
Identification of potential
extracellular signal-regulated
protein kinase 2 inhibitors based
on multiple virtual screening
strategies

Ruoqi Yang1,2†, Guiping Zhao3†, Lili Zhang4, Yu Xia2, Huijuan Yu2,
Bin Yan2 and Bin Cheng1,2*
1Department of Acupuncture, Affiliated Hospital of Shandong University of Traditional Chinese
Medicine, Jinan, China, 2School of Pharmacy, Shandong University of Traditional Chinese Medicine,
Jinan, China, 3Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences,
Beijing, China, 4Department of Ultrasound, Jinan Central Hospital Affiliated to Shandong First Medical
University, Jinan, China

The integration of multiple virtual screening strategies facilitates the balance of

computational efficiency and prediction accuracy. In this study, we constructed

an efficient and reliable “multi-stage virtual screening-in vitro biological

validation” system to identify potential inhibitors targeting extracellular

signal-regulated protein kinase 2 (ERK2). Firstly, we rapidly obtained

10 candidate ERK2 inhibitors with desirable pharmacokinetic characteristics

from thousands of named natural products in ZINC database based onmachine

learning classification models and ADME/T prediction. The structure-based

molecular docking approach was then used to obtain four further hits with

lower binding free energy compared to the positive control molecule

Magnolipin. Subsequently, the two compounds were purchased for in vitro

biological validation considering commercial availability and economic cost,

and the results showed that Dodoviscin A exhibited acceptable inhibitory

activity on ERK2 (IC50 = 10.79 μm). Finally, the mechanism of action and

binding stability of this natural product inhibitor were investigated by binding

mode analysis and molecular dynamics simulation.
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1 Introduction

Overexpression of kinases is a major contributor to the pathogenesis of many diseases,

such as cancer, inflammation and neurodegenerative diseases. The search for inhibitors

that target kinases has therefore become one of the hot topics in drug discovery (Gharwan

and Groninger, 2016). The mitogen-activated protein kinase (MAPK) family consists of

serine/threonine kinases that are widely expressed in many cellular tissues and are
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implicated in a variety of cellular processes including cell growth,

differentiation and apoptosis (Dhillon et al., 2007). Four parallel

MAPK signaling pathways have been identified, of which the

extracellular signal-regulated protein kinase 1/2 (ERK1/2)

pathway has been the most extensively studied. In this

pathway, extracellular signals (e.g., epidermal growth factor)

first bind to the receptor tyrosine kinase (RTK), which

subsequently stimulates the conversion of Ras proteins from

GDP-binding to GTP-binding, thereby activating Raf proteins;

and then the activated Raf proteins are involved in catalyzing the

phosphorylation of MEK1/2, which further catalyzes the

phosphorylation of ERK1/2 (Chang and Karin, 2001).

Many inhibitors against upstream targets achieved good

clinical efficacy initially, but they all developed resistance after

a few months, the main reason for this being the reactivation of

the downstream target ERK (Pratilas and Solit, 2010). Many

studies have shown that inhibitors against ERK2 are more

specific and have a relatively low probability of acquiring

resistance, making ERK2 an ideal therapeutic target (Carlino

et al., 2014). Like other protein kinases, the primary structure of

ERK2 consists of an N-terminal and a C-terminal structural

domain, the former containing five antiparallel β-sheet structures
(β1 ~ β5), an αC-helix structure and a glycine-rich loop, while the
latter containing six conserved α-helix structures and four

shorter β-sheet structures (β6 ~ β9). Besides, there is an ATP-

binding pocket in the hinge region connecting the two, which is

the binding site for most current kinase inhibitors (Lefloch et al.,

2008).

The high diversity of chemical structures and

physicochemical properties of natural products makes them a

valuable source for the discovery of novel active compounds with

representative success stories including pilocarpine, morphine,

and artemisinin (Zhang et al., 2020). Compared to synthetic

compounds, natural products are widely available, inexpensive

and have lower toxic effects. Unfortunately, there are still

relatively few reports of natural products targeting kinases,

which means that the search for natural products with

ERK2 inhibitory activity is a valuable direction to explore. In

the pharmaceutical industry, the discovery and experimental

validation of active compounds is a time-consuming and

laborious process. Traditional high-throughput screening often

requires biochemical testing of over a million compounds

individually to identify the active ingredients, which is costly

in terms of time and money. In contrast, virtual screening

techniques can significantly reduce the number of compounds

used for pharmacological activity testing, resulting in significant

cost savings (Gupta et al., 2021).

