
A novel deep learning
segmentation model for
organoid-based drug screening

Xiaowen Wang1†, Chunyue Wu2†, Shudi Zhang1, Pengfei Yu1*,
Lu Li2, Chunming Guo2 and Rui Li3*
1School of Information, YunnanUniversity, Kunming, China, 2School of Life Science, Yunnan University,
Kunming, China, 3Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Sichuan
Cancer Center, School of Medicine, University of Electronic Science and Technology of China,
Chengdu, China

Organoids are self-organized three-dimensional in vitro cell cultures derived

from stem cells. They can recapitulate organ development, tissue regeneration,

and disease progression and, hence, have broad applications in drug discovery.

However, the lack of effective graphic algorithms for organoid growth analysis

has slowed the development of organoid-based drug screening. In this study,

we take advantage of a bladder cancer organoid system and develop a deep

learning model, the res-double dynamic conv attention U-Net (RDAU-Net)

model, to improve the efficiency and accuracy of organoid-based drug

screenings. In this RDAU-Net model, the dynamic convolution and attention

modules are integrated. The feature-extracting capability of the encoder and

the utilization of multi-scale information are substantially enhanced, and the

semantic gap caused by skip connections has been filled, which substantially

improved its anti-interference ability. A total of 200 images of bladder cancer

organoids on culture days 1, 3, 5, and 7, with or without drug treatment, were

employed for training and testing. Compared with the other variations of the

U-Netmodel, the segmentation indicators, such as Intersection over Union and

dice similarity coefficient, in the RDAU-Net model have been improved. In

addition, this algorithm effectively prevented false identification and missing

identification, while maintaining a smooth edge contour of segmentation

results. In summary, we proposed a novel method based on a deep learning

model which could significantly improve the efficiency and accuracy of high-

throughput drug screening and evaluation using organoids.
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1 Introduction

According to the statistics of theWorld Health Organization, there were 19.29 million

new cancer cases worldwide in 2020, among which 4.57 million cases were in China,

accounting for 23.7% of the total cases. At the same time, the number of deaths caused by

cancer in China reached 3 million in 2020, accounting for 30% of the total number of
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cancer deaths worldwide (Ferlay et al., 2020). Bladder cancer is

the sixth most prevalent cancer in the world, accounting for the

greatest incidence of urogenital tumors in China. The large

number of bladder cancer patients puts great pressure on the

medical system in China as well as other medical facilities around

the world. In response to noxious stimuli or injury of the urinary

bladder, destruction of the urothelium architecture occurs which

may cause cystitis and even bladder cancer (Liu et al., 2015; Qiao

et al., 2014). The first-line treatment of bladder cancer still uses

the primary generation drugs such as cisplatin, to increase DNA

damage in rapidly dividing cells and, thus, destroy tumor cells

(MULLENDERS et al., 2019), (SHIN et al., 2014), (KNOWLES

and HURST, 2015). This treatment is simple, and many patients

show a drug resistance phenomenon. Multidrug resistance is the

result of the combined actions of multiple factors and pathways

(Huang et al., 2020a). Therefore, screening for new anticancer

drugs is critical, but the lack of experimental models limits the

development of this research. With the development of modern

medicine and advances in biological science and technology, we

have ushered in the era of precision medicine. In 2009, the first

mouse intestinal organoid model was established, opening a new

chapter in organoid research (Barker et al., 2007), (Sato et al.,

2009). Since then, organoid research has attracted considerable

attention, and cell cultivation techniques have become

increasingly sophisticated. Organoid research has been

continually rated as one of the top 10 breakthroughs in

scientific and technological development and one of the

annual life science and technology by Science and Nature

Methods (Foley, 2017).

