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1 Introduction

Model-informed drug development (MIDD) is unarguably the cornerstone of

pharmacological research in the 21st century (Marshall et al., 2016; Bi et al., 2019;

Lesko, 2021; Rayner et al., 2021; Madabushi et al., 2022). It refers to the strategic

creation and integration of mathematical models with throughout plan of execution

(key questions, assumption, modelling approach and documentation) to facilitate the

decision-making process in pharmaceutical research (Marshall et al., 2016; Madabushi

et al., 2022). The applications of MIDD range from novel target identification, formulation

design, non-clinical and clinical development and biopharmaceutical research to trial design

and cost-effectiveness evaluations (Madabushi et al., 2022). MIDD is also increasingly used

to evaluate causal links between drug physiochemical properties, disease/pathogen biology

and patient physiology. This has facilitated an integrated approach for effective trial designs
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and data-to-knowledge transformation while also helping narrow

knowledge gaps and maximise the therapeutic potential of drug

candidates (Wang et al., 2008; Lesko, 2021;Madabushi et al., 2022).

This multifaceted tool has revolutionised the scope of recent

drug discovery and development efforts. Over the last decade, the

application of MIDD methodologies has become a popular

approach for drug development and applied pharmacotherapy

projects in industry, academia and, more notably, in global

regulatory agencies (e.g., FDA, EMA, ICH, PMDA and

NMPA) (Sato et al., 2017; Li et al., 2019; Marshall et al., 2019;

Madabushi et al., 2022). At least 90% of all US FDA-approved

pharmacological agents have an MIDD-based research origin

(Madabushi et al., 2022). Most recently, its applications have

been crucial for rapid vaccine and treatment development against

the COVID-19 pandemic (Xiong et al., 2022).

This research topic aims to bring together scientists from

academia, industry, and regulatory authorities to discuss the

most recent advancements in MIDD and their

multidimensional role in drug discovery and development.

This editorial seeks to discuss current research trends in the

field of MIDD and translational pharmacology and share our

perspective on the importance of MIDD in modern drug

discovery and development.

2 Application of model-informed
drug development (MIDD)

There is a long-standing history of applying MIDD to inform

regulatory decisions at the FDA (Madabushi et al., 2022). In the

early 90s, the utilities of MIDD were limited and focused only on

product characterisation. The scope of MIDD applications

rapidly expanded in the first decade of the 21st century. Since

2013, the FDA has published numerous regulatory guidelines on

MIDD, which include characterising safety, guiding trial design,

guiding dose selection and assisting effectiveness evaluation

(Madabushi et al., 2022). The applications of MIDD are

continuously evolving and, in the late 21st century,

physiologically based pharmacokinetic (PBPK) modelling and

simulations have become prevalent, in addition to classical

pharmacometrics applications in modern drug development

(Madabushi et al., 2022). In the modern era, the rise of novel

mechanistic-based methodologies, such as quantitative systems

pharmacology (QSP), is another significant development

(Bradshaw et al., 2019).

3 Utilities of model-informed drug
development (MIDD)

The rampant increase in MIDD-related publications over the

last few years is a testament to the piqued interest in the scientific

community. MIDD techniques enable the integration of data

from clinical trials and non-clinical investigations in a drug

development programme. Modelling techniques that are

frequently employed include population pharmacokinetics

(popPK) modelling, PBPK modelling and exposure-response

modelling (Marshall et al., 2016; Keizer et al., 2018; Bi et al.,

2019; Marshall et al., 2019; Darwich et al., 2021; Lesko, 2021;

Madabushi et al., 2022). Currently, several stages in the

development of new drugs have also made use of emerging

modelling techniques, such as QSP modelling and artificial

intelligence (AI)/machine learning (ML) (Madabushi et al.,

2022). Drug development is complex, and a combination of

different modelling approaches must often be utilised to

adequately address questions that arise at various stages.

Pharmacometrics is the core of MIDD and is the science of

developing mathematical models to quantitatively describe

relationship exposure and response (Madabushi et al., 2022).

In the absence of exposure, kinetic–pharmacodynamic (K-PD)

models are used to predict the time course andmagnitude of drug

effects (Ooi et al., 2020). Kang et al. successfully demonstrated

the utility of a K-PD model in describing the anticancer effect of

BoNT/A1 in a syngeneic mouse model transplanted with

melanoma cells (B16-F10). The developed K-PD model

adequately captured the dynamics of tumour growth, and

simulation studies were conducted to determine the optimal

dose under various dosing scenarios.

Pharmacometrics is not only applicable to oncology but is

also widely utilised in anti-infective programmes (Rayner et al.,

2021). Mathematical modelling has been employed for the last

decade to optimise dosing regimens for antibiotic therapy against

multidrug-resistant ‘superbugs’ (Bulman et al., 2022; Yow et al.).

These models include PopPK models, QSP, system-based

models, and mechanism-based PK/PD models (Rayner et al.,

2021). With antibiotics, inappropriate dosing may result in

therapeutic failure or toxicities. Precision dosing, which

customises doses to individual patients, is crucial for

antibiotics, especially those with a narrow therapeutic index.