With the rapid development of medical research, increasing

experimental data on drugs is available to researchers. In this

context, using the wealth of results from the pharmaceutical field

to find target compounds is a more accurate and cost-effective

way of drug discovery (Paul et al., 2021).With the booming era of

big data, artificial intelligence technologies, represented by

machine learning, have made significant progress in

shortening the drug development cycle, which provides strong

support for the virtual screening of lead compounds. In many

cases, machine learning exhibits superior performance compared

to traditional computational methods and has unique advantages

in the screening of compounds (Tsou et al., 2020). Based on the

research background, we have designed a “sequential” virtual

screening process that combines machine learning with multiple

cheminformatics tools to identify natural product inhibitors

targeting ERK2, and we have also performed in vitro

biological evaluation of the screened compounds to validate

the reliability of the process. The technical route involved in

this study was shown in Figure 1.

2 Materials and methods

2.1 Data pre-processing, molecular
characterization, and feature engineering

In the present study, experimental IC50 values for

ERK2 inhibitors were collected from the ChEMBL database.

Due to some variation between data from different sources,

we handled duplicate compounds according to the following

criteria: 1) If a compound had multiple identical IC50 values, only

one of them was retained. 2) If a compound had multiple

different IC50 values, the average of them was used as the

final IC50 value. In addition, if a compound had no clear IC50

value, it was excluded. Next, 422 compounds were labelled as

“active” (indicated by number 0) and 442 compounds as

“inactive” (indicated by number 1) based on an activity cut-

off value of 1 μm. Finally, the entire data set was randomly

divided into a training set and a test set in the ratio of 8:2. The

above process was completed by writing code in Python 3.7.

The input characterization of compounds in the dataset takes

the form of molecular descriptors and molecular fingerprints.

Molecular descriptors are numerical representations of chemical

and biological properties and are classified into different types

such as topological, compositional and geometric descriptors

(Wei et al., 2021). Molecular fingerprints encode structural

information in the form of a sequence of binary bits, with the

corresponding bit being 1 if a predetermined bond or functional

group is present in the molecule and 0 otherwise (Racz et al.,

2019). Molecular descriptors were calculated using the

cheminformatics toolkit RDKit, containing a total of

208 numerical indicators representing the physicochemical

and structural characteristics of the molecule. MACCS

molecular fingerprints were calculated using the open source

software PaDEL-Descriptor, containing a total of 166 binary

numbers representing the presence or absence of specific

structural fragments in the molecule.

In general, not all features facilitate the construction of

machine learning models. Irrelevant and unnecessary features
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may reduce the generalization ability of the model and lead to

overfitting. Therefore, feature engineering is an integral

step. Considering the wide range of values for different

molecular representations, the corresponding strategies were

adopted: for molecular descriptors, all descriptors with a

variance of 0 and those not related to the target value

(i.e., whether the compound is active or not) were eliminated

by variance filtering and mutual information methods. The final

132 molecular descriptors were retained for the construction of

machine learning models. For molecular fingerprints, recursive

feature elimination combined with learning curves was used to

find the optimal number of features, and 80 features with high

relevance to the target value were retained.