Organoids are widely used to model key characteristics of

organs and tissues to better understand various aspects of human

disease, including cancer. The idea that organoids can model

human pathologies has opened the door to studies on the

feasibility of drug testing and screening applications (Rossi

et al., 2018). As they have the characteristics of cell

proliferation, self-renewal, and genetic stability, organoids can

already mimic organs such as the brain, retina, and gut. Tumor

organoids are directly derived from patients. These tumor cells

are cultured in vitro and can simulate the tumor

microenvironment in vivo, improving the accuracy of tumor

drug screening (Ballard et al., 2019), (Clevers, 2016), (Souza,

2018), in which organoid construction and assessment of drug

effects have been demonstrated. For example, Suk Hyung Lee’s

team tested first-line therapeutic drugs on bladder cancer

patient-derived organoids and found that the results were

consistent with clinical presentation and that the drug

response of the organoids could be validated in xenografts

(Lee et al., 2018). Organoid technology has developed rapidly

in the past decade. Through continuous optimization of culture

methods, researchers have successfully cultivated a variety of

tumor organoids, such as colorectal cancer (Cave et al., 2021),

prostate cancer (Karkampouna et al., 2021), pancreatic cancer

(Huang et al., 2020b), breast cancer (Dekkers et al., 2021), gastric

cancer (Seidlitz et al., 2019), bladder cancer (Yu et al., 2021), and

biliary carcinoma (Yuan et al., 2022).

In recent years, with the continuous development of artificial

intelligence, deep convolutional neural networks represented by

SegNet (Badrinarayanan et al., 2017), VGG (Simonyan and

Zisserman, 2014), GAN (Goodfellow et al., 2014), and ResNet

(He et al., 2016) are widely used in the field of computer vision.

With the help of the convolutional network, significant progress

has been made in the detection and classification of medical

images, such as the detection and classification of fundus

retinopathy (Pratt et al., 2016), the detection of tumor targets

(BejnordiEhteshami et al., 2017), and the classification of lung

nodules (Kumar et al., 2015), as well as other applications. This

study aims to help drug screening by automatically identifying

and segmenting organoids in images, calculating their area, and

observing and recording their growth status. The current image

segmentation methods are divided into two categories:

traditional methods and deep learning-based segmentation

methods. Traditional methods include threshold-based

segmentation, watershed segmentation, and morphological

operations (Jung and Kim, 2010). The advantage of the

traditional method is that it does not require experts to

manually annotate images and segmentation can be achieved

quickly. However, it is difficult to find a suitable and reliable

threshold in a complex background, which significantly reduces

the segmentation accuracy of the algorithm, and thus such

methods have significant limitations.

With the rapid development of deep learning techniques,

various deep learning techniques based on segmentation

algorithms are being applied to medical image segmentation.

Shelhamer et al. (Long et al., 2015) used fully convolution

networks (FCNs) in 2015 to perform pixel-level, end-to-end

image segmentation tasks. FCNs can be regarded as the first

work of network models in image segmentation. Subsequently,

Ronneberger et al. (2015) proposed U-Net based on the FCN.

The skip connection of this model can adequately compensate for

the information loss problem in the down-sampling process of

the FCN. Due to its simple structure, few parameters, and strong

plasticity, U-Net is widely used in various image segmentation

tasks, especially for medical image segmentation tasks with few

samples. However, the segmentation effect of some detailed parts

in medical images is still lacking. For example, in the retinal

blood vessel segmentation task, the segmentation of small blood

vessels at their termini may be broken or missing (Wang et al.,

2022). Some researchers have improved upon the basic

framework of U-Net. Quan et al. (2021) combined the U-Net

with the residual structure (He et al., 2016), while improving the

skip connection to construct a deeper model for segmentation.

Some researchers have also gradually added attention

mechanisms (Mnih et al., 2014), recurrent neural networks,

and transformer structures (Vaswani et al., 2017) to

segmentation networks. Attention U-Net (Oktay et al., 2018)

adds a gate control at the skip connection, aiming to solve the
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semantic gap at feature splicing. R2U-Net (Nasrin et al., 2019)

replaces the convolution module in U-Net with a convolution

module with loop and residuals and enhances the performance of

the model using feature accumulation. The transformer model

was originally used in the field of natural language processing

(NLP). Because of its excellent long-distance modeling

capabilities to overcome the limitations of the convolutional

network, some researchers now use the transformer model

structure for computer vision. For instance, Chen et al. (2021)

combined the transformer model with U-Net to construct

TransUNet and achieved excellent segmentation results for

the multi-organ segmentation dataset Synapse (which included

eight abdominal organs: aorta, gallbladder, spleen, and kidney .).

In this study, we proposed a novel deep learning

segmentation model. Our model is based on the U-Net

framework, which has improved feature extraction and

recovery capability. After the segmentation of the organoids in

the input image, the area of all organoids in the image is

calculated to reflect the growth rate of organoids and evaluate

the effect of related anticancer drugs. Figure 1 shows the main

research steps. In the conventional method, the whole process is

performed manually. In our method, the main steps can be

performed automatically by the computer (steps in blue dotted

line), which considerably improves the efficiency of drug

screening.

