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Background: Induced pluripotent stem cells-derived exosomes (iPSCs-Exo) can
effectively treat spinal cord injury (SCI) in mice. But the role of iPSCs-Exo in SCI mice
and its molecular mechanisms remain unclear. This research intended to study the
effects and molecular mechanism of iPSCs-Exo in SCI mice models.

Methods: The feature of iPSCs-Exo was determined by transmission electron
microscope (TEM), nanoparticle tracking analysis (NTA), and western blot. The
effects of iPSCs-Exo in the SCI mice model were evaluated by Basso Mouse
Scale (BMS) scores and H&E staining. The roles of iPSCs-Exo and miR-199b-5p in
LPS-treated BMDM were verified by immunofluorescence, RT-qPCR, and Cytokine
assays. The target genes of miR-199b-5p were identified, and the function of miR-
199b-5p and its target genes on LPS-treated BMDM was explored by recuse
experiment.

Results: iPSCs-Exo improved motor function in SCI mice model in vivo, shifted the
polarization from M1 macrophage to M2 phenotype, and regulated related
inflammatory factors expression to accelerate the SCI recovery in LPS-treated
BMDM in vitro. Meanwhile, miR-199b-5p was a functional player of iPSCs-Exo,
which could target hepatocyte growth factor (Hgf). Moreover, miR-199b-5p
overexpression polarized M1 macrophage into M2 phenotype and promoted
neural regeneration in SCI. The rescue experiments confirmed that miR-199b-5p
induced macrophage polarization and SCI recovery by regulating Hgf and
Phosphoinositide 3-kinase (PI3K) signaling pathways.

Conclusion: The miR-199b-5p-bearing iPSCs-Exo might become an effective
method to treat SCI.
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Introduction

Spinal cord injury (SCI) can result in permanent motor and sensory
deficits (Anjum et al., 2020; O’Shea et al., 2017). The annual rise in the
prevalence of SCI is so alarming that it cannot be overlooked and has been
declared a public health problem (Cofano et al., 2019). SCI can lead to
disability, paralysis and neural dysfunction, causing huge physical and
mental damage to patients (Cofano et al., 2019; O’Shea et al., 2017). In
general, SCI can be classified into primary SCI and secondary SCI (Anjum
et al., 2020). In recent years, with in-depth research on the pathological
mechanism of SCI, a series of repair strategies are employed to treat SCI,
including repressing inflammatory response, restoring short-distance
neural connectivity and function, regulating circuit reorganization in
spared neural tissue and neurodegenerative strategies (Russo and
McGavern, 2016; DeBrot and Yao, 2018). Among these,
neurodegenerative strategies are an effective to treat SCI.

The neurodegenerative strategy is a treatment technique that replaces
damaged cells and axons through stimulating the endogenous repair
mechanism or through cell transplantation (Wu et al., 2020). With the
rapid development of molecular biology and cell therapy, stem cell (SC)
therapy had gradually become a promising method to treat neurological
diseases because it could replace damaged cells and synthesize both
neurotrophic factors and molecules that stimulate neuro regeneration
(Galieva et al., 2017). In 2006, induced pluripotent stem cells (iPSCs) were
firstly reported by Shiya Yamanaka, which were generated by retroviral
introducing four transcription factors (Klf4, Oct3/4, Sox2, and c-Myc)
into mouse fibroblasts and parallel to embryonic stem cells in
morphology, cell multiplication ability, cell differentiation ability,
epigenetic modification status, and gene and protein expression
(Takahashi and Yamanaka, 2006). Accumulating studies have revealed
that iPSCs have significant value in new drug screening, cell replacement
therapy, and the treatment of neurological diseases and cardiovascular
diseases (Hockemeyer and Jaenisch, 2016; Kumar et al., 2018). In the
treatment of SCI, studies have shown that iPSCs-derived cells such as
neural crest cells, oligodendrocytes, andmesenchymal stromal cells can be
safely transplanted into the mice model of SCI. These results indicated
that these derived cells could integrate and differentiate into the desired
phenotype, and promote functional recovery (Nagoshi and Okano, 2017;
Csobonyeiova et al., 2019). More importantly, the generation of iPSCs
could avoid the ethical and moral concerns caused by other stem cells
(Jung et al., 2017; Kalluri and LeBleu, 2020). In a word, iPSCs have
become a new therapeutic method for the treatment of SCI.

