
APC/C-Cdh1-targeted
substrates as potential therapies
for Alzheimer’s disease

Rebeca Lapresa1,2†, Jesus Agulla1,2†, Juan P. Bolaños1,2 and
Angeles Almeida1,2*
1Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain,
2Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of
Salamanca, Salamanca, Spain

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and

the main cause of dementia in the elderly. The disease has a high impact on

individuals and their families and represents a growing public health and socio-

economic burden. Despite this, there is no effective treatment options to cure

or modify the disease progression, highlighting the need to identify new

therapeutic targets. Synapse dysfunction and loss are early pathological

features of Alzheimer’s disease, correlate with cognitive decline and proceed

with neuronal death. In the last years, the E3 ubiquitin ligase anaphase

promoting complex/cyclosome (APC/C) has emerged as a key regulator of

synaptic plasticity and neuronal survival. To this end, the ligase binds Cdh1, its

main activator in the brain. However, inactivation of the anaphase promoting

complex/cyclosome-Cdh1 complex triggers dendrite disruption, synapse loss

and neurodegeneration, leading to memory and learning impairment.

Interestingly, oligomerized amyloid-β (Aβ) peptide, which is involved in

Alzheimer’s disease onset and progression, induces Cdh1 phosphorylation

leading to anaphase promoting complex/cyclosome-Cdh1 complex

disassembly and inactivation. This causes the aberrant accumulation of

several anaphase promoting complex/cyclosome-Cdh1 targets in the

damaged areas of Alzheimer’s disease brains, including Rock2 and Cyclin B1.

Here we review the function of anaphase promoting complex/cyclosome-

Cdh1 dysregulation in the pathogenesis of Alzheimer’s disease, paying particular

attention in the neurotoxicity induced by its molecular targets. Understanding

the role of anaphase promoting complex/cyclosome-Cdh1-targeted substrates

in Alzheimer’s disease may be useful in the development of new effective

disease-modifying treatments for this neurological disorder.
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Introduction

Alzheimer Disease’s (AD) is a progressive neurodegenerative

disorder and the leading cause of dementia in the adult, affecting

around 35 million patients. The number of people with AD is

growing rapidly and it is estimated that the number of patients

with dementia will double in Europe and triple worldwide, by

2050 (Scheltens et al., 2021). Increasing prevalence coupled with

a lack of effective treatments make this disease an important

socio-economic problem for states and families (Cummings

2021).

The irreversible brain damage is the result of

neurodegeneration in selective brain areas, primarily

hippocampus and cortex, underlying the gradual decline of

cognitive function and daily living activities (Mrdjen et al.,

2019). The two major histopathological hallmarks of AD are

protein aggregates of amyloid-beta (Aβ) peptide forming

extracellular senile plaques and intracellular neurofibrillary

tangles (NFT) of hyperphosphorylated tau protein (Scheltens

et al., 2021). Although senile plaques are not correlated with

cognitive decline, Aβ oligomers formed during the peptide

aggregation are synaptotoxic and trigger disease progression

(Ferreira et al., 2015). The accumulation of these oligomers

starts years before AD clinical symptoms (Panza et al., 2019).

In this context, synaptic plasticity impairment is an early

pathological event in AD and strongly correlates with the

cognitive status of the patient. Moreover, synaptic dysfunction

and loss usually arises in prodromal or mild cognitive

impairment (MCI) stages of the AD continuum. This synaptic

loss is followed by neurodegeneration and cognitive decline

progression in later stages of the disease (Jackson et al., 2019;

Karisetty et al., 2020). Aβ aggregates trigger synaptic dysfunction
mainly through excitotoxicity via different mechanisms,

including Ca2+ influx into the neurons, internalization, and

removal of glutamate receptors (GluRs), mitochondrial

dysfunction, energy deficit, and oxidative/nitrosative stress, all

leading to synaptic plasticity disruption and neurodegeneration.

Long-term potentiation (LTP) and long-term depression (LTD),

which are the two primary forms of synaptic plasticity, are altered

in AD (Zhang et al., 2022).

The ubiquitin-proteasome system (UPS) controls protein

homeostasis, which is essential for key cellular proccesses,

including cell cycle, cell survival, metabolism, inflammation,

and synaptic plasticity, among others (Dantuma and Bott

2014; Cheng et al., 2018). The role of the UPS on synaptic

plasticity has been confirmed by the fact that pharmacologic or

genetic inhibition of the UPS causes defects in the LTP and LTP-

related behaviour (Jiang et al., 1998; Fonseca et al., 2006).