2 Materials and methods

2.1 Datasets and data preprocessing

In this study, the dataset used for analysis consists of

organoid images of bladder cancer cell lines treated with

different drugs for 1–7 days. We used the human bladder

cancer cell line SW780, a cell line established by A. Leibovitz

in 1974 from a first-stage transitional cell tumor, for 3D culture.

When the cells were passaged, approximately 2000 cells were

placed in Matrigel (R&D Systems) in a 24-well plate. The

Matrigel drops were solidified for 10 min at 37°C and 5%

CO2. Upon Matrigel solidification, 600uL of the

SW780 medium was added to each well. The medium is the

RPMI 1640 medium supplemented with 1% penicillin/

streptomycin, 1% GlutaMAX, 1% HEPES, and 10% FBS. The

drugs used, RA and 14, two derivatives of vitamin A, were diluted

in the medium at a specific concentration, and the medium was

replaced every 2–3 days. Images of organoids were captured by a

Leica microscope at ×5 magnification. The images of bladder

organoids collected in our study are characterized by uneven

illumination, blurred boundary contours of some organoids,

mutual adhesion of multiple organoids, and high background

complexity. The 5X images were used for area statistics and

analysis, which is also the dataset used in this study. The dataset

at this stage contained 200 images, with sizes of 1944 ×

2,592 pixels and 768 × 1,024 pixels. Deep learning-based

image segmentation requires experts to manually draw labels

for the model to learn. In this study, labels are created using the

LabelMe software. First, the organoids to be segmented are

marked and regenerated into a black and white binary image,

as shown in Figure 2. Figure 2A shows the image of organoids on

the third day. It can be observed that there are a large number of

organoid ghosts and bubbles in the figure, which greatly increases

the difficulty of model segmentation. The red-marked regions in

Figure 2B are the organoids that have been manually identified.

Figure 2C shows the final label for the model to learn. We

preprocessed the images using a non-local mean filter (Buades

et al., 2005) method to enhance the contrast between the

organoids and the background, as well as reduce the

interference of organoid ghosting, as shown in Figure 3. The

filter uses the entire image for denoising by searching for similar

regions in the image in terms of image blocks and then averages

these regions to better filter out the Gaussian noise in the image.

2.2 Methods

2.2.1 Model structure
In this study, we propose a res-double dynamic conv

attention U-Net (RDAU-Net) model, using U-Net as the basic

FIGURE 1
Main steps of the automated drug screening assessment in organoids. The steps in the blue dotted line show the traditional, manual method,
while in our method these steps are performed automatically by the computer.
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framework. The U-Net model structure is similar to sequence to

sequence (Sutskever and Oriol VinyalsQuocLe, 2014), which is

mainly composed of an encoder, decoder, and skip connections.

The encoder performs feature extraction on the input image,

which consists alternately of double-layer convolution and

down-sampling. Accordingly, the decoder gradually recovers

the extracted features to the same size as the original input

image through up-sampling, which alternately consists of a

double-layer convolution and up-sampling. The intermediate

skip connections fuse the low-level features of the encoder

part with the high-level features of the decoder part to reduce

the information loss in the down-sampling process to obtain

higher segmentation accuracy. Considering that most of the

images in this dataset are of 1944 × 2,592 pixels, the receptive

field of the double-layer convolution module of the original

U-Net network needs to be enlarged. For this purpose, this

study combines the residual structure and dilation rate

dynamic convolution module (Chen et al., 2020) to replace

the original double-layer convolution module and to increase

the receptive field of the convolution module and the feature

extraction ability of the encoder. In addition, the original max

pooling down-sampling is replaced by a convolution with a

convolution kernel size of five and a stride of 2, to further

reduce the information loss in the down-sampling part of the

encoder. Coordinate attention (CA) (Hou et al., 2021) is added

after the dynamic convolution module of the last two layers of the

encoder to refine and strengthen the extracted features. The skip

connection part uses the attention gates in attention U-Net

(Oktay et al., 2018) to weigh the features, suppress irrelevant

regional features, and reduce the semantic gap. The decoder first

fuses multi-scale feature information and convolves the output of

each decoder layer, and then a concatenation operation is

performed to adequately utilize the information at different

scales in each layer of the decoder. It can combine high-level

FIGURE 2
Steps for making labels. (A) Original image of organoids on the third day. (B) Manual labeling of organoids. (C) Label generation by LabelMe
software for model learning. The white regions are the target organoids, and the black region is the background.