2.2 Generation and evaluation of machine
learning models

Machine learning is an important branch of artificial

intelligence and has been widely used in recent years for the

discovery of lead compounds and the prediction of

physicochemical and biological properties of molecules

(Serafim et al., 2020). The decision tree algorithm presents the

model building process through a tree-like structure, with the

intermediate nodes representing the selected features and the leaf

nodes representing the decision results. Random Forest (RF) is

an ensemble learning algorithm based on decision trees, which

overcomes the shortcomings of single decision trees that are

prone to overfitting (Svetnik et al., 2003). The RF algorithm

obtains some features randomly from the training set and

constructs multiple decision tree models using random

sampling to make predictions together. Support Vector

Machine (SVM) is a machine learning algorithm based on

statistical theory, the core idea of which is to find a

hyperplane with a maximum bound to classify the training

samples. The kernel function is a unique trick of the SVM

algorithm, which solves the problem of indistinguishability by

mapping the training samples into a high-dimensional space

(Mavroforakis and Theodoridis, 2006). Just as the brain usually

obtains information from experience to solve problems, the

architecture of an Artificial Neural Network (ANN) consists

of multiple interconnected neurons distributed in different

layers. ANN first calculates the loss by forward propagation

and then updates the weights by backward propagation. This

process is iterated until the best weights that minimize the loss of

the model are found (Jing et al., 2018). In addition, model fusion

can also effectively reduce the prediction error of virtual

screening. Voting is a voting-based model fusion strategy,

while Stacking is a learning-based model fusion strategy. The

above machine learning models were generated with the help of

the open source Python toolkit Scikit-learn (Abraham et al.,

2014).

We used a 10-fold cross-validation of the training set with the

test set to evaluate the prediction performance and generalization

ability of the model. Accuracy represents the proportion of

samples with correct predictions to the total number of

samples, and an excellent machine learning classifier should

have an accuracy score close to 1. Precision represents the

proportion of samples that are truly positive out of all

samples that are predicted to be positive, while recall

represents the proportion of samples that are correctly

predicted out of all samples that are truly positive. F1-score is

FIGURE 1
Architecture of the sequential virtual screening process.
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the harmonic average of precision and recall, which allows an

objective evaluation of the predictive performance in the case of

an unbalanced data set. The Area Under Curve (AUC) is one of

the most important metrics in the evaluation of machine learning

models, with an AUC value closer to 1 meaning that the model is

more capable of classification.

2.3 Visualization of the chemical spatial
distribution

Principal component analysis (PCA) is a common linear

dimensionality reduction method whose main purpose is to

compress data and remove redundant noise while minimizing

the loss of original information. PCA is able to derive a few

principal components from the original variables so that they

retain as much information as possible and are uncorrelated with

each other (Cortés et al., 2017). In this study, we visualized the

chemical distribution of compounds in the three-dimensional

space by using the decomposition. PCA module of Scikit-learn.

2.4 Pharmacokinetic analysis and toxicity
assessment

Early prediction of ADME/T (absorption, distribution,

metabolism, excretion and toxicity) of lead compounds can be

effective in avoiding adverse drug reactions in clinical practice

(Lee and Chen, 2019). Many filtering methods based on specific

drug-likeness are often used as reference standards for screening

desirable compounds and thus guide the decision-making

process in drug development. We used the server ADMETlab

2.0 to make fast and accurate online predictions of ADME/T for

the compounds obtained from the first round of screening, while

filtering out those molecules that did not meet the requirements

according to a range of parameters (Xiong et al., 2021).

2.5 Molecular docking calculations

Molecular Docking predicts the interaction pattern between

a target protein and a candidate compound and calculates the

corresponding binding free energy. The theory is based on the

fact that the binding process of ligands and receptors depends on

the matching of spatial shapes (Ferreira et al., 2015). The crystal

structure of the receptor protein used in this study was

downloaded from the PDB database (PDB ID: 1TVO) and

then preprocessed by AutoDock Tools software as follows:

water molecules were removed; hydrogen atoms were added

and charges were recalculated (Ohori et al., 2005). In

addition, the structure optimization of the target protein was

performed with the help of the web server FoldX (Schymkowitz

et al., 2005). The structures of the ligand compounds were

downloaded from the PubChem database and then energy

minimization was performed by Chem3D software. Finally,

the structures of both receptor and ligands need to be

converted to pdbqt format.

We performed a molecular docking study of the compounds

obtained from the second round of screening and the target

protein using Autodock Vina software (Trott and Olson, 2010).

The parameters of the docking box were set to center_x = 6.429,

center_y = -4.372, center_z = 16.444, size_x = size_y = size_z =

10.598, and the number of exhaustiveness was set to 30 to ensure

the accuracy of the prediction results. After docking was

completed, we visualized the docking conformation of the

ligand at the active site of the target protein with the help of

LigPlot+ and PyMOL software (Laskowski and Swindells, 2011).