Impaired UPS has been linked with both the early and late

stages of AD. Specifically, Cdh1, the main activator of the

E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome

(APC/C) in neurons, is a key regulator of synaptic plasticity and

neuronal survival (Almeida 2012; Huang and Bonni 2016; Bobo-

Jimenez et al., 2017). Cdh1 deficiency triggers APC/C

inactivation leading to synapse loss, neurodegeneration and

memory and learning impairment (Gieffers et al., 1999;

Almeida et al., 2005). Moreover, APC/C-Cdh1 activity is

impaired in AD models and APC/C-Cdh1 targets accumulate

in damaged areas of AD brains (Fuchsberger et al., 2017), which

evidence an association between APC/C-Cdh1 activity and AD

pathology. Then, the APC/C-Cdh1 signalling pathway may

provide novel therapeutic strategies to modify AD progression.

Structure and regulation of APC/
C-Cdh1 in neurons

The APC/C complex is a cullin-RING E3 ubiquitin ligase

that regulates cell cycle progression from M phase to the onset

of S phase by targeting the degradation of cyclins and other

regulatory proteins (Peters 2006; Watson et al., 2019). In

vertebrates, the APC/C complex is composed by

19 subunits, distributed into three structural sub-

complexes: the scaffolding platform, the tetratricopeptide

repeat (TPR) arm and the catalytic core. The scaffolding

platform connects the TPR arm to the catalytic core, which

contains the catalytic subunits APC2, APC10, and APC11.

The activation of APC/C requires the temporal and sequential

binding of either Cdc20 or Cdh1, which are WD40-domain

co-activator proteins that recruit APC/C substrates and

increase APC/C specific activity by promoting its

interaction with the E2 enzymes UbcH10 and UBE2S

(Zhou et al., 2016; Watson et al., 2019). Despite these two

activators, APC/C activity is also modulated by

posttranslational modifications, including phosphorylation

and acetylation, and inhibited by the mitotic checkpoint

complex (MCC) and interphase early mitotic inhibitor 1

(Emi1) during cell cycle progression (Zhou et al., 2016).

Briefly, cyclin-dependent kinases (Cdk) phosphorylate

several APC/C subunits, hence promoting its association

with Cdc20 in early mitosis. In contrast,

Cdh1 phosphorylation by Cdks disrupts its interaction with

APC/C. At late mitosis, Cdh1 dephosphorylation binds to and

activates APC/C, ensuing Cdc20 inactivation through APC/

C-dependent ubiquitination. Cdh1 maintains APC/C active

from late anaphase through G1 phase (Zhou et al., 2016).

Hyperacetylation of Cdc20 or Cdh1 inhibits APC/C activity

(Kim et al., 2011).

The APC/C complex recognize its substrates through short

destruction motifs or degrons, located at disordered regions of

the substrate. The degrons are the D box (RxxLx[D/E][Ø]xN[N/

S]) (Glotzer et al., 1991), the KEN box (residues KEN) (Pfleger

and Kirschner 2000) and the ABBA motif (Fx[ILV][FY]x[DE])

(Di Fiore et al., 2015). Other non-canonical degrons are

modifications of D boxes and KEN boxes. However, most

proteins containing these degron consensus are unlikely to be
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targeted by APC/C because the degron must be available for

recognition by the ligase (Davey and Morgan 2016).

In neurons, the main activator of APC/C is Cdh1 (Gieffers

et al., 1999; Almeida et al., 2005; Bobo-Jimenez et al., 2017). APC/

C-Cdh1 regulates crucial functions in the nervous system such as

axonal growth (Konishi et al., 2004) synaptic size and plasticity

(van Roessel et al., 2004; Fu et al., 2011; Huang et al., 2015; Bobo-

Jimenez et al., 2017), neurogenesis (Delgado-Esteban et al., 2013),

neuronal survival (Almeida et al., 2005; Bobo-Jimenez et al.,

2017), and metabolism (Herrero-Mendez et al., 2009). APC/

C-Cdh1 activity is tightly regulated in the brain by

phosphorylation, subcellular localization, and protein stability.

As occurs in proliferating cells (Zhou et al., 2016),

dephosphorylated Cdh1 is mainly located in the nucleus

where it binds APC catalytic subunits and activate APC/C

(Maestre et al., 2008; Veas-Perez de Tudela et al., 2015b). In

contrast, Cdh1 phosphorylation prevents its interaction with the

complex and triggers Cdh1 translocation from the nucleus to the

cytosol, all leading to APC/C-Cdh1 inactivation. We previously

identified Cdk5 as the kinase responsible for

Cdh1 phosphorylation in neurons (Maestre et al., 2008).

