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As an endocrine hormone, fibroblast growth factor 21 (FGF21) plays a crucial

role in regulating lipid, glucose, and energy metabolism. Endogenous FGF21 is

generated bymultiple cell types but acts on restricted effector tissues, including

the brain, adipose tissue, liver, heart, and skeletal muscle. Intervention with

FGF21 in rodents or non-human primates has shown significant

pharmacological effects on a range of metabolic dysfunctions, including

weight loss and improvement of hyperglycemia, hyperlipidemia, insulin

resistance, cardiovascular disease, and non-alcoholic fatty liver disease

(NAFLD). Due to the poor pharmacokinetic and biophysical characteristics of

native FGF21, long-acting FGF21 analogs and FGF21 receptor agonists have

been developed for the treatment of metabolic dysfunction. Clinical trials of

several FGF21-based drugs have been performed and shown good safety,

tolerance, and efficacy. Here we review the actions of FGF21 and summarize

the associated clinical trials in obesity, type 2 diabetes mellitus (T2DM), and

NAFLD, to help understand and promote the development of efficient

treatment for metabolic diseases via targeting FGF21.
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1 Introduction of FGF21

So far, there are 23 fibroblast growth factors (FGFs) have been isolated (Szczepańska

and Gietka-Czernel, 2022). Classically, FGFs exert the role of regulating cell growth and

differentiation, embryonic development, tissue injury repair, angiogenesis, etc. (Beenken

andMohammadi, 2009; Chen et al., 2022). They are divided into seven subfamilies, which

exert their functions through different modes including autocrine/paracrine, intracrine,

and endocrine (Itoh and Ornitz, 2011). The FGF endocrine subfamily includes three

members: FGF19 (FGF15 in mice), FGF21, and FGF23 (Kurosu et al., 2007). Unlike other

FGFs, these members have weak or no heparin-binding affinity, which renders them into

the blood circulation and action as an endocrine hormone (Zhang et al., 2006; Goetz et al.,

2007).
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The FGF21 genes were originally cloned via a PCR approach

by Nobuyuki Itoh’s group (Kharitonenkov and Adams, 2014). It

shares about 75% of the amino acid sequence between mouse and

human (Nishimura et al., 2000). The gene was first defined as a

new FGF expressed in the liver (Flippo and Potthoff, 2021).

Further studies find that, under physiological conditions,

although FGF21 mRNA can be detected expressed in other

tissues, such as adipose tissues, pancreas, and muscle (Fon

Tacer et al., 2010; Bondurant et al., 2017), circulating

FGF21 is still primarily derived from the liver in both rodents

and humans (Markan et al., 2014; Hansen et al., 2015). But

notably, the nature of the stimulus determines the tissue origins

of FGF21. For example, FGF21 expression in liver tissues could

be induced by fasting and a ketogenic diet (Badman et al., 2007;

Inagaki et al., 2007), whereas overfeeding and obesity-inducing

factors in the pancreas and white adipose tissue (WAT) (Oishi

et al., 2011; Singhal et al., 2016a; Lundsgaard et al., 2017), by cold

exposure in brown adipose tissue (BAT) (Chartoumpekis et al.,

2011; Hondares et al., 2011; Keipert et al., 2015), and by exercises

in skeletal muscle (Tanimura et al., 2016). Thus, FGF21 is

regarded as a stress-induced hormone, which elevates due to

metabolism-associated state changes.

To act on the target tissues, FGF21 needs to bind to the FGF

receptors (FGFRs) (predominantly FGFR1c) and the obligatory

coreceptor protein β-klotho (KLB) (Spann et al., 2021). Neither

KLB nor FGFRs can be activated by FGF21 alone (Hayden et al.,

2006). KLB is considered to function as a targeting receptor of

FGF21, thus promoting binding with the effector receptor

FGFR1c (Lee et al., 2018). The formation of the heterodimeric

FGFR1c/KLB complex subsequently activates the intracellular

tyrosine kinase domains of FGFR1c via phosphorylation by ERK

and passes on downstream signaling (Kharitonenkov et al., 2005;