Exosomes are nano-sized vesicles with 30–150 nm in diameter
that participate in intercellular communication (Pegtel and Gould,
2019). They can transport proteins and functional RNAs to
perform long-distance cell signal transduction in cells or tissues
(Kalluri and LeBleu, 2020). Recently, some researchers have
indicated that iPSCs-Exo has been regarded as an effective
treatment method for human heart diseases (Jung et al., 2017;
Yang, 2018). iPSCs-Exo has many advantages including repairing
tissue and lose cells and providing environmental support (Yang,
2018).

Generally speaking, exosomes possess biological functions via the
luminal cargo, such as mRNAs, microRNAs (miRNAs), and proteins.
MiRNAs, small non-coding RNA with length oscillating
22–25 nucleotides, are common exosomal components and impact
a significant role in target cells or tissues (Ailawadi et al., 2015).
MiRNAs are revealed to affect downstream gene expression at a post-
transcriptional level (Winter et al., 2009). Reduced miR-199b-5p

expression is observed in SCI (Zhou et al., 2016), however, whether
miR-199b-5p exerts key functions in SCI via iPSCs-Exo is rarely
reported.

Herein, we applied an SCI model in vivo and bone marrow-
derived macrophage in vitro to study the treatment effects of iPSCs-
Exo on spinal cord injury and the role of miR-199b-5p in the above
treatment process. A schematic diagram of the study idea is shown in
Graphical abstract.

Materials and methods

Animals

The experiments involving animals were approved by the Ethics
Committee of Capital Medical University. Eight-week-old C57BL/
6 mice (Laboratory Animal Center of Nanjing University, Nanjing,
China) were housed under SPF conditions with enough food and
water.

Cell transfection

Murine embryonic fibroblasts (MEFs, ATCC) were cultured in FM
medium (DMEM-Glutamaxl containing 1% penicillin/streptomycin
and 10% FBS, Sigma-Aldrich, MO, United States) (Pajer et al., 2015).
MEFs at passage one were induced as iPSCs which were incubated
with an embryonic stem medium (ESC medium, Sigma-Aldrich).
Mouse bone marrow-derived macrophage (BMDM) was
maintained in DMEM medium (1% penicillin/streptomycin, 10%
FBS, and 50 ng/mL macrophage-stimulating factor (MCSF), Sigma-
Aldrich) (Pegtel and Gould, 2019). BMDM were treated with 50 ng/
mL LPS and iPSCs-Exo for 12 h. BMDM in the blank group was
incubated with LPS. The BMDM phenotypes were detected by RT-
qPCR and immunofluorescence assays. Using Lipofectamine 2000
(Thermofisher, United States), the LPS-treated BMDM (1 × 105 cells/
well) were transfected with pcDNA-NC, pcDNA-Hgf, miR-199b-5p
mimics, and mimics-NC (Shanghai GenePharma Co., Ltd.) for 48 h
at 37°C.

Induced pluripotent stem cells generation

MEFs (1 × 105 cells/well) were plated into a 6-well plate which was
coated with gelatin in Farrell’s medium (FM) (Sigma-Aldrich). After
overnight, the medium was replaced with embryonic stem cells (ESC)
medium with 1 mM valproic acid and 8 μg/mL purified cocktail (Oct4,
Klf4, Sox2, and c-Myc). After incubation for 12 h, the medium was
replaced with the normal ESC medium for 36 h. Meanwhile, the
cocktail was added every two days. On the ninth day, cells were
cultured in 10 cm dishes until ESC-like colonies appeared (iPSCs
formed).

Isolation and characterization of induced
pluripotent stem cells-derived exosomes

Using Exosomes Isolation Reagent (Invitrogen, CA), exosomes
were isolated from iPSCs. To acquire exosomes, the iPSCs were
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cultured in exosome-free media for 48 h. After centrifugation at
3,000 rpm for 15 min, the supernatants were transferred to a fresh
tube, incubated with exosome-isolated reagent overnight, and then
centrifuged at 15,000 rpm for 1 h to pellet exosomes. The pellet
exosomes were resuspended with incomplete ESC medium or PBS.
Transmission electron microscope (TEM) (FEI, United States) and
nanoparticle tracking analysis (NTA) (ZetaView PMX110, Particle
Matrix, Meerbusch, Germany) were used to detect the morphology
and size of exosomes, respectively.