Cdh1 protein stability is also autoregulated by the APC/

C-proteasome pathway. Moreover, Cdh1 phosphorylation

triggers a positive loop of APC/C inhibition leading to

inactive Cdh1 stabilization in the cytosol (Veas-Perez de

Tudela et al., 2015b) (Figure 1). Beside APC/C-Cdh1, the

E3 ubiquitin ligase Skp1 Cullin1 F-box (SCF) also promotes

Cdh1 instability in the nucleus (Listovsky et al., 2004; Nagai et al.,

2018). Cdh1 degradation is promoted by forced localization of

Cdh1 into the nucleus (Listovsky et al., 2004; Nagai et al., 2018).

We previously identified a Asp187Gly mutation in Cdh1 that

confines the protein into the nucleus, where it is ubiquitylated by

SCF (Nagai et al., 2018), explaining the higher instability of

mutated Cdh1 (Rodriguez et al., 2019).

APC/C-Cdh1 function in
neurodegeneration

Cdh1 is essential for neuronal plasticity and survival (Almeida

2012; Huang and Bonni 2016). In neurons, active APC/

C-Cdh1 constantly prevents the accumulation of neurotoxic

targets involved in cell cycle regulation, metabolism and redox

homeostasis, and neuronal plasticity. Interestingly, dysregulation

of these processes results in neurodegeneration, linking APC/

C-Cdh1 targets to neurodegenerative diseases and particularly to

AD (Dewanjee et al., 2022).

During brain development, Cdh1 regulates the

differentiation of progenitor cells into neurons (Cuende et al.,

2008; Delgado-Esteban et al., 2013), which switch to a

postmitotic state. The activation of cell cycle machinery in

neurons induces apoptosis rather than proliferation (Pandey

and Vinod 2022). Moreover, the expression of cell cycle-

related proteins, such as cyclin B1, has been detected in

damaged areas of post-mortem AD brains (Vincent et al.,

1997; Yang et al., 2003; McShea et al., 2007). Also, APC/

C-Cdh1 activity downregulates cyclin B1 protein stability in

neurons as an essential survival mechanism (Almeida et al.,

2005; Almeida, 2012). Cdh1 loss induces cyclin

B1 accumulation, which forces neurons to enter an aberrant

cell cycle leading to neuronal apoptosis (Almeida et al., 2005).

This effect is mimicked under excitotoxic conditions, which

occurs in AD and stroke pathogenesis (Chamorro et al., 2016;

Andersen et al., 2022). Thus, GluR stimulation induces Ca2+-

dependent Cdk5 activation that phosphorylates Cdh1, which

translocate from the nuclei to the cytosol. Consequently, APC/C

is inactivated and cyclin B1 accumulated in both the nuclei

(Maestre et al., 2008) and the mitochondria (Veas-Perez de

Tudela et al., 2015a). Cdh1 phosphorylation and dissociation

from APC/C also leads to the activation of cell cycle machinery

by switching on a cyclin D1-Cdk4-pRb pathway leading to

S-phase entry and neuronal apoptosis (Veas-Perez de Tudela

et al., 2015b). In the mitochondria, cyclin B1 activates

Cdk1 located in the inner mitochondrial membrane. The

cyclin B1-Cdk1 complex phosphorylates the anti-apoptotic

protein B cell lymphoma extra-large (Bcl-xL), causing ATP

synthase inhibition, which induces oxidative damage,

mitochondrial dysfunction, and neuronal apoptosis (Veas-

Perez de Tudela et al., 2015a). Thus, cyclin B1 induces

neuronal apoptosis by promoting cell cycle entry,

mitochondrial dysfunction, and oxidative stress (Veas-Perez

de Tudela et al., 2015a).