2.6 Kinase activity assay

The inhibitory activity of the candidate compounds against

ERK2 kinase was assayed by the Lance® Ultra kinase assay. The
principle of this method is that when a ULightTM-labeled

peptide substrate is phosphorylated by the kinase, its

phosphorylation site is recognized by the fluorescent

europium (Eu)-labeled monoclonal antibody and the energy

transfer that occurs during the process is captured by the

instrument (Townsend et al., 2012).

In this study, the initial concentration of the candidate

compounds purchased from Macklin (Shanghai, China) was set

at 100 µm and the gradient dilution in the 384-well plate was set to

2-fold. Staurosporine purchased from MedChemExpress (New

Jersey, United States) was used as a positive control (Meggio

et al., 1995). Firstly, 40 µl of the test compound, 10 µl of the

kinase solution and 10 µl of the substrate solution containing

ATP were incubated at room temperature for 60 min (reaction

step). At the end of the reaction, EDTA was added to stop the

reaction. Then 20 µl of the detection solution containing the

antibody dilution was added to the well plate and incubated at

room temperature for 60 min (detection step). Finally, the IC50

values of the candidate compounds were calculated using a dose-

effect curve. Each assay was repeated in triplicates and the results

were shown as mean ± standard deviation.

2.7 Molecular dynamics simulation

Molecular dynamics simulations based on Newtonian

mechanics were able to assess the binding stability of

candidate compound Dodoviscin A to target protein ERK2 on

both temporal and spatial scales, and the known natural product

inhibitor Magnolin was used as a control (Wang et al., 2018). In

this study, we performed molecular dynamics simulations using

Gromacs software (Pronk et al., 2013). The topology file of ligand

compound was generated by the online web tool Swiss Param
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(https://www.swissparam.ch/), and the topology file of target

protein was obtained from the pdb2gmx module (the force

field was specified as CHARMM 36). The complex was then

confined in a water-filled cubic box (distance between the

complex and the edge of the box was at least 10 Å) and the

charge of the whole system was neutralized by the addition of

gegenions (101 Na+ and 97 Cl-). Next, the system was energy

minimized at 10 kJ/mol using the steepest descent method of

50,000 steps (treatment of long-range electrostatic interactions

was chosen as PME). Before the final simulation, the system was

pre-equilibrated to stabilize at a suitable temperature and

pressure, where the temperature for NVT equilibration was

maintained at 300 K (Velocity-Rescale was set as the

temperature control method) and the pressure for NPT

equilibration was maintained at 1 bar (Parrinello-Rahman was

set as the pressure control method), and the time duration was

both set to 5,000 ps? After the above process, a molecular

dynamics simulation was performed for 100 ns and repeated

three times, with the trajectory recorded in atomic coordinates at

an interval of 2 fs?

FIGURE 2
10-fold cross-validation results of five machine learning classification models on the training set. (A) Models constructed based on molecular
fingerprint; (B) Models constructed based on molecular descriptor.
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3 Results

3.1 Generation and performance
evaluation of machine learning models

In this study, we adopted popular machine learning

techniques for the activity prediction of compounds. The

hyperparameters of the model were tuned by the Bayesian

Optimization algorithm and a range of metrics of the tuned

model were compared on the training and test sets. Cross-

validation is one of the most reliable methods for assessing

model performance (Fourches et al., 2015). In K-fold cross-

validation, the dataset was divided into K subsets, one of

which was selected as the validation set for each training

TABLE 1 Comparison of the performance of machine learning classification models based on two forms of molecular representation on the test set.

Models Accuracy Precision Recall F1-score AUC

MACCS Fingerprint RF 0.913 0.930 0.898 0.913 0.975

SVM 0.908 0.929 0.887 0.907 0.973

ANN 0.844 0.886 0.796 0.838 0.930

Voting 0.873 0.923 0.818 0.868 0.968

Stacking 0.884 0.925 0.841 0.881 0.970

RDKit Descriptor RF 0.942 0.954 0.932 0.943 0.979

SVM 0.936 0.953 0.921 0.936 0.977

ANN 0.908 0.939 0.875 0.906 0.971

Voting 0.930 0.952 0.909 0.930 0.980

Stacking 0.931 0.942 0.921 0.931 0.982

FIGURE 3
Chemical spatial distribution of trained compounds and predicted compounds.
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epoch, and the remaining (K-1) subsets were used as the training