Quantitative RT-PCR assay

Extraction of total RNAs was conducted using TRIzol reagent
(ThermoFisher, United States). After reverse transcription, gene
expression was determined using RT-qPCR assay with SYBR
Green PCR Master Mix (Takara). Related gene expression was
normalized to GADPH and U6 and calculated by the 2−ΔΔCT

method (Shams et al., 2022).

Western blot assay

Total proteins were extracted from cells and exosomes by
lysed in RIPA buffer (Beyotime, Shanghai, China). After being
separated by SDS-PAGE, the protein bands were transferred onto
PVDF membranes. Primary antibodies (anti-CD81 (ab155760), 1:
1,000; anti-CD9 (ab92726), 1:1,000; anti-CD63 (ab59479), 1:
1,000; anti-pan-AKT (ab8805), 1:2000; anti-AKT (ab38449), 1:
2000; anti-GSK3β (ab32391), 1:2000; anti-pan-GSK3β (ab75814),
1:2000; anti-CREB (ab32515), 1:2000; and anti-pan-CREB
(ab32096), 1:2000; anti-β-actin (ab8227), 1:2000) were used to
incubate the membranes overnight at 4°C. After further
incubating secondary antibodies for 1 h at 37°C, the Bio-Rad
Image Lab was employed to visualize the protein bands (Ul
Hassan et al., 2021).

Animal model of spinal cord injury

Mice were subjected to pentobarbital anesthetization and
underwent laminectomy. After clamping the transverse processes of
T11 and T12, a weight drop injury at the exposed spinal cord dorsal
surface was created using a 5 g rod dropped at a height of 5 cm. After
closing the muscles and skin in layers, mice were housed in a
controlled room of temperature and humidity. A schematic of the
spinal cord injury process as shown in Supplementary Figure S1B was
drawn using Figdraw. Once the SCI model was established (the
successful model was demonstrated by Supplementary Video S1),
mice were assigned into PBS and iPSCs-Exo groups that were injected
with 200 μL PBS and iPSCs-Exo through the tail vein for 3 days,
respectively. The recovery of spinal cord function was evaluated. The
motor function assessment was evaluated by Basso, Beattie, Bresnahan
(BBB) score as previously reported (Yu et al., 2019). After the
experiment, mice were euthanized and their spinal cord tissue was
analyzed.

Bone marrow-derived macrophage
immunofluorescence staining

The BMDM was permeabilizated with .1% triton. After blocking,
BMDM was incubated with anti-iNOS (Abcam, ab283655, 1:1,000),
anti-F4/80 (Abcam, ab16911, 1:1,000), anti-F4/80 (Abcam, ab16911,
1:2,000) and anti-Arg1 (Abcam, ab203490, 1:2,000) antibodies for 2 h.
After being treated with secondary antibody for 1 h at 25°C, the DAPI
solution was used for nuclear staining for 5 min. The images were
observed using a confocal laser scanning microscopy (TCA SP8, Leica,
Germany).

Histological analysis

The transverse sections were produced on the injury epicenter of
SCI. The morphology and injury site were detected through Mayer’s
Haematoxylin and Eosin staining (H and E staining). These images were
observed using a light microscope (BX53, Olympus Corporation).

Cytokine assay

To detect pro-inflammatory (IFN-γ, IL-6, and G-CSF) and anti-
inflammatory (IL-4) cytokines in the LPS-treated BMDM, the ELISA
kit (Keygen, Nanjing, China) were utilized to measure the cytokine
concentration.

Dual-luciferase reporter gene assay

The Hgf-wild type (WT) and Hgf-mutated type (Mut)
sequences were inserted into the pmiRGLO reporter vector
(Synthgene Biotech, Nanjing, China). After co-transfection with
miR-199b-5p mimics or mimic-NC, the luciferase activity of Hgf-
WT or Hgf-Mut was detected using a dual-luciferase reporter assay
kit (Promega) after 48 h of the transfections that were normalized
with Renilla luciferase activity.

Target gene prediction

The downstream target genes of miR-199b-5p were predicted
through the TargetScan database, and the target genes were
enriched and analyzed through the Metascape database. The
binding sites of miRNA-mRNA were predicted by the TargetScan
database.