Kurosu et al., 2007; Ogawa et al., 2007; Yie et al., 2012). However,

ERK1/2 activation cannot mediate all of the complicated

FGF21 actions. By far, the precise downstream molecular

signaling pathways of FGF21 to mediate its multiple functions

remain unclarified. FGFR1c is expressed by ubiquitous tissues,

whereas KLB expression is restricted to several specific metabolic

tissues such as the pancreas, liver, and adipose tissue (Fon Tacer

et al., 2010), and lower expression could be detected in the brain

(Jensen-Cody et al., 2020). Therefore, the KLB location somehow

confers specificity for FGF21 signaling.

2 FGF21 actions on target tissues

With more studies of FGF21 performed in recent years, the

actions and pathophysiology of this stress-inducible hormone

have been revealed. As shown in Figure 1, owing to various

tissues of expression and actions, the function of FGF21 is quite

complicated. Furthermore, as an endocrine hormone,

FGF21 regulates nutrient metabolism and energy homeostasis

via mediating multi-organ communications.

2.1 Central nervous system (CNS)

FGF21 has been demonstrated expressed in brain regions,

including the substantia nigra, striatum, hippocampus, and

cortex (Makela et al., 2014), it is produced by glial cells, as

evidenced by immunoblotting results (Makela et al., 2014).

Besides being produced in the brain, blood FGF21 can also

cross the blood-brain barrier by simple diffusion and can be

detected in human cerebrospinal fluid and mouse brains

(Hsuchou et al., 2007). KLB is also expressed in several brain

areas, including the suprachiasmatic nucleus (SCN); the dorsal

vagal complex (DVC) of the hindbrain, in the area postrema

(AP); the nucleus tractus solitarii (NTS); the nodose ganglia

(Bookout et al., 2013) and the paraventricular nucleus (PVN)

(Liang et al., 2014). Moreover, FGFRs are broadly expressed in

CNS (Fon Tacer et al., 2010). FGFR1c is also predominantly

expressed in the brain and associated areas (Fon Tacer et al.,

2010). The expression of FGF21 in the brain and the presence of

its receptor and coreceptor suggest that FGF21 has a potential

regulatory role in CNS.

The protein restriction could induce changes in

macronutrient preference, energy expenditure, and

metabolism (Cummings et al., 2018). FGF21 was significantly

increased by protein restriction (Muller and Tschop, 2014).

During protein restriction, FGF21 signaling is a pivotal

messenger of physiological changes in metabolism and

nutrient preferences in the brain. The mice without

FGF21 signaling in the brain cannot mediate adaptive

metabolic responses to protein restriction and make changes

in food preference (Hill et al., 2019). Liver response to high

carbohydrates also induces FGF21 expression (Fisher et al., 2017;

Lundsgaard et al., 2017). FGF21 enters the circulation to act on

the CNS to inhibit simple sugar intake and sweet-taste preference

in mice and monkeys (Talukdar et al., 2016a; von Holstein-

Rathlou et al., 2016). Notably, FGF21 appears to consume only

carbohydrates without reducing total caloric intake in mice (von

Holstein-Rathlou et al., 2016). In one clinical study, 7 weeks of

daily consumption of sugar-sweetened beverages led to elevated

fasting FGF21 in healthy men, irrespective of the sugar type. And

it is proposed that sweet-taste food may contribute to the

increased FGF21 observed in subjects with metabolic

syndrome that is possibly associated with decreased

FGF21 response (FGF21 resistance) (Geidl-Flueck et al., 2022).

These studies suggest the function of FGF21 in regulating the

intake of nutrients.

Recent studies have shown that FGF21 regulates

monosaccharide intake and sweet taste preference through

signaling to glutamatergic neurons directly (Jensen-Cody

et al., 2020). Physiologically, FGF21 signaling to neurons in

the paraventricular nucleus regulates basal sucrose intake,

whereas FGF21-mediated inhibition of simple-sugar intake

requires signaling to neurons in the ventromedial

hypothalamus (VNH) (Jensen-Cody et al., 2020). In response
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to elevated blood glucose concentrations, FGF21 achieves

specificity to inhibit monosaccharide intake by enhancing the

excitability of KLB+ glucose-responsive neurons in the VMH

(Jensen-Cody et al., 2020; Flippo and Potthoff, 2021).