Impaired mitochondrial dysfunction and oxidative stress

are characteristic features of AD involved in brain damage and

cognitive decline (Dewanjee et al., 2022). Besides of cyclin B1,

the accumulation of other APC/C-Cdh1 targets also promote

mitochondrial damage and oxidative stress, which potentiate

neurodegeneration. In this context, APC/C-Cdh1 targets the

degradation of the regulatory glycolytic enzyme 6-

phosphofructo-2-kinase/fructose-2, 6-bisphosphatase-3

(Pfkfb3), which is essential to actively downregulate

glycolysis in neurons and maintain their redox homeostasis,

all promoting neuronal survival (Almeida et al., 2004; Herrero-

Mendez et al., 2009). In contrast, Cdh1 loss triggers

Pfkfb3 stabilization, which provokes a metabolic switch by

increasing glycolysis with a reduction in the pentose

phosphate pathway, leading to oxidative damage,

mitochondrial damage, and neurodegeneration (Herrero-

Mendez et al., 2009). This effect occurs in parallel with

cyclin B1-mediated apoptosis and knockdown of both cyclin

B1 and Pfkfb3 fully abolished apoptosis in Cdh1 depleted

cultured neurons. Thus, Cdh1 loss in neurons triggers

apoptosis through both cyclin B1 and Pfkfb3 (Herrero-

Mendez et al., 2009). Furthermore, GluRs activation

stabilizes Pfkfb3, as well as cyclin B1 (Maestre et al., 2008),

through the Cdk5-dependent phosphorylation and inactivation
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of Cdh1 (Rodriguez-Rodriguez et al., 2012), all leading to

neuronal death. Interestingly, Pfkfb3 inhibition resulted in

neuroprotection against an excitotoxic insult (Burmistrova

et al., 2019), which poses Pfkfb3 to be an attractive target to

fight against excitotoxicity.

APC/C-Cdh1 also regulates synaptic plasticity and learning

and memory (van Roessel et al., 2004; Li et al., 2008; Fu et al.,

2011; Poduri et al., 2012; Huang et al., 2015; Bobo-Jimenez et al.,

2017). Loss of Cdh1 in neurons causes a decrease in LTP and

impairs metabotropic-induced LTD in the hippocampus (Fu

et al., 2011; Poduri et al., 2012; Huang et al., 2015). Moreover,

APC2 depletion in excitatory neurons triggers APC/

C-Cdh1 inactivation leading to cognitive impairment (Kuczera

et al., 2011). Active APC/C-Cdh1 maintains dendritic network

integrity and neuronal connectivity by degrading the dendrite

destabilizer Rho protein kinase 2 (Rock2). Interestingly,

Rock2 accumulates in the brain of AD patients (Herskowitz

et al., 2013). Cdh1 knockout promoted dendrite disruption,

synapse loss, and memory and learning impairment, leading

to neurodegeneration. The administration of the Rock2 inhibitor,

fasudil, prevented these pathological events (Bobo-Jimenez et al.,

2017), confirming that the APC/CCdh1-Rock2 pathway

regulates dendritic network integrity and brain functioning.

APC/C-Cdh1 constantly prevent neuronal cycle activation,

mitochondrial dysfunction, oxidative stress, and synapse loss, all

involved in the pathophysiology of neurodegenerative diseases,

and particularly in AD (Dewanjee et al., 2022). This posits APC/

C-Cdh1 targets in the pathogenesis of neurodegeneration. Under

excitotoxic conditions, the accumulation of APC/C-Cdh1 targets

would potentiate neurodegeneration by modulating different and

complementary signalling pathways involving mitochondrial

function (Figure 2). Furthermore, mitochondrial energy

generation is necessary for neuroplasticity (Dewanjee et al.,

2022). Therefore, APC/C-Cdh1 targets are interconnected and

involved in neurodegeneration, then representing useful tools to

develop new treatments for neurodegenerative diseases.

APC/C-Cdh1 targets in Alzheimer’s
disease pathology

Under physiological conditions, Cdk5 binds to its specific

activators, p35 and p39, and regulates neuronal migration,

neurite outgrowth, axonal guidance, and synaptic plasticity.

Under stress, p35 and p39 are cleaved to p25 and p29,

respectively, by Ca2+-dependent calpain activation. The Cdk5-

FIGURE 1
Amylod-β (Aβ) induces Cdk5-dependent Cdh1 phosphorylation, which triggers APC/C-Cdh1 inactivation. In AD pathology, Aβ induces
p35 cleaved to p25 by the Ca2+-dependent calpain activation. The Cdk5-p25 binding causes Cdk5 over-activation, leading to Cdh1 phosphorylation,
which causes APC/C-Cdh1 disassembly and inactivation, followed by a rapid Cdh1 accumulation. However, Cdh1 protein levels underwent a
progressive decrease through time due to proteasome-dependent degradation of the protein. APC/C-Cdh1 inactivation also induces the
glutaminase stabilization, which in turn enhance glutamate levels and intracellular Ca2+ influx, creating a positive feedback loop of Cdh1 inactivation
that potentiates neurodegeneration. Created with BioRender.com.
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p25 complex is stable and cause Cdk5 over-activation, thereby

hyperphosphorylating several substrates, including Cdh1

(Maestre et al., 2008; Veas-Perez de Tudela et al., 2015a),

leading to neurodegeneration (Ao et al., 2022). This

hyperactive Cdk5-p25 complex contributes to AD

pathogenesis (Ao et al., 2022; Maitra and Vincent 2022).