FIGURE 3
Comparison before and after non-local mean filtering. (A) Original image of organoids. (B) Image of organoids after preprocessing using the
non-local mean filter. It can be observed that the background of the processed image is smoother.
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and low-level features for better feature recovery. Figure 4 shows

the structure of the improved model. Each module is described in

detail in the following sections.

2.2.2 Res-double dynamic convolution
To allow the model to accurately capture the feature

information of organoids, we applied dynamic convolution (Dy

Conv). The classic standard convolution can also be called static

convolution, whose parameters are unchanged and shared. In

convolutional networks, the attention module generally acts on

the feature map, weighing the channel and spatial position of the

feature map. Dy Conv aggregates multiple parallel convolution

kernels dynamically based on their attentions, which are input

dependent. In other words, Dy Conv weighs the convolution

kernel, and different convolution kernels can be used for

different inputs. The purpose of Dy Conv is to find a balance

between model performance and computational complexity.

Usually, the way to improve the performance of convolutional

networks is to widen and deepen, which consumes more

computation. The Dy Conv module uses a more economical

way to enhance network performance, and its structure is

shown in Figure 5. The attention module in the structure is

highly similar to squeeze-and-excitation networks (SENet) (Hu

et al., 2018). SENet is to add channel attention, while Dy Conv is to

add attention to the convolution kernel. The standard convolution

is denoted as follows:

y � g WTx + b( ), (1)

where W and b are the weight matrix and the bias vector,

respectively, and g is the activation function. The Dy Conv

aggregates multiple functions to define, as shown in the

following equation:

y � g ~W
T
x( )x + ~b x( )( )

~W x( ) � ∑K

k�1πk x( ) ~Wk , ~b x( ) � ∑K

k�1πk x( )~bk,
s.t.0≤ πk x( )≤ 1, ∑K

k�1πk x( ) � 1

(2)

where πk is the attention weight of the k-th function ~W
T
x + ~b(x),

and πk varies with each input x. ~W(x) and ~b(x) are the weight
matrix and bias vectors, respectively, which are formed by

aggregating k parallel convolution kernels by attention

weighting. They represent the best aggregation of linear

models for a given input, and as the aggregated model is a

non-linear function, Dy Conv has more feature expression

capabilities than standard convolution.

To accurately segment organoids, the model should have a

strong ability to learn global features and focus on target regions

in complex backgrounds. Therefore, we applied the double-layer

convolution module, which is composed of alternating three

batch normalization (BN), three rectified linear unit (ReLU)

activation functions, and two dynamic convolutions. The

double-layer convolution is a res-double Dy Conv module

structure, as shown in Figure 6. Although it adds a small

amount of computational overhead, it can effectively enhance

the feature extraction ability of the model. At the same time, the

dilation rate is adopted to the dynamic convolution. This

FIGURE 4
Schematic of the RADU-Net model structure.
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operation can further expand the convolution receptive field of

the convolution without increasing the computational

complexity. Combining convolutions with different dilation

rates can also improve the model’s ability to learn multi-scale

information. After experiments, the double-layer convolution

module with a combination of dilation rates {1, 2} works best on

this dataset. In addition, the residual structure is introduced to

avoid performance degradation due to a large number of model

layers, which makes the model more stable and accelerates

convergence.

2.2.3 Coordinate attention
The attention mechanism plays a crucial role in deep learning,

which enables the model to suppress irrelevant region features and

reinforce the target region features. As a result, we apply the

attention mechanism in this study. The attention mechanism can

improve the model’s ability to recognize target organoids and

background artifact organoids. Two kinds of attention are used

here: coordinate attention (CA) at the bottom of the model encoder

and attention gate (AG) at the skip connections.

The convolutional network is limited by convolution. It is

difficult to capture long-range dependencies and global

information cannot be effectively utilized, so the CA

module is introduced to solve these issues. First, global

average pooling is performed on both the height and width

directions of the input feature maps to obtain one-

dimensional feature maps in both directions, which enables

the attention module to capture long-range spatial

interactions with precise location information. The

structure of the CA module is shown in Figure 7.