Statistical assay

Data analysis was completed using SPSS 19.0.Data from three repeated
experiments are displayed as mean ± standard deviation (SD). A two-way
repeated ANOVA was employed to compare BBB scores between groups
over time. Other data analyzed were examined by Student’s t-test.
Statistically significant results were obtained when two-sided p < .05.
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Results

Isolation and identification of induced
pluripotent stem cells-Exo

We first detected themorphology and size of the isolated iPSCs-Exo by
using TEM and NTA. The spherical vesicle-like structure (30–80 nm) was
observed by TEM (Figure 1A). NTA confirmed that the average exosome
size was 100 nm (Figure 1B). Additionally, the expression levels of the
exosome marker protein (CD9, CD63, CD81) and cell marker protein
(cytochrome c, CytC) in isolated particles and whole iPSC lysates were
determined by RT-qPCR. The results showed high expression of CD9,
CD63, and CD81 in surfaces of vesicles, but Cyt c expression was not
detected (Figure 1C), confirming that iPSCs-Exo were successfully isolated.
At last, to verify whether the isolated exosomes contained miR-199b-5p,
expression analyseswere carried out in iPSCs-Exo and control byRT-qPCR
andwe found upregulation in gene expression ofmiR-199b-5p (Figure 1D).

Induced pluripotent stem cells-exo improved
motor function in spinal cord injury mice

To study the effects of iPSCs-Exo in vivo, SCI mice model was
established. The BBB scores were calculated to evaluate the motor
function of SCI mice after treatment with iPSCs-Exo. Meanwhile, the

untreated SCI mice served as a control group. The BBB scores in mice
injected with iPSCs-Exo increased in a time-dependent manner. At the
1st, 2nd, 3rd, and 4th weeks post-injection, the BBB scores of iPSCs-Exo
groups were significantly higher than the control group (Figure 2A).
Furthermore, to analyze the repair of injured spinal cords in SCImice, the
mice were sacrificed after 4 weeks of injury. The overall shape of the spinal
cord demonstrated improvement in the iPSCs-Exo group when
compared to the model group (Figure 2B). Meanwhile,
histopathological analysis of the lesion area of SCI mice by H&E
staining indicated that the cavity volume of mice in iPSCs-Exo groups
was reduced when compared to the control (Figure 2C). This evidence
suggested that iPSCs-Exo contributed to functional recovery after SCI.

induced pluripotent stem cells-exo polarized
macrophages to M2 phenotype in vitro

Macrophages have been reported to mediate the inflammatory
reaction via polarization into the M2 phenotype in SCI(Yang, 2018).
However, the changes in macrophage function and cytokine secretion
were still unclear after the macrophage was treated with iPSCs-Exo.
Firstly, BMDM were treated with LPS (control group) and iPSCs-Exo,
respectively. Compared to the LPS group, decreased iNOS (M1 marker)
expression but increased Agr1 (M2 marker) expression was observed in
the iPSCs-Exo group (Figure 3A). Moreover, RT-qPCR assay was

FIGURE 1
iPSCs-Exo was successfully isolated. (A) TEM displayed the morphology of iPSCs-Exo. (B) NTA revealed the concentration particles of iPSCs-Exo. (C)
Western blot assay detected the protein levels of CD63, CD9, CD81 and CytC. (D) RT-qPCR detected the miR-199b-5p expression in isolated exosomes.
***p < .001 vs. the Exo-Empty.
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employed to measure the expression levels of M1 and M2 macrophage
phenotype markers. The results indicated that iPSCs-Exo reduced gene
expression of M1 markers i.e., iNOS, CD86 and TNF-α while increasing
M2 markers’ CD206, IL-10, and Arg1 expression (Figures 3B,C).
Afterward, protein levels of IL-4, IL-6, IFN-γ, and G-CSF were
quantified through ELISA in mice. We found increased production of
IL-4 protein while IL-6, IFN-γ, and G-CSF protein levels were found to be
decreased in the iPSCs-Exomice group (Figure 3D). Overall, our results in
Figure 3 demonstrated that iPSCs-Exo alters macrophage polarization
and cytokine release in SCI.

induced pluripotent stem cells-exo regulated
spinal cord injury recovery through miR-
199b-5p

We further investigate whether iPSCs-Exo promoted macrophage
polarization and SCI functional recovery viamiR-199b-5p. Our qPCR
results indicated decreased expression of miR-199b-5p in LPS-treated
BMDM and increased expression in iPSCs and iPSCs-Exo (Figures
4A,B). Meanwhile, miR-199b-5p was enhanced expressed in LBS-
treated BMDM after treatment with iPSCs-Exo (Figure 4C).