2.2 Adipose tissues

There are three types of adipocytes: white, beige, and brown

adipocytes. White adipocytes are known for storing energy.

Brown adipocytes consume energy to produce heat through

adaptive thermogenesis (Rosen and Spiegelman, 2014), which

requires the gene mitochondrial uncoupling protein 1 (UCP1)

(Cannon and Nedergaard, 2004). Cold exposure or β-adrenergic
signaling could induce PGC-1α expression, which is a coactivator
to drive the expression of UCP1 (Barbera et al., 2001). BAT

depots in rodents (Bartelt et al., 2011) and humans increase

glucose uptake in response to activation and are highly insulin

sensitive (Orava et al., 2011). FGF21 could promote the

thermogenic activity of BAT and the browning of WAT

(Fisher et al., 2012). Mounting studies have found the relative

involvement of FGF21-signaling in the thermogenic response to

cold and diet. Mice lacking FGF21 showed an impaired ability to

adapt to chronic cold exposure and reduced browning of WAT

(Fisher et al., 2012). Adipose-derived FGF21 upregulated

expression of UCP1and other thermogenic genes in adipose

tissue in an autocrine/paracrine manner (Fisher et al., 2012).

FGF21 regulates this process by increasing PGC-1α protein

expression in adipose tissues at least in part (Fisher et al.,

2012). Moreover, UCP1 is required for FGF21-mediated

enhancement of energy expenditure and glucose tolerance in

vivo (Kwon et al., 2015; Samms et al., 2015). The rapid glucose

clearance by FGF21 is defective in the absence of UCP1-

dependent thermogenesis, which could increase glucose

disposal (Keipert et al., 2020).

FGF21 can promote the uptake of glucose (Kharitonenkov

et al., 2005) and lipid (Schlein et al., 2016), and lipogenesis in

adipose tissues (Dutchak et al., 2012), thereby protecting the liver

and skeletal muscle tissues against ectopic lipids accumulation. In

WATs, FGF21 stimulates glucose entry through AMP-activated

protein kinase (AMPK) -SIRT1-PGC-1α signaling dependent

mechanism, regulates lipolysis, increases mitochondrial

oxidative capacity, and enhances the effect of PPAR-γ
(Schreuder et al., 2010).

The most abundant adipokine adiponectin was considered

the important mediator for FGF21 function.

FGF21 administration markedly increased the expression and

secretion of adiponectin in adipocytes in mice. In adiponectin-

deficient mice, the effects of FGF21 including alleviation of

obesity-associated insulin resistance, hyperglycemia,

hyperlipidemia, and liver steatosis were reduced. However,

circulating FGF21 levels are increased whereas plasma

adiponectin concentrations are reduced in both animals and

humans with obesity. This might be due to FGF21 resistance, and

also suggests that the dysfunctional FGF21-adiponectin axis

contributes to the pathogenesis of obesity-related metabolic

syndrome (Lin et al., 2013). Long-term HFD-induced obese

mice with metabolic dysfunction of glucose and lipid,

accompanied by reduced expression of FGFR1 and KLB in

adipose tissues, which were markedly reversed by treadmill

exercise. Exercise could protect against HFD-induced

decreased ability of FGF21 to promote adiponectin secretion,

which may be due to the increased expression of FGFR and KLB

(Geng et al., 2019; Yang et al., 2019).