Furthermore, oligomerized Aβ stimulates intracellular Ca2+

influx via the N-methyl-D-aspartate (NMDA)-type GluR,

leading to Cdk5-p25 activation and Cdh1 phosphorylation

(Lapresa et al., 2019; Maitra and Vincent 2022), then linking

Cdh1 inactivation to AD pathology (Lapresa et al., 2019) (Figure

1). Considering that there is no drug aimed to maintain or

enhance Cdh1 activity, acting downstream in the

Cdh1 pathway opens new possibilities for drug development.

Thus, APC/C-Cdh1 targets arises as promising therapeutic

targets to fight against AD progression.

The Aβ-induced Cdk5 activation phosphorylates Cdh1 and

cause the early APC/C-Cdh1 inactivation, evidenced by Cdh1-

APC3 disassembly followed by Cdh1 accumulation (Lapresa

et al., 2022). Nevertheless, Cdh1 protein levels underwent a

progressive decrease through time (Lapresa et al., 2022) due

to proteasome-dependent degradation of the protein

(Fuchsberger et al., 2016). APC/C-Cdh1 inactivation induces

the accumulation of its target, glutaminase (Colombo et al.,

2010), which in turn enhance glutamate levels and intracellular

Ca2+ influx, creating a positive feedback loop of Cdh1 inactivation in

AD (Fuchsberger et al., 2016) (Figure 1). Therefore, the activity of

APC/C-Cdh1 must be carefully regulated to evade any cellular

imbalance that culminate in neurodegeneration.

In experimental models of AD, glutaminase becomes

accumulated due to the degradation of Cdh1, which, in turn,

increases glutamate levels enhancing neurotoxicity (Fuchsberger

FIGURE 2
Amylod-β (Aβ) triggers APC/C-Cdh1 inactivation leading to the accumulation of its neurotoxic targets. Under physiological conditions,
APC/C-Cdh1 constantly degrades the metabolic enzymes glutaminase 1 (GLS1) and 6-phosphofructo-2-kinase/fructose-2, 6-
bisphosphatase-3 (Pfkfb3), the mitotic cyclin B, and the dendrite destabilizer Rho protein kinase 2 (Rock2) in neurons. In AD pathology, Aβ
induces Cdk5-p25 hyperactivation that phosphorylates Cdh1 resulting in APC/C-Cdh1 inactivation and the accumulation of its targets,
leading to neurodegeneration. Created with BioRender.com.
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et al., 2016). Accordingly, high levels of glutaminase and glutamate

are found in the brains of AD patients (Burbaeva et al., 2005;

Madeira et al., 2018). In this context, memantine, an NMDA

receptor antagonist, has been tested in clinical trials of AD.

Although the patients showed an improvement in cognition and

behaviour, the benefits on the trial outcomes were modest (Kishi

et al., 2017). However, glutaminase inhibition prevents excitotoxicity

and Aβ-induced apoptosis in vitro (Fuchsberger et al., 2016).

Recently, the glutaminase antagonist JHU-083 was shown to

normalize hippocampus glutaminase activity in an AD mouse

model, eliciting an improved cognition response (Hollinger et al.,

2020). However, the toxic side effects and high clearance of JHU-083

(Yang et al., 2021) preclude its chronic use for AD treatment,

indicating the need to continue the research of other glutaminase

inhibitors as potential therapeutic targets in AD.

Another metabolic enzyme target of APC/C-Cdh1 is the

glycolytic regulator Pfkfb3 (Herrero-Mendez et al., 2009). Under

an excitotoxic stimuli, including Aβ-induced GluR activation,

Pfkfb3 becomes stabilized (Rodriguez-Rodriguez et al., 2012). The

Cdk5-APC/C signalling pathway promotes Pfkfb3 accumulation

and its translocation from the nucleus to the cytosol, which switches

neuronal metabolism leading to oxidative stress and neuronal death

(Rodriguez-Rodriguez et al., 2012). Recently, Traxler et al. (2022)

described a metabolic switch to glycolysis in neurons from AD-

patient-derived fibroblasts, which enhances neuronal vulnerability

to apoptosis. Pharmacological inhibition of Pfkfb3 with the small

molecule inhibitor AZ67 prevented Aβ-induced neuronal damage

(Burmistrova et al., 2019). Thereby, drugs targeting glycolytic

enzymes, such as the APC/C-Cdh1 substrate Pfkfb3, might

provide new disease-modifying therapeutic strategies for this

neurological disorder.