set. This process was repeated K times, so that each subset was

used exactly once. Finally, the average of the K training results

was used as the final result. The results of the 10-fold cross-

validation of the machine learning models generated using the

best combination of hyperparameters on the training set were

shown in Figure 2. The overall prediction accuracy of the three

single models constructed based on MACCS fingerprints ranged

from 87.6% to 88.1%, with F1-score values between

0.881–0.887 and AUC values between 0.941–0.949; while the

overall prediction accuracy of the three single models constructed

based on RDKit descriptors ranged from 89.2% to 91.4%, with

F1-score values between 0.895–0.917 and AUC values between

0.948–0.960. The prediction performance of each model on the

test set was shown in Table 1, where we found that almost all of

these single models outperformed the training set on the test set,

while employing RDKit descriptors as a form of molecular

representation was a better choice for the ERK2 dataset. It

should be noted that according to the spatial distribution of

the training set/test set (Supplementary Figure S1), we could

observe that the training set almost covered the test set (36.07%,

26.26%, and 13.95% explained variance contribution rate in the

three dimensions, respectively). This is also the reason why these

models had better performance on the test set.

Considering the excellent performance of the above three

algorithms on the training and test sets, the model fusion of them

is beneficial to integrate the applicability of different algorithms

and avoid the local bias of a single model affecting the

generalization performance of the prediction. When evaluating

binary classification models, AUC is relatively more informative

as the most important parameter for measuring model

performance. As can be seen in Figure 2; Table 1, the two

integrated models (Voting and Stacking) constructed based on

RDKit molecular descriptors exhibited AUC values of 0.966 and

0.965 on the training set and 0.980 and 0.982 on the test set,

respectively, indicating that performing model fusion produced

more desirable classification results and generalization ability. It

is worth noting that although a single model could sometimes

FIGURE 4
Binding free energy of 10 candidate compounds to ERK2 (PDB ID: 1TVO).
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show better performance in terms of accuracy as well as F1-score,

as reported by Gramatica et al., any algorithm has its own

priorities and a single model may easily fall into local minima,

leading to its poor generalization ability (Gramatica et al., 2007).

Therefore, we consider that the two integrated models with the

highest AUC values have better predictive reliability.

3.2 Virtual screening based on machine
learning

After generating machine learning models and evaluating

their predictive performance, we performed a virtual screening of

4,112 named natural products in the ZINC database using two

integrated models based on molecular descriptors. The

208 RDKit molecular descriptors for these compounds were

first calculated and then the same data pre-processing and

feature selection steps were applied. To improve the reliability

of the prediction results and further narrow the scope of the

search, we set the threshold for both integrated models to 0.75,

which ultimately showed that a total of 427 compounds were

predicted as potential ERK2 inhibitors by both models. In

general, predictions are reliable when the chemical space of

the screened molecules lies in the application domain of the

model (Yang et al., 2022). We therefore visualized the training set

used for modeling and the corresponding compounds in the

TABLE 2 Details of 4 potential ERK2 inhibitors.

Compound name Chemical structure Binding free energy
(kcal/mol)

Confidence level of
voting model

Confidence level of
stacking model

Amaronol A −8.725 0.786 0.831

Bruceolide −8.488 0.781 0.772

Massonianoside B −8.313 0.794 0.843

Dodoviscin A −8.306 0.807 0.845
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ZINC database by means of the PCA algorithm (Figure 3). The

results showed that the chemical space distribution of most of the

predicted compounds overlapped with that of the compounds in

the training set, implying that the virtual screening results based

on machine learning were dependable. In addition, the three

dimensions could represent 41.73%, 23.87%, and 15.46% of the

original data information, respectively, which means that the

spatial distribution was of reference value. 403 candidate

compounds were selected for subsequent studies following the

elimination of certain compounds that were far from the

application domain of the model.