FGF21 can significantly improve carbohydrate and lipid

homeostasis and promotes weight loss in animal models of

obesity and diabetes (Markan and Potthoff, 2016). Studies

have shown that FGF21 has both acute and chronic effects on

the regulation of metabolism. A single dose of

FGF21 administered to obese mice could rapidly increase

insulin sensitivity and reduce blood glucose levels by more

than 50% (Xu et al., 2009). Using mice with KLB specifically

deficient in adipose tissues, it has been found that FGF21 requires

direct signaling to brown adipocytes to exert its acute insulin-

sensitizing effects (Bondurant et al., 2017). In contrast, long-term

administration of FGF21 increased energy expenditure and

resulted in weight loss in animal models (Coskun et al., 2008;

Xu et al., 2009), and therefore increases insulin sensitivity

indirectly, which was independent of FGF21 signaling to

adipose tissue and adiponectin production (Bondurant et al.,

2017).

2.3 Liver

As the major FGF21-producing organ, the liver could also

provide an autocrine source of FGF21. Circulating FGF21 is

mainly of hepatic origin (Markan et al., 2014). Hepatic

FGF21 expression is primarily regulated by nutritional stress,

especially starvation (Fazeli et al., 2015). FGF21 expression in the

liver is regulated by the peroxisome proliferator-activated

receptor-α (PPARα) pathway and cyclic adenosine

monophosphate (EPAC)/protein kinase A (PKA) pathway

(Lundasen et al., 2007; Cyphert et al., 2014). The PPARα
pathway is activated by FFAs and/or protein insufficiency,

which increases FGF21 gene expression (Lundasen et al.,

2007). Activated by a signaling cascade with the stimulation

of the hepatic glucagon receptor, the EPAC/PKA signaling

pathway increases FGF21 gene expression and secretion

through pre- and post-transcriptional mechanisms (Cyphert

et al., 2014).

The c-Jun NH2-terminal kinase (JNK) signaling pathway is

stress-responsive and could be activated by nutritional stress,

including HFD consumption. The hepatic JNK2α activation can

downregulate FGF21 expression by suppressing PPARα and

thereby result in systemic metabolism changes. As a
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heterodimeric partner of PPARα, the JNK substrate retinoid X

receptor α (RXRα) phosphorylation at site Ser260 has been found
required for suppression of FGF21 expression (Vernia et al.,

2022).

Ketogenic diets are employed to challenge metabolic

pathways. This kind of diet limits carbohydrate intake and

converts the main energy source to ketones, the products of

fatty acid metabolism. Typically, mice fed the ketogenic diet lost

weight and had elevated circulating FGF21 levels. In contrast,

FGF21 null mice gained weight and developed obvious hepatic

steatosis after ketogenic diet ingestion (Badman et al., 2009). This

aberrant response to the ketogenic diet was associated with

reduced levels of β-hydroxybutyrate, suggesting the

requirement of FGF21 for fatty acid oxidation (Badman et al.,

2009). This effect was evidenced by a significant increase in liver

β-oxidation in FGF21+/+ mice (Potthoff et al., 2009) and impaired

ketone production in FGF21deficient mice (Badman et al., 2009).

Indeed, PPARα induces FGF21, which promotes lipolysis in

WAT and liver through endocrine and autocrine/paracrine

mechanisms, stimulating ketogenesis in vivo (Inagaki et al.,

2007).

The regulating function of glucose and lipid metabolism of

FGF21 is of primary importance in improving liver fibrosis.

FGF21 has shown anti-inflammatory and anti-fibrotic effects in

the liver. Feeding a methionine-choline deficient diet (MCD)

results in lipotoxicity and is associated with a significant increase

in FGF21 expression at hepatic and circulating levels.

Lipotoxicity is significantly aggravated when lacking FGF21

(Fisher et al., 2014; Tanaka et al., 2015). FGF21-deficient mice

showed an increased inflammatory response, increased hepatic

macrophage infiltration, and increased expression of pro-

inflammatory and pro-fibrotic cytokines (Liu et al., 2016).