Treatment response in individuals for antibiotics depends on

three determinants: the patient, bacterium and antibiotic (Wicha

et al., 2021). These factors determine the optimal dose of an

antibiotic to maximise efficacy and minimise toxicity and the

emergence of resistance. For some antibiotics, treatment

responses vary greatly between individuals due to genotype,

disease characteristics and patient population. Variability in

individual responses to antibiotics demands precision dosing.

The traditional ‘one dose fits all’ does not consider these

variabilities; hence, therapy for patients may be suboptimal

(Yow et al.). Particularly in the case of special populations,

therapeutic drug monitoring (TDM) is often used to ensure

that the exposure of the drug is optimal by comparing plasma

concentration levels against a therapeutic range (Smith et al.,

2021; Wicha et al., 2021). Based on this, recommendations are

made that often involve dose adjustments to optimise outcomes.

Several limitations are associated with the traditional TDM
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approach—the most significant often relying on trough samples,

which is a suboptimal surrogate of overall drug exposure (Wicha

et al., 2021). Model-informed precision dosing (MIPD) utilises

pharmacometrics principles to integrate various sources of

information to streamline the TDM process and maximise

therapeutic success (Keizer et al., 2018; Wicha et al., 2021;

Bulman et al., 2022). In MIPD, the measured drug

concentrations from TDM are used to derive the individual

PK parameters that account for the interindividual differences

using Bayesian estimation (Smith et al., 2021). These individual

PK parameters are specific to the patient of interest and can be

used to derive a personalised dosing regimen. Numerous

techniques have been proposed for MIPD, including model-

averaging (Uster et al., 2021) and hybrid ML/PK approach

(Hughes and Keizer, 2021). In this reach topic, Yow et al.

presented an excellent overview of various strategies for

optimising antimicrobial therapy and the urgent need for

implementation of MIPD for antibiotics in clinics.

Unlike the traditional pharmacometric models, which rely

largely on available preclinical or clinical PK data and model

structures that are selected based on statistical methods and

biological plausibility grounds, QSP is a quantitative approach

that incorporates mechanistic information of a biological system

and drug mechanism to predict and define disease

pathophysiology and therapeutic interventions (Sorger et al.,

2011; Bradshaw et al., 2019; Helmlinger et al., 2019; Azer

et al., 2021; Aghamiri et al., 2022). QSP models can be

utilised throughout various stages of drug development

(Bradshaw et al., 2019). In the early drug discovery stage, QSP

models can be used to identify novel targets. QSP models can be

applied in the translational stage to bridge non-clinical to clinical

work and are subsequently used to study the source of variability

in response in the clinical development stage. Rieger et al.

implemented a novel QSP model of human hepatocyte lipid

metabolism and demonstrated the suitability of the model in

generating a virtual population that closely resembles patients

with non-alcoholic fatty liver disease. The treatment intervention

was also validated by simulating pioglitazone and diet

intervention in the virtual population. As outlined by the

authors, the benefits of the QSP model lie in its size and

speed, which enables the simulations of large virtual patient

populations for hypothesis testing to respond to critical drug

development questions in a timely manner (Rieger et al.).

Currently, QSP modelling to inform key decisions in drug

development is still evolving, and only a handful of successful

examples are available in the literature (Sorger et al., 2011;

Bradshaw et al., 2019; Helmlinger et al., 2019; Aghamiri et al.,

2022). As QSP continues to evolve, the acceptability of QSP for

external and internal decision making will undoubtedly increase.

Lastly, the use of AI and ML has been increasing in the

pharmaceutical industry to overcome the high failure rate in

drug development (Zhang et al., 2017; Koromina et al., 2019;

Saikin et al., 2019; Liu et al., 2020; Talevi et al., 2020; Gupta

et al., 2021; Kashyap and Siddiqi, 2021). As such, the industry is

beginning to explore and implement various AI and ML

frameworks to supplement or be integrated into current drug

discovery and development processes (Liu et al., 2020; Talevi

et al., 2020). Yu et al. developed and demonstrated the utility of

a supervised machine learning model to categorise and examine

the magnetic resonance imaging features of brain tumours.

Implementation of AI/MI in drug discovery and development

will assist with the interpretation of clinical data and can

standardise results across labs, thereby reducing biases and

human errors (Zhang et al., 2017; Koromina et al., 2019; Saikin

et al., 2019; Liu et al., 2020; Talevi et al., 2020; Gupta et al., 2021;

Kashyap and Siddiqi, 2021). The future prospect of the utility of

AI/MI in drug discovery and development remains unclear.

There is an urgent need to bring together scientists from

academia, industry, and regulatory authorities to outline

critical research priorities and work towards best practices

with respect to the use of AI/MI and to resolve any

regulatory hurdles associated with the use of AI/MI in drug

development. The development of standards for AI/MI and the

implementation of best practices will undoubtedly boost

confidence in the community in adopting AI/MI to facilitate

and aid drug discovery and development (Liu et al., 2020).

4 Conclusion

MIDD has developed into an effective method to aid

modern drug discovery and development. It plays a critical

role in regulatory decision making and is gaining more

acceptance in the community. Incorporating and leveraging

newer techniques, such as MI/AI, are on the rise and will

undoubtedly reshape drug development in the long term.
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