MiR-199b-5p polarized macrophages to
M2 phenotype and promoted neuronal
regeneration in vitro

To explore the function of miR-199b-5p in LPS-treated
BMDM, miR-199b-5p was overexpressed in LPS-treated BMDM

through transfection. We first detected the expression levels of
M1 andM2macrophage phenotype markers. As revealed in Figures
5A,B, miR-199b-5p overexpression downregulated iNOS, CD86,
and TNF-α expression in M1 macrophage phenotype but
upregulated CD206, IL-10 and Arg1 expression in
M2 macrophage phenotype, suggesting that miR-199b-5p
polarized macrophages from M1 to M2 phenotype in vitro.
Moreover, NF200 and GAP-43 are the indicators of functional
recovery of SCI while GFAP is an indicator of hindering the
recovery of SCI (Yunna et al., 2020). The protein expression
levels of NF200 and GAP-43 were increased while GFAP
expression was decreased after the LPS-treated BMDM treated
with miR-199b-5p mimics (Figure 5C), which suggested that miR-
199b-5p overexpression might promote neuronal regeneration.

Hgf was targeted by miR-199b-5p and hgf
activated PI3K signaling pathway in vitro

To study the molecular mechanism of miR-199b-5p in
macrophage polarization, the bioinformatics analysis (mirdbH
and Metasacpe) was employed. Through this assay, eight
potential targets (Ddx3x, Tgfb2, Csnk1d, Hifla, Hgf, Vegfa,
Hip1r, and Cbl) were screened (Figure 6A). In addition, these
potential targets are involved in many pathways (IRF5, ERK, JAK2,
IL-4, Notch1, PI3K, et al.) to regulate macrophage polarization.
Among them, PI3K signaling pathways were closely related
(Figure 6A). Then, we measured the expression of eight
potential targets after the LPS-treated BMDM treated with miR-
199b-5p mimics. Hgf expression was lower than other targets’

FIGURE 2
IPSCs-Exo improved motor function in SCI mice. (A) BMS scores. **p < .01 vs. the model group. (B) The overall shape of the spinal cord was observed in
SCI model mice. The red arrow indicated the point of injured spinal cords in SCI model mice. (C) H&E staining of longitudinal SCI sections at 4 weeks. Scale
bar = 100 μm.
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expression (Figure 6B). Also, the putative binding site of miR-
199b-5p was contained in the Hgf 3′-UTR (Figure 6C). Luciferase
reporter assay indicated that only the luciferase activity of Hgf-WT
was reduced with miR-199b-5p overexpression (Figure 6D).
Subsequently, we detected the Hgf expression in the SCI mice
model and LPS-treated BMDM. Hgf expression was enhanced both
in the SCI mice model and LPS-treated BMDM (Figure 6E). More
importantly, to explore the relationship between Hgf and the PI3K

signaling pathway, the related proteins’ expression of the PI3K
signaling pathway was measured after Hgf overexpression. The
phosphorylated proteins (p-AKT, p-GSK3β, and p-CREB) in PI3K
signaling pathway were increased expressed after the LPS-treated
BMDMwere treated with pcDNA-Hgf. These results suggested that
Hgf overexpression could activate the PI3K signaling pathway
(Figure 6F). In summary, Hgf was a target of miR-199b-5p, and
Hgf overexpression could activate the PI3K signaling pathway.

FIGURE 3
IPSCs-Exo polarized macrophages into M2 phenotype in vitro. (A) Immunofluorescence showed the expression of iNOS (M1 marker) and Agr1
(M2marker). (B) RT-qPCR showedM1marker expression (iNOS, CD86 and TNF-α). (C) RT-qPCR revealed M2markers expression (CD206, IL-10 and Arg1). (D)
ELISA detected the concentration of inflammatory factors (IL-4, IL-6, IFN-γ, and G-CSF). *p < .05, **p < .01, and ***p < .001 vs. the control group.