Assuming that the input size of the current feature map is

C × H × W , global average pooling is performed on the height

and width directions of the feature map, respectively. Thus, the

output zhc (h) of the c-th channel at height h and output zwc (w) of
the c-th channel at width w are written as follows:

zhc h( ) � 1
W

∑
0≤ i≤W

xc h, i( ), (3)

zwc w( ) � 1
H

∑
0≤ j≤H

xc j,w( ). (4)

Subsequently, they are concatenated in the spatial dimension,

and then the convolution is used to reduce the number of

channels and the activation function is applied to perform

non-linear mapping, as shown in the following equation:

f � δ F1 zhc , z
w
c[ ]( )( ), (5)

where [zhc , z
w
c ] denotes the concatenation operation along the

spatial dimension, F1 represents the convolution operation, and

δ is the non-linear mapping of the ReLU function. f is then

decomposed into two separate tensors f h and f w along the spatial

dimension in the height and width directions. The two are

restored to have the same number of channels as the original

input feature map using 1 × 1 convolution transformations Fh

and Fw. After the weight coefficient is compressed by the sigmoid

function σ, it is finally multiplied by the original input image, as

shown in the following equations:

FIGURE 5
Schematic of the dynamic convolution module (Chen et al., 2020).
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ghc � σ Fh f h( )( ), (6)
gwc � σ Fw f w( )( ), (7)

yc i, j( ) � xc i, j( ) × ghc × gwc , (8)

where ghc and gwc are the attention weights in the height dimension

and width dimension, respectively. yc(i, j) is output of the attention
module. The CA module captures not only cross-channel

information, but also features map spatial location information.

2.2.4 Attention gate
The AG (attention gate) module is derived from the attention

U-Net to solve the semantic gap between high-level features and

low-level features at the skip connection. Specifically, a gating

signal is added to the encoder and decoder feature maps as a way

to control the importance of features at different spatial locations

in the feature maps. The AG also filters out and suppresses

feature responses in irrelevant regions. The module structure is

shown in Figure 8.

The feature maps of the decoder and the feature maps of

the previous layers of the encoder are used as the input to the

module. Since the inputs come from different layers of the

model, the required size and number of channels of the feature

maps are adjusted to be the same. The element-wise addition

is performed on two feature maps. This process can enhance

the same regions of interest for input xl and g . Then the same

regions of interest are enhanced by the ReLU activation

function, and irrelevant regions are suppressed. Finally, the

weight coefficient is calculated by the sigmoid function, and

resampling restores the weight coefficient matrix to the same

size as the input xl and then multiplies it to get x̂l . The AG

module adopts the idea of soft-attention, where the attention

weight coefficient can be continuously adjusted as the model is

trained. As shown in Figure 9B, the model without attention

not only has a poor ability to capture the target regions but

also is easily disturbed by the ghosting of organoids in the

image. Also, Figure 9C shows that after adding the CA module

and the AG module, the model can better focus on the target

organoid regions, and the anti-interference ability is enhanced

to achieve the effect of accurate segmentation.

2.2.5 Experimental setting
In this study, 200 images with labels drawn by experts are

divided into three sets: training set, validation set, and test set

with a ratio of 14:3:3. Adaptive moment estimation (Adam) is

used for training, and the loss function is weighted binary

cross-entropy, the initial learning rate is 0.001, and the

maximum number of iterations is 80. Considering that

most of the pixels in an image of organoids to be

segmented are background pixels, the pixels in the target

region only account for an extremely small number. In this

case of unbalanced pixel distribution, it will make the model

heavily biased toward the background using the general cross-

entropy function, resulting in a decrease in accuracy. The

weighted cross-entropy function adds a weight parameter to

each category based on the cross-entropy function to weight

the positive samples, as shown in Equation 9:

WBCE p, p̂( ) � − βplog p̂(( ) + 1 − p( )log (1 − p̂)), (9)

where β is the weight parameter which is adjusted to be less

than one to reduce the number of false positives, p is the actual
value, and p̂ is the predicted value. All experiments are based

on the PyTorch framework of Python3 to build the RADU-

Net model. The experimental environment is the

Ubuntu20.04 operating system, with an I9 7900 CPU and

an NVIDIA RTX 3090 GPU with 24 GB of video memory.