Conversely, upregulating FGF21 expression in mice by adeno-

associated viral vector-mediated gene therapy inhibited hepatic

macrophage infiltration (Jimenez et al., 2018), and

pharmacological doses of FGF21 suppressed the pro-

inflammatory cytokine levels in the liver (Wang et al., 2018;

Yin et al., 2018). Preclinical studies have demonstrated that

FGF21 has an anti-inflammatory effect and that FGF21 can

reduce hepatic immune cell infiltration in mice (Bao et al.,

2018). It has been suggested that the mechanism underlying

its anti-inflammatory effect may be the down-regulation of

IL17A production through the FGF21-adiponectin IL17A axis

(Bao et al., 2018). Studies evidenced that exogenous FGF21 can

reduce the liver fibrosis degree in the metabolic model of mice

(Coskun et al., 2008; Lee et al., 2016). FGF21 treatment

downregulated fibrosis markers alpha-smooth muscle actin (α-
SMA) and collagen I (Yao et al., 2012) in the liver tissues of MCD

diet-induced NASH mice (Le CT et al., 2018).

Increasing evidence demonstrates that bile acids play an

insulin-sensitizing role through interaction with its receptor

farnesoid X receptor (FXR) (Monte et al., 2009; Mudaliar

et al., 2013). However, because its toxic hydrophobic

chemicals could damage cell membranes (Attili et al., 1986),

FIGURE 1
Tissue-specific actions of FGF21.
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bile acids can induce inflammation, fibrosis, and necrosis of the

cells, leading to many liver and bile duct diseases (Zakharia et al.,

2018). Studies have shown that bile acids and FXR agonists

increased the expression and secretion of FGF21 (Cyphert et al.,

2012). In hepatocytes and different animal models,

FGF21 acutely induced ERK phosphorylation and inhibited

Cyp7A1 mRNA expression, significantly reducing bile acid

levels in the liver and small intestine (Chen et al., 2018). In

obese cynomolgus monkey models, long-term administration of

FGF21 analogs inhibited plasma levels of total bile acid and 7α-
hydroxy-4-cholesten-3-one (Chen et al., 2018), a biomarker for

bile acid synthesis, suggesting the important role of FGF21 in

regulating bile acid metabolism as a negative regulator of bile acid

synthesis.

Under normal physiological conditions, FGF21 reduces

oxidative stress by upregulating Nrf2-mediated antioxidant

capacity (Yu et al., 2015). In mice, the administration of

exogenous FGF21 improves mitochondrial function in

hepatocytes (Chau et al., 2010; Lee et al., 2016), whereas

FGF21 deficiency increases hepatic ROS accumulation, which

can be alleviated by FGF21 supplementation (Ye et al., 2014).

Endoplasmic reticulum (ER) stress is involved in promoting

hepatic steatosis, inflammation, and apoptosis. FGF21 is

reported to attenuate the process to mitigate NASH

development. FGF21 is induced in response to ER stress,

which is considered a compensatory mechanism to attenuate

ER stress-induced liver lipotoxic injury (Kim et al., 2014).

Furthermore, FGF21 may protect against hepatic steatosis by

attenuating ER stress-induced VLDL receptor (VLDLR)

upregulation and suppressing the maturation level of

SREBP1 protein induced by ER stress (Zarei et al., 2018),

(Jiang et al., 2014).

However, in the liver, the predominant expression of FGFR is

FGFR4, which has a low affinity for FGF21, whereas the major

FGF21 receptor FGFR1 has only a low expression. Therefore,

although hepatic FGF21 can influence liver physiology, several

studies have suggested that autocrine FGF21 may not be a master

regulator of hepatic energy homeostasis. Its profound effects on

lipid and glucose metabolism may be through indirect

mechanisms (Yang et al., 2012; Li, 2019).

2.4 Heart

Initial studies suggested that the FGF21 coreceptor KLB was

underexpressed in the heart, which was thus not a primary target

of FGF21 (Fon Tacer et al., 2010). However, subsequent studies

revealed that relatively stable levels of FGFR1 in addition to KLB

were expressed in the heart, which is also an organ source of

FGF21 (Tezze et al., 2019).