3.3 Drug-like filtering of potential
inhibitors of ERK2 and virtual screening
based on molecular docking

Excellent pharmacokinetic properties contribute to reducing

the risk of failure of drug candidates in the clinical trial stage. The

ADME/T of 403 compounds obtained from the first round of

screening was predicted and further filtered according to the set

criteria. According to Lipinski’s rule, candidate compounds

should satisfy at least three of the five items: Octanol-Water

Partition Coefficient (LogP)≤5, Molecular Weight≤500, Number

of Hydrogen Bond Acceptors≤10, Number of Hydrogen Bond

Donors≤5 and Number of Rotatable Bonds≤10. Drug absorption
in the gastrointestinal tract is a key factor in oral drug delivery,

and the Human Intestinal Absorption (HIA) rate of a candidate

compound should be greater than 30%. Blood-brain barrier

(BBB) permeability indicates the effect of the drug on the

central nervous system, and an ideal ERK2 inhibitor should

have the ability to penetrate the BBB. Water Solubility (LogS)

is one of the criteria for molecular absorption, with a reasonable

range between −4 and 0.5. In addition, the assessment of the

toxicity risk of candidate compounds is more essential in the

early stages of drug discovery. All compounds should not show

risks of Hepatotoxicity, Acute Oral Toxicity, Carcinogenicity and

AMES Mutagenicity. The above criteria resulted in 10 drug-like

compounds with desirable ADME/T properties, which would be

used inmolecular docking studies to compare the binding affinity

to ERK2. Partial physicochemical properties of these compounds

were listed in Supplementary Table S1.

To ensure the reliability of the docking protocol, the co-

crystallized ligand was re-docked to the active site of the target

protein and the root mean square deviation (RMSD) between the

docked conformation and the original conformation was

calculated. The results showed a superimposed RMSD of

0.63 Å (less than 2 Å), which confirms the dependability of

the docking process used in this study (Supplementary Figure

S2). We next performed docking calculations using the same

parameters for the 10 drug-like compounds mentioned above,

whose binding free energies were shown in Figure 4. It should be

noted that we chose magnolin, a natural product with

ERK2 inhibitory activity, as an additional positive control

molecule (Lee et al., 2015). We could find that all candidate

compounds had binding free energies below −7.5 kcal/mol.

Based on the principle that the lower the binding free energy,

the stronger the ligand-receptor interaction, we screened four

natural products with binding free energies below Magnolin

(−8.125 kcal/mol) as potential ERK2 inhibitors. Specifically,

Amaronol A exhibited the highest binding affinity

(−8.725 kcal/mol), followed by Bruceolide (−8.488 kcal/mol)

and finally Massonianoside B (−8.313 kcal/mol) and

Dodoviscin A (−8.306 kcal/mol). The confidence levels of

these four compounds in the machine learning models and

the binding free energy in molecular docking were listed in

Table 2. We could find that the confidence levels of

compound Dodoviscin A were highest in both integrated

models, while those of compound Bruceolide were relatively low.

3.4 Biological validation of the screened
compounds

We retrieved the relevant reports of these four screened

compounds in the PubMed database, of which there was little

literature on Bruceolide and Amaronol A, and their in vitro

biological activity was also unclear; while Dodoviscin A could

inhibit melanogenesis and Massonianoside B had potential

antioxidant activity (Chen et al., 2012; Yan et al., 2013).

Therefore, Dodoviscin A and Massonianoside B were selected

for the kinase assay given the application values. To determine

the ERK2 inhibitory effect of those screened compounds, we

performed the kinase activity assay based on the Lance® Ultra
method. The dose-response curves were shown in

Supplementary Figure S3. At a concentration of 50 μm,

Dodoviscin A exhibited 87.3% inhibition of ERK2 with an

IC50 value of 10.79 μm. In contrast, Massonianoside B showed

relatively weak inhibition of ERK2 with an IC50 value greater

than 100 μm. These results confirmed the reliability of our virtual

screening strategy.

3.5 Analysis of the binding pattern of
screened compounds to target protein

Figure 5 showed the interaction of the target protein

ERK2 with the positive control molecule Magnolin and the

active candidate Dodoviscin A. We can see that both

compounds docked to the hinge region of the kinase.