FIGURE 6
Schematic of the res-double dynamic convolution module.
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2.2.6 Evaluation indicators
The research applies five evaluation indicators to assess the

performance of the model, including accuracy (Acc), precision,

recall, Intersection over Union (IoU), and dice similarity

coefficient (DSC). The Acc represents the proportion of

correctly classified pixels to the total pixels. The precision

represents the proportion of correctly classified organoid

pixels to the total predicted organoid pixels. The recall

represents the proportion of correctly classified organoid

pixels to the actual total organoid pixels. The IoU and DSC

measure the similarity between the segmentation result and

the label. These indicators’ calculations are shown as follows,

FIGURE 7
Schematic of the CA module (Hou et al., 2021).

FIGURE 8
Schematic of the AG module (Oktay et al., 2018).
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and the meanings of the symbols in the formula (10) are

shown in Table 1.

Accuracy � TN + TP

TN + TP + FN + FP
,

Precision � TP

TP + FP
,

Recall � TP

TP + FN
,

IoU � TP

TP + FP + FN
,

DSC � 2TP

2TP + FP + FN
.

(10)

3 Results

In this section, the experiments are carried out to verify the

superiority of the proposed RDAU-Net method. The data used

in the following models’ segmentation performance

comparison experiments are from the test set. To reduce

random errors, all experiments in this study were repeated

five times.

3.1 The RDAU-Net model

The segmentation results of themodels are shown in Table 2 and

Figure 10. Here, the segmentation indicators of the eight models are

compared, namely, U-Net, attention U-Net, U-Net++ (Li et al.,

2020), MultiResU-Net (Ibtehaz and Sohel Rahman, 2020),

RDAU-Net model, and its three ablation models. The

segmentation accuracy of the RDAU-Net model on the test set

can reachAcc of 99.32%, recall of 97.65%, precision of 86.73%, IoU of

90.23%, and DSC of 90.14%. The IoU of our model is 4.00%, 1.51%,

1.08%, and 2.95%higher thanU-Net, attentionU-Net, U-Net++, and

MultiResU-Net, respectively. TheDSC of our model is 5.40%, 2.30%,

2.47%, and 4.20%higher thanU-Net, attentionU-Net, U-Net++, and

MultiResU-Net. On precision, it outperforms U-Net, attention

U-Net, U-Net++, and MultiResU-Net by 10.23%, 4.10%, 4.43%,

and 7.23%, respectively. These comparisons of the aforementioned

indicators are shown in Figure 11.

These indicators show that the improved RDAU-Net model

has better segmentation accuracy. Reducing false identification

when the image has a complex background is one of the

difficulties in this study. Since the two indicators of recall and

precision have a restrictive relationship, the addition of drugs was

used to observe the growth status of organoids to reflect whether

FIGURE 9
Heatmap with or without attention module. (A) Original image of organoids. (B) Heatmap without attention. (C) Heatmap with attention. The
model with added attention is able to better focus on the target region.

TABLE 1 Meaning of symbols in formula (10).

Symbol Meaning

Tp Number of correctly classified organoid pixels

TN Number of correctly classified background pixels

FP Number of background pixels misclassified as organoids

FN Number of organoid pixels misclassified as background
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the added drug inhibits growth. False identification is a large

error in the area of a calculation of organoids that cannot be truly

and objectively reflected in organoid growth status. Therefore,

this study focused on reducing the occurrence of false

identification, that is, improving precision as much as possible

under the condition of ensuring recall. It can be seen from the

precision indicator that our model is increased by 10.23%

compared with the U-Net basic model, which indicates that

the phenomenon of model false identification is well controlled.

3.2 Ablation experiments

In the ablation experiments, the role of each module in the

RDAU-Net model structure was studied, including the ablation

attention mechanism, residual dynamic convolution module,

and decoder multi-scale feature fusion. The three ablation

models obtained are RDAU-Net_w/A of the ablation attention

module, the RDAU-Net_w/D of the ablation residual dynamic

convolution module, and the RDAU-Net_w/C of multi-scale

feature fusion of the ablation decoder. The segmentation

results and performance indicators of the ablation

experimental model are shown in Figure 10 and Table 2,

respectively. Compared with the basic model U-Net, the three

ablation models have improved the performance of RDAU-

Net_w/A and RDAU-Net_w/C which are closest to the

segmentation performance of RDAU-Net. By comparison, it is

found that the addition of the residual dynamic convolution

module leads to the most obvious improvement in model

performance, and compared with other modules, dynamic

TABLE 2 Segmentation indicators for eight models on the test set.