Exogenous FGF21 could attenuate oxidative stress in

cultured cardiomyocytes in vitro (Johnson et al., 2009) and

prevent cardiac hypertrophy and myocardial infarction in

mice (Joki et al., 2015). Mice lacking FGF21 showed increased

rates of cardiac hypertrophy and inflammation and decreased

capacity of fat oxidation (Planavila et al., 2013). FGF21 can

enhance antioxidant activity, thereby inhibiting oxidative stress

and endoplasmic reticulum stress (ERS) (Zhang et al., 2021). In

atherosclerotic mice, FGF21 treatment markedly reduced lipid

deposition and plaque area in the aortic root and reduced lesion

severity (Liu et al., 2022). Mover, FGF21 can further reduce

endothelial cell injury and apoptosis, thus inhibiting the

development of atherosclerosis (Planavila et al., 2015). In

animal models, after myocardial ischemia, plasma and cardiac

FGF21 levels significantly increased quickly 1 h after coronary

artery ligation and continued to increase after 25 h and 1 week

(Patel et al., 2014) (Sunaga et al., 2019). In addition, liver-specific

deficiency of FGF21 in mice with myocardial infarction resulted

in further worsening of cardiac dysfunction (Tang et al., 2018).

Preclinical Studies in vivo demonstrated the involvement of

FGF21 in the pathophysiologic mechanism of heart failure via

protection against cardiac hypertrophy, oxidative stress, and

inflammation in cardiomyocytes. However, the clinical

literature showed FGF21 levels paradoxically raised or

unchanged in HF and coronary artery disease (Tucker et al.,

2022).

2.5 Pancreas

The FGF21 expression level in pancreatic acinar tissue is

20 times higher than that in islets, and the pancreatic FGF21 is

nutritionally regulated (Singhal et al., 2016b). But both acinar

and islet cells are the targets of FGF21. The administration of

FGF21 leads to phosphorylation of the downstream ERK1/2 in

approximately half of the acinar cells and a small fraction of islet

cells (Singhal et al., 2016a).

Although FGF21 expression is high in the pancreas, little is

known about the function of FGF21 in this tissue. Studies suggest

a regulatory role of FGF21 in the tissue injury induced by

experimental pancreatitis, in which FGF21 null mice produced

more severe damage than wild-type mice, whereas mice with

overexpressing FGF21 showed an attenuated phenotype

(Johnson et al., 2009; Johnson et al., 2014). Further study

revealed that the transcription factor MIST1 was an upstream

regulator for FGF21, and MIST1 deletion resulted in significantly

reduced pancreatic FGF21 levels through epigenetic silencing,

thereby increasing susceptibility to pancreatitis (Johnson et al.,

2014). In a streptozotocin-induced diabetes model, FGF21 was

found to play a role in enhancing islet transplantation survival

(Uonaga et al., 2010). Moreover, FGF21 also promoted β-cell
survival and protects isolated rat islets and insulin-producing

INS cells from glucolipotoxicity and cytokine-induced apoptosis

(Wente et al., 2006). The effect of FGF21 on insulin or glucagon

secretion in islets isolated from healthy animals has not been

reported (Xu et al., 2009). In contrast, FGF21 stimulated insulin
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secretion in the islets isolated from diabetic animals (Wente et al.,

2006). But islets from the obese diabetic db/db mice failed to

respond to FGF21, possibly as a result of reduced KLB expression

(So et al., 2013). The role of FGF21 in the pancreas was further

supported by the results of 16-week HFD-fed FGF21-null mice,

which developed severe islet hyperplasia and inflammatory

infiltration in the periductal region (Singhal et al., 2016b).

2.6 Skeletal muscle

Skeletal muscle is the important tissue for systemic insulin-

mediated glucose uptake. Recently, skeletal muscles have been

found as an important source of FGF21 in bothmice and humans

during physiological or pathological conditions, including

exercise and mitochondrial dysfunction (Tezze et al., 2019).

Thus, FGF21 is also defined as a kind of myokine. Generally,

it is not considered a target tissue for FGF21 action owing to the

lack of KLB expression (Ito et al., 2000; Suzuki et al., 2008).