FIGURE 4
IPSCs-Exo regulated the spinal cord injury recovery throughmiR-199b-5p. (A) RT-qPCR showedmiR-199b-5p expression in LPS-treated BMDM. (B) RT-
qPCR revealed the miR-199b-5p expression in iPSCs and iPSCs-Exo. ***p < .001 vs. the control group. (C) RT-qPCR revealed the miR-199b-5p expression in
LBS-treated BMDM after treatment with iPSCs-Exo. ***p < .001 vs. the macrophages group.
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MiR-199b-5p promoted polarization from
M1 macrophages to M2 phenotype through
regulating hgf and PI3K signaling pathway

To further verify if Hgf mediated the promotion of LPS-treated
BMDM polarization was caused by miR-199b-5p, the pcDNA-NC,
pcDNA-Hgf, and PI3K signaling pathway, inhibitor LY294002 were
transfected into LPS-treated BMDM treated with miR-199b-5p
mimics. It was observed that Hgf overexpression increased the
expression of iNOS, CD86, and TNF-α in the M1 macrophage
phenotype while decreasing the CD206, IL-10, and Arg1 expression

in M2 macrophage phenotype (Figures 7A,B). These results were
contrary to the results of miR-199b-5p mimics or LYP294002 on
M1 and M2 marker expression. In addition, miR-199b-5p
overexpression upregulated IL-4 but downregulate IL-6, IFN-γ, and
G-CSF. The result was consistent with the result of LYP294002.
However, the Hgf overexpression increased IL-6, IFN-γ, and
G-CSF concentration while decreasing the expression of IL-4
(Figure 7C). Collectively data in this figure indicated that miR-
199b-5p promoted macrophage polarization from M1 to
M2 phenotype through regulating Hgf and PI3K signaling pathway.
(Kalluri and LeBleu, 2020).

FIGURE 5
MiR-199b-5p polarizedmacrophages intoM2 phenotype and promoted neuronal regeneration in vitro. (A) RT-qPCR detected the M1marker expression
(iNOS, CD86 and TNF-α) after transfection. (B) RT-qPCR showed the M2 marker expression (CD206, IL-10, and Arg1). (C) RT-qPCR measured the expression
of NF200, GAP-43, and GFAPT. ***p < .001 vs. the NC mimic.

FIGURE 6
Hgf was targeted by miR-199b-5p and Hgf activated PI3K signaling pathway in vitro. (A) The TargetScan and Metasacpe databases predicted the target
gene of miR-199b-5p. (B) RT-qPCR showed the expression of eight potential targets. (C) The predicted binding sequences of miR-199b-5p and Hgf by
TargetScan. (D) The relative luciferase activity. ***p < .001 vs. the NCmimic. (E) RT-qPCR showed Hgf expression in both the SCI micemodel and LPS-treated
BMDM. ***p < .001 vs. the control group. (F) Western blot assay detected PI3K signaling pathway-related protein expression. The phosphor-protein
expression was normalized with β-actin ***p < .001 vs. pcDNA-NC.
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Discussion

Over the past few decades, SCI has become a public health
problem owing to its high morbidity and mortality and high
medical cost and gradually become a hot spot (Cofano et al.,
2019; McDonald and Sadowsky, 2002; O’Shea et al., 2017).
With the rapid development of iPSCs therapy, it has gradually
become an effective method to treat heart diseases and
neurodegenerative diseases (Takahashi and Yamanaka, 2006;
Wang et al., 2017). Accumulating studies have indicated that
iPSCs are widely used to treat myocardial infarction, cardiac
injury and dysfunction, spinal cord injury, and
neurodegenerative diseases (Hockemeyer and Jaenisch, 2016;
Kumar et al., 2018). IPSCs can not only repair damaged cells
or neurons but also promote tissue regeneration (Khazaei et al.,
2014). Therefore, iPSCs have provided a new opportunity for the
treatment of SCI.

Exosomes, nano-sized vesicles, are implicated in the cell signal
process by transporting the luminal cargos, like proteins and
functional RNAs(Pegtel and Gould, 2019; Kalluri and LeBleu,
2020). Recently, several studies have verified that iPSCs-Exo has
contributed to the treatment of heart diseases and SCI(Pajer et al.,
2015; Zhang et al., 2022). Herein, we prepared the iPSCs-Exo with a

mean particle size of 100 nm. In the SCI mice model, the function
has been recovered and the inflammatory reaction has been
regulated in iPSCs-Exo treated SCI, which indicated
macrophages played a vital role in SCI pathological
development. Then, we further explored the underlying
mechanism in the following studies in vitro.