` Acc (%) Precision (%) Recall (%) DSC (%) IoU (%)

U-Net 99.98 76.50 95.68 84.74 86.23

Attention U-Net 99.14 82.63 93.75 87.84 88.72

MultiResU-Net 99.02 79.50 94.73 85.94 87.28

U-Net++ 99.11 82.30 93.55 87.67 89.15

RDAU-Net_w/A 99.27 83.03 97.09 89.51 90.13

RDAU-Net_w/C 99.26 83.53 96.31 89.47 90.09

RDAU-Net_w/D 99.17 79.97 97.27 87.78 88.68

RDAU-Net 99.32 86.73 97.65 90.14 90.23

The bold black is to highlight the contrast between our model and other models.

FIGURE 10
Segmentation results of different models for 1-, 3-, 5-, and 7-day images of organoids.
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convolution can effectively reduce the probability of model

misidentification. The RDAU-Net_w/D model is without the

residual dynamic convolution modules, and its precision is 3.06%

and 3.56% lower than RDAU-Net_w/A and RDAU-Net_w/C,

respectively. The comparison results are shown in Figure 12.

To more clearly observe the model effect, the results of the

expert label and the RDAU-Net model segmentation are

restored to the original image for comparison. As shown in

Figure 13, the segmentation result of the model is almost

equivalent to the level of expert annotation, and the

phenomenon of false identification is well controlled. As

well, the improved RDAU-Net model can reduce the

occurrence of false identification, and at the same time can

reduce the phenomenon of missing identification and

boundary defection of the target organoid region.

3.3 Drug screening evaluation

Drug screening evaluation is one of the essential steps in

drug development. It takes multiple experiments to show that

screening drugs are effective in treating certain diseases (Tan

et al., 2015), (Tan et al., 2017), (Tan et al., 2013). After the

completion of the model training, a drug screening evaluation

was performed. A Python program automatically calculated

the area of organoids in the segmented organoid image and

drew violin plots to document the growth status of organoids,

which can then be used to determine the effectiveness of the

drug. The violin plot in Figure 14 reflects the growth of the

organoid in the three environments. The dataset used here for

drug screening evaluation is not from the model training and

testing dataset, but from additional data. Three sets of

experiments are shown, CTR, RA, and 14. RA and 14 are

two derivatives of vitamin A, and the CTR group is without

drug treatment. Each set of experiments contained organoid

images on days 1, 3, 5, and 7, with four or five organoid images

per day, and 70 to 160 organoids per image. To make the

comparison more intuitive and convenient, a quartile

distribution map has been added to the violin plot, and the

dotted line in the middle indicates the median of the data in

this group. It can be concluded that 1–3 days is the initial

growth stage of organoids, and there is no obvious growth

difference between drug-treated organoids and non-drug-

treated organoids. The differences gradually appear after

the fifth day. The CTR group was not treated with drugs,

and its organoid area peak and median were higher than those

in the RA groups and the 14 groups. This suggests that these

two drugs have a certain inhibitory effect on the growth of

organoids from bladder cancer cell lines. We also analyzed the

significance of differences in the distribution of organoids

using the t-test, testing the significance of {CTR group and RA

group} and {CTR group and 14 group} separately. There was

no significant difference between the two groups on the first

day, indicating that there was no significant difference in the

area of plated organoids, which ensured the accuracy of the

subsequent measurements. Only on the seventh day of culture,

were there highly significant differences, showing that drug

treatment can reduce the organoids area. To ensure the rigor

of the experiment, the phenomenon reflected in Figure 14

must be confirmed by professionals in the relevant field to be

FIGURE 11
Comparison of segmentation indicators (precision, IoU, and
DSC) of five models. Among the five models, RDAU-Net can
achieve the best segmentation indicators.

FIGURE 12
Comparison of segmentation indicators (precision, IoU, and
DSC) of ablation models. Each of the added modules can improve
the performance of the U-Net.
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correct and reliable. Therefore, by using the RDAU-Net

model, we can automate the analysis of anti-cancer drug

effects on organoids. By analogy, we can drive the

development of anti-cancer drugs by screening tests for a

broader variety of drugs in this way.

