. (C) iTalk analysis identified two clusters. (D) Paclitaxel drug pathways of action.
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affected differentially regulated genes. We used modern network

medicinal theories to investigate the molecular biological

mechanisms of paclitaxel in glioblastoma, which may help guide

clinical practice. In future studies, we will validate these results in

pharmacological and molecular biology experiments.
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