Magnolin formed hydrogen bonds with amino acid residues

LYS-151 and ARG-67 with bond lengths of 3.09 Å and 3.32 Å,

respectively, while Dodoviscin A showed more hydrogen

bonding interactions. Specifically, the key amino acid residues

MET-108 and GLU-109 in the hinge region interacted with the

hydroxymethyl group in the ligand structure via two hydrogen
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bonds of 2.51 Å and 3.02 Å, while three other amino acid

residues, LYS-54, ASP-167, and ASN-154, were also observed

to form hydrogen bonds with Dodoviscin A with bond lengths of

3.11 Å, 3.20 Å, and 3.13 Å, respectively. In addition, several

amino acid residues including VAL-39, LEU-156, GLU-71,

and SER-153 were involved in the formation of hydrophobic

interactions. Previous studies have shown that hydrogen bonding

interactions between type I inhibitors targeting ERK2 and MET-

108 are critical for their occupancy of the ATP binding pocket

(Roskoski, 2019). By comparing the binding patterns of these two

compounds, we speculate that the formation of more hydrogen

bonding interactions between Dodoviscin A and the target

protein may account for its relatively high binding affinity.

3.6 Analysis of the binding stability of the
screened compounds to the target protein

To further explore the dynamic binding process of the

screened compound to the target protein, molecular dynamics

simulations were performed. The RMSD values of the protein

and ligand can be calculated to detect the change in the

position of both during the simulation time, which is crucial

for the stability of the complex in the dynamic system. In

general, a low RMSD value indicates that there is little change

in the conformation, while a less fluctuating RMSD value

indicates that the whole system has reached stability (Raju

et al., 2022). As shown in Figure 6A, the ligand compound

Dodoviscin A bound to the receptor protein ERK2 reached

equilibrium after initial fluctuations and remained there until

the end of the simulation, with mean RMSD values of 0.116 ±

0.020 nm, while the mean RMSD value of Magnolin was

0.153 ± 0.050 nm. Notably, for the Dodoviscin A-ERK2

complex, although the mean RMSD values were not

considerably different from those of the control Magnolin-

ERK2 complex, the RMSD fluctuation trajectory was smoother

and the binding stability was better.

Root Mean Square Fluctuations (RMSF) are commonly used

to assess the flexibility state of the structural regions of proteins.

As shown in Figure 6B, the receptor protein ERK2 bound to the

ligand compounds Magnolin and Dodoviscin A had similar

fluctuation trends, and most of the amino acid residues that

were more flexible were those that formed interactions with the

ligands.

FIGURE 5
(A,B) 2D/3D binding interaction of Magnolin with ERK2 protein; (C,D) 2D/3D binding interaction of Dodoviscin A with ERK2 protein (pink
structure represents small molecule ligand, blue structure represents hydrogen bond interaction residue, gray structure represents hydrophobic
interaction residue).
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The hydrophobicity of amino acid residues in proteins is

closely related to the folding of proteins. Figure 6C showed the

solvent accessible surface area (SASA) changes of both

Dodoviscin A and Magnolin systems during the simulation,

which is crucial for the stability of hydrophobic interactions.

In general, the fluctuations of both systems were similar, with the

SASA of the Dodoviscin A-ERK2 complex fluctuating between

170 and 190 nm2 with a mean value of 180.46 ± 2.81 nm2, while

the overall SASA of the Magnolin-ERK2 complex was higher

with a mean value of 188.01 ± 3.89 nm2. These results indicated

that the amount of hydrophobic amino acids hidden inside the

protein did not very much. Hydrogen bonding has a significant

effect on the stable binding of ligand-protein complexes (Kuhn

et al., 2010). Figure 6D displayed the variation in the number of

hydrogen bonds during the simulation. We found that more

hydrogen bonds were formed in the Dodoviscin A-ERK2

complex than in the control Magnolin-ERK2 complex, with

up to six hydrogen bonding interactions observed, mainly

between 2 and 4. To further observe the hydrogen bonding of

the candidate compound Dodoviscin A to the target protein

ERK2 during the 100 ns simulation, the ligand-protein

interactions were visualized at different time intervals. The

results were shown in Figure 7, compared to the initial

conformation, the hydrogen bonds between Dodoviscin A and

the two key amino acid residues MET-108 and ASP-167, which

are more important for the binding of the inhibitor to ERK2,

were still present despite the partial loss of hydrogen bonding

interactions. The hydrogen bonding interactions of the

Dodoviscin A-ERK2 complex at different time points were

listed in Supplementary Table S2. These results also further

illustrated that the candidate compound Dodoviscin A was

able to bind steadily to the target protein ERK2.