4 Discussion

The RDAU-Net model in this study is an improvement on

the U-Net model to solve the shortcomings of the original model

in organoid image segmentation. For example, the accuracy of

organoid boundary segmentation is low, the boundary is not

smooth enough, the anti-interference ability is poor, and the

bubbles and organoids in the background are incorrectly

identified. These issues have reduced the reliability of drug

screening. The reasons for these problems are as follows: 1)

the original double-layer convolutional feature extraction ability

is not strong, and it is impossible to use multi-scale information

for learning. 2) The original U-Net lacks attention modules, so it

is easy to produce misidentification in the background with

complex data, resulting in the reduction of segmentation

accuracy. 3) There is a semantic gap between the high-level

characteristics of the decoder and the low-level aspects of the

FIGURE 13
Segmentation results of the RDAU-Net model compared with manual annotation. (A) Manual labeling of organoids. (B) RDAU-Net model
labeling of organoids (the red markers indicate targeted organoids). The comparison between Figure 13A and Figure 13B shows that the result of our
model labeling is already very close to that of manual labeling.

FIGURE 14
Drug screening evaluation by the RDAU-Net model. (A) Area statistics of the organoid in the images (only a small part is shown here). (B) Violin
plot shows the area changes of organoids in CTR, RA, and 14 groups at days 1, 3, 5 and 7. The area data statistics of the organoids of different
treatments on the same day can clearly show the difference between the size of the organoids (adding a quartile distribution map, the dotted line in
the middle indicates the median of the data in this group).
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encoder, due to which the recovery ability of the features is not

strong. This study proposes corresponding improvement

measures to overcome these problems. First, the original

convolution is replaced by a dynamic convolution with residual

connections. The organoids in the images are of different sizes and

shapes, which makes segmentation difficult. The dynamic

convolution automatically adjusts the parameters of the

convolutional kernel based on the input, enhancing the

adaptability of the model. It can achieve better segmentation

results in the face of various organoids. Residual connections can

accelerate model convergence and strengthen the stability of model

training. Moreover, it can avoid vanishing gradients and gradient

explosion. Adding different combinations of dilation rates to

dynamic convolution can extract feature information of different

scales by convolution, and fusing them significantly affects the

segmentation of small-sized organoids. Second, in the face of the

interference of background information, this study adds an attention

mechanism to deal with it, which can not only strengthen the weight

of target area features and suppress irrelevant areas but also capture

long-distance information through the attentionmodule, so that the

model can make better use of the global information. From the

comparison of U-Net and attention U-Net, RDAU-Net_w/A, and

RDAU-Net in Table 2, it can be found that the precision indicator

has been improved after adding the attention module. The higher

the precision, the fewer false identifications the model has of

organoids, and the stronger the model’s anti-interference ability

to background information. Finally, the multi-scale feature

fusion part of the decoder uses the multi-scale information to

enhance the feature recovery ability of the decoder so that the

model can perform better segmentation. It can be observed

from Table 2 that compared with RDAU-Net_w/C, the recall

indicator of RDAU-Net is improved. The recall indicator can

reflect the miss recognition of the model. After observing the

model, it is easy to miss the organoids with small areas and

blurred boundaries. The multi-scale fusion of the decoder can

effectively overcome this disadvantage.

The current research results can be used for drug screening

and comparison in drug development. The use of computer-

aided methods can significantly increase the efficiency of

research development and reduce researchers’ workload. In

contrast, this study only takes 15–20 min to segment

30 organoid images and draw a violin plot reflecting their

growth patterns. It is much faster than the 4–6 h taken by

manual screening and comparison. Although this study

focused on bladder cancer cell line organoids, it could also

be applied to drug screening and evaluation of other

neoplastic cancer types.

5 Conclusion

In this study, we aim at the problem of drug screening

using organoids derived from bladder cancer cell lines and

propose a novel segmentation method based on deep

learning. The proposed RDAU-Net model was developed

based on the U-Net network. This novel model fills the

semantic gap caused by jump connections and directly

combines low-level and high-level features. In addition, the

feature fusion of res-double Dy Conv modules and CA

modules, as well as the decoder output portion, give the

model the ability to extract multi-scale features and focus

more on the target region. The application of artificial

intelligence in anti-cancer drug screening here not only

significantly reduces the time and economic cost of drug

screening and study but also improves work efficiency and

accuracy, suggesting a potential and broad prospect to apply

this method in drug research and development. It was also

found here that as the days passed, some of the organoids

gradually aggregated together, making it difficult to

distinguish them in a two-dimensional plane. In future, we

plan to develop a 3D model to segment and reconstruct the

organoids in 3D and calculate the volume of each organoid

for the drug screening evaluation.
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