However, whether the iPSCs-Exo were related to macrophage
polarization in SCI pathological process was still obscure. To
explore the relationship between iPSCs-Exo and macrophage
polarization, the LPS-treated BMDM were treated with iPSCs-
Exo. The results revealed that iPSCs-Exo facilitated the
polarization from M1 macrophage to M2 phenotype. Moreover,
iPSCs-Exo increased IL4 expression but decreased IL-6, IFN-γ,
and G-CSF expression. The above results indicated that the
polarization fromM1 macrophage to M2 phenotype could be
triggered by iPSCs-Exo via regulating the release of related
cytokines, thus promoting the functional recovery of SCI.
Nevertheless, how iPSCs-Exo regulate macrophage polarization
and the SCI process needs further study.

Currently, MSCs-Exo is found to exert biological function via the
regulation of miRNAs at the genetic level (Chen et al., 2018; Ajmal et al.,
2022). For example, exosomal miR-146a-5p could alleviate the
neuroinflammatory response in the development of ischemic stroke

FIGURE 7
MiR-199b-5p regulated macrophage polarization via regulating Hgf and PI3K signaling pathways. (A) RT-qPCR showed M1 marker expression (iNOS,
CD86 and TNF-α). (B) RT-qPCR revealed M2marker expression (CD206, IL-10, and Arg1). (C) ELISA showed the concentration of IL-4, IL-6, IFN-γ, and G-CSF.
***p < .001, ##p < .01, ###p < .001, $p < .05, $$p < .01, $$$p < .001 vs. NC mimic + pcDNA-NC.
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(Zhang et al., 2021). MiR-199b-5p is reported to be reduced expressed in
acute SCI and microglia (Gao et al., 2019). In our study, we found that
iPSCs-Exo regulated the SCI recovery via miR-199b-5p, which might be
attributed to high miR-199b-5p expression in iPSCs-Exo. In addition,
miR-199b-5p overexpression shifted themacrophage polarization in vitro.
NF200, GAP-43, and GFAP were closely associated with neural
regeneration. Therefore, these three protein expression levels could
effectively reflect neuronal regeneration degree in SCI. When miR-
199b-5p was overexpressed, NF200 and GAP-43 expression
were increased and GFAP expression was decreased. Taken together,
miR-199b-5p overexpression improved neural regeneration in SCI.

Hgf, a hepatotropic factor, is a tumor-related gene and participated in
many diseases, such as tumors and the cardiovascular system (Nakamura
andMizuno, 2010; Qu et al., 2020; Xu et al., 2021). For example, Hgf/MET
pathway has become an effective target and biomarker in many cancers
(Moosavi et al., 2019; Tao et al., 2020; Gao et al., 2021). In ischemic injury,
Hgf and MET protect the heart by activating PI3K/Akt and MAPK
signaling pathways (Gallo et al., 2015; Cai et al., 2022). In SCI, serval
studies have proven that PI3K signaling pathway is related tomacrophage
polarization (Hua et al., 2007; Vergadi et al., 2017). Herein, we confirmed
that Hgf was a target of miR-199b-5p. Meanwhile, Hgf expression was
increased in the SCI mice model and LPS-treated BMDM, and Hgf
overexpression activated the PI3K signaling pathway in LPS-treated
BMDM. Furthermore, miR-199b-5p promoted polarization from
M1 macrophages to M2 phenotype via regulating Hgf and PI3K
signaling pathways.

Conclusion

We demonstrated that iPSCs-derived exosomes (iPSCs-Exo)
effectively improved motor function in SCI mice model in vivo and
shifted the polarization from M1 macrophage to M2 phenotype and
regulated related inflammatory factors expression to accelerate the SCI
recovery in LPS-treated BMDM in vitro. Meanwhile, miR-199b-5p was a
key player to modulate the effect of iPSCs-Exo in SCI. miR-199b-5p
overexpression polarized macrophages into M2 phenotype and improved
neural regeneration in SCI. More importantly, Hgf has confirmed a target
of miR-199b-5p and Hgf overexpression activated the PI3K signaling
pathway. Therefore, miR-199b-5p promotedmacrophage polarization and
SCI recovery by regulating Hgf and PI3K signaling pathways. The miR-
199b-5p-bearing iPSCs-Exo might be an effective therapeutic target in the
clinic. We will evaluate its clinical application value in future research.
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