FIGURE 6
(A) Variation of RMSD values of small molecule ligands duringmolecular dynamics simulation; (B)Variation of RMSF values of protein amino acid
residues during molecular dynamics simulation; (C) Variation of SASA values of ligand-protein complex during molecular dynamics simulation; (D)
Variation of hydrogen bond number in ligand-protein complex during molecular dynamics simulation.
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4 Discussion

The human protein kinase family has become one of the hottest

drug targets in the last few decades due to the critical role thatmutations

and dysregulation of protein kinases play in the pathogenesis of many

human diseases (Cohen and Alessi, 2013). The Ras-Raf-MEK-ERK

pathway is the most classical signaling pathway in the MAPK family,

which transmits upstream signals to downstream responsive molecules

through a continuous phosphorylationprocess. Studies have shown that

inhibitors against the downstream target ERK have shown satisfactory

results in terms of activity, selectivity and especially drug resistance

compared to inhibitors against the upstream target (Miao and Tian,

2020). It should be noted that most of the ERK inhibitors identified so

far are ATP-competitive inhibitors, and the development of more

attractive covalent inhibitors still faces many challenges.

In recent years, the application of artificial intelligence in the

pharmaceutical field has been increasing (Aguiar-Pulido et al.,

2013). In this study, we first constructedmultiplemachine learning

classification models for the kinase target ERK2 to discover

potential natural product inhibitors. In contrast to previous

work that considered only a single form of molecular

characterization, we employed MACCS molecular fingerprints

and RDKit molecular descriptors to provide a more

comprehensive characterization of compounds in the dataset.

Moreover, considering the variability between different

algorithms, we have further improved the reliability of the

predictions by integrating three single models through two

model fusion strategies (Voting and Stacking). The results

showed that our integrated models based on molecular

descriptors performed better on the test set, with accuracy and

AUC values ranging from 0.930 to 0.931 and 0.980–0.982,

respectively. We then performed the first round of virtual

screening of natural products in the ZINC database using these

two integrated models, yielding a total of 403 candidate inhibitors.

The second round of virtual screening based on drug-likeness

was carried out using the ADMETlab 2.0 online server, resulting in

a total of 10 candidate inhibitors. Subsequently, we ranked the

binding affinity of these compounds to ERK2 by Autodock Vina

software (the third round of virtual screening) and identified the

four most promising candidate inhibitors. Following in vitro

biological evaluation, we found that the compound Dodoviscin

A (a flavonoid isolated from Dodonaea viscosa) exhibited

acceptable inhibitory activity on ERK2 (IC50 = 10.79 μm). In

addition, a preliminary analysis of the interaction pattern and

dynamic binding properties between the compound and the

target protein was carried out. Overall, this work combines

theoretical calculation and experimental validation in the search

for natural product inhibitors of the kinase target ERK2, and the

resulting candidate compound is expected to serve as a template

molecule for the design of novel inhibitors.

FIGURE 7
Analysis of hydrogen bonding interactions of Dodoviscin A-ERK2 complex at different time intervals during 100 ns simulation. (A) 10 ns; (B)
25 ns; (C) 50 ns; (D) 75 ns; (E) 100 ns.
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The methods used in this study also have a number of

limitations. Firstly, the data dependency and the lack of

generalization may lead to a significant reduction in the

performance of an excellent predictive model on a new

dataset. Research has shown that an important issue to

consider in building machine learning models is the quality of

the dataset (Recanatini and Cabrelle, 2020). However, training

data from various public databases is not always authentic and

reliable, which will have a negative impact on the performance of

machine learning models. Secondly, many machine learning

algorithms are “black boxes” in terms of model

interpretability. For example, we were unable to provide a

detailed analysis of how the candidate compounds were

screened. Thirdly, the number of compounds tested is

relatively small and the screened compound Dodoviscin A still

has considerable room for improvement in its inhibitory activity

against ERK2. To address these issues, on the one hand, we need

to clarify the potential of machine learning techniques to

minimize prediction bias while understanding the nature of

the problems (computational level), and on the other hand, we

will work on structural modification of the screened compounds

to improve their efficacy as ERK2 inhibitors (experimental level).
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