The adult brain contains two main neurogenic niches, the

ventricular-subventricular zone and the granular layer of the

dentate gyrus in the hippocampus. Although direct evidence of

human adult neurogenesis remains elusive, indirect approaches

point to the existence of adult neurogenesis in the hippocampus

of healthy humans throughout their lives (Moreno-Jimenez et al.,

2021). Moreover, immature neurons have an essential role in

hippocampus-dependent learning (Sahay et al., 2011). Impaired

neurogenesis has been detected at early stages in AD, which

would promote cognitive decline of AD patients (Moreno-

Jimenez et al., 2019). Furthermore, hippocampal neurogenesis

inhibition triggers neuronal death and cognitive decline

progression in transgenic AD mouse models (Culig et al., 2022).

Interestingly, Cdh1 induces neuronal progenitors exit of the cell

cycle and the onset of differentiation during brain development

(Delgado-Esteban et al., 2013). Cdh1 loss shortens G1 phase and

enhances S phase, leading to replicative stress and p53-mediated

apoptosis of neural progenitor cells (Delgado-Esteban et al., 2013).

Recently, Esteve et al. (2022) found increased Cdh1 levels, decreased

cyclin B1 levels, and reduced proliferation of neuronal progenitors in

the ventricular-subventricular zone of AD mice, which triggers

senescence. Adult neurogenesis stimulation by the regulation of

Cdh1 and/or cyclin B1 levels might be important to modify AD

progression. However, and in contrast to progenitor cells, cyclin

B1 accumulates in postmitotic neurons in AD (Vincent et al., 1997;

Yang et al., 2003; McShea et al., 2007), leading to neurodegeneration

(Maestre et al., 2008; Veas-Perez de Tudela et al., 2015a). Therefore,

cell-type specific strategies should be considered to establish AD

therapies based on Cdh1 targets modulation.

APC/C-Cdh1 also regulates levels of the dendrite destabiliser

Rock2 (Bobo-Jimenez et al., 2017), which accumulates in the AD

brain and protein levels remains elevated throughout disease

progression (Herskowitz et al., 2013). Recently, Lapresa et al.

(2022) described that Aβ-induced Cdh1 phosphorylation by

Cdk5 induces Rock2 stabilization in neurons, leading to

neurodegeneration and memory loss. Furthermore,

Rock2 inhibition decreases amyloid-β levels (Herskowitz et al.,

2013) and prevents neuronal death caused by oligomerized Aβ
(Song et al., 2013; Lapresa et al., 2022). The Rock inhibitor fasudil

has been approved for clinical use. Despite being effective (Bobo-

Jimenez et al., 2017), fasudil does not specifically inhibit Rock2 and

therefore other specific compounds have been developed. In this

context, the specific Rock2 inhibitor SR3677 attenuates neuronal

apoptosis and memory impairment caused by Aβ oligomers in

mice (Lapresa et al., 2022). Therefore, targeting Rock2 is a

promising strategy to effectively tackle AD progression.

Conclusion

Over the past decade, huge efforts have been made to find

suitable targets for the treatment of AD. Most of the attempts

have tried to tackle Aβ. However, none of the Aβ-based therapies
have been effective so far, with the controversial exception of the

FDA approved aducanumab (Cummings et al., 2022). A

refocusing approach should be made addressing new targets

further downstream of Aβ accumulation in the AD pathology.

Through Cdh1 activation, the APC/C complex maintains

synaptic plasticity and neuronal survival, which is essential for

brain functioning and healthy aging. APC/C inactivation has been

found in ADmodels, Cdh1 targets being accumulated in the brain of

AD patients, which promote neurodegeneration and cognitive decline

through severalmechanisms including cell cyclemachinery activation,

excitotoxicity, metabolism impairment, oxidative stress, and synaptic

dysfunction (Figure 2), rendering this pathway as a suitable candidate

to develop drugs for AD treatment. Understanding the APC/

C-Cdh1 signalling pathway in AD might be important to identify

new molecular targets for the development of effective disease-

modifying treatments for this neurological disorder.
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