However, previous studies have observed that FGF21 played a

direct role in enhancing glucose uptake in skeletal muscle by a

mechanism mediated by GLUT1/4 and dependent on atypical

PKC-ζ (Mashili et al., 2011; Rosales-Soto et al., 2020). In addition,

FGF21 can improve insulin signaling downstream of mouse

skeletal muscle by inhibiting mTORC1, subsequently

inhibiting the phosphorylation of IRS1 at Ser636/639 and

improving insulin sensitivity (Lee et al., 2012). Moreover,

long-term administration of FGF21 significantly reduced

intramuscular triglyceride levels in an HFD-induced obese

mouse model, while these effects disappeared in adiponectin-

knockout mice (Lin et al., 2013). This suggests that FGF21 may

play a role in skeletal muscle in adiponectin - dependent manner.

In summary, FGF21 plays an important role in glucose

homeostasis, insulin sensitivity, and lipid metabolism in

skeletal muscle either directly or indirectly.

2.7 Kidney

FGFRs are also found expressed and localized in adult and

developing murine kidneys (Cancilla et al., 1999; Cancilla et al.,

2001). Interestingly, FGF21 and its receptors were significantly

upregulated in db/db mouse kidneys, which was considered to

indicate FGF21 resistance. Exogenous FGF21 treatment

significantly down-regulated FGF21 receptor components and

activated ERK phosphorylation (Kim et al., 2013). In type

2 diabetic nephropathy, FGF21 significantly reduced urinary

albumin excretion and mesangial expansion, and inhibit

fibrillary molecular synthesis. On the other hand,

FGF21 improved lipid metabolism and oxidative stress injury

of kidneys. Thus, FGF21 protected against renal injury through

the improvement of insulin resistance, systemic metabolic

disorder, and antifibrotic effect (Kim et al., 2013).

2.8 Gut

In lactating dams, lactation could induce the hepatic

production of FGF21, which is then transferred from plasma

to milk and reaches the neonatal intestine. FGF21 activates the

FGFR-KLB complex in neonatal intestinal epithelial cells,

promoting the production of intestinal peptides involved in

the regulation of intestinal function (Gavalda-Navarro et al.,

2015).

3 The development of FGF21-based
drugs for metabolic diseases

Due to the overnutrition and sedentary modern lifestyle, the

global prevalence of metabolic diseases such as obesity, T2DM,

and NAFLD in the world remains increasing, which are mutually

affected risk factors. For example, non-alcoholic steatohepatitis

(NASH), the severe stage of NAFLD may involve about 1.5%–

6.5% of the general population and as many as 37% of people

with type 2 diabetes (T2D) (Younossi et al., 2019). But so far,

there is still a lack of specific drugs for these diseases. As

accumulating evidence has demonstrated the important roles

of FGF21 in regulating glucose and lipid homeostasis through

multiple aspects and inter-organ crosstalk, FGF21 is considered a

potential target for metabolic abnormalities.

In the clinical study, the aberrant FGF21 expression has been

found in different diseases. Through a genome-wide association

study (GWAS), circulating FGF21 has been identified as

possessing a strong causal effect on improved hyperlipidemia

and liver function biomarkers including fibrosis (Larsson et al.,

2022). And it was reported that elevated circulating levels of

FGF21 were associated with cardiovascular disease (CVD).

As mentioned previously, circulating FGF21 levels are

elevated in obese animals and humans, suggesting the

existence of FGF21 resistance. It is considered that

FGF21 resistance may be the result of reduced expression of

the FGF21 receptor complex. As shown in Figure 2, in obese

patients, the secretion of proinflammatory factors and

microRNAs or other factors induced by excess fat is

increased. For example, TNF-alpha repressed KLB expression

and impaired FGF21 action in adipocytes by activation of Jun N-

terminal (JNK1) (Diaz-Delfin et al., 2012). Increased miR-34a in

the adipose tissues of obese mice decreases KLB expression either

directly by targeting the 3 ′-untranslated region of β-klotho or

indirectly by inducing secretion of proinflammatory factors in

adipose tissue (Fu et al., 2014; Pan et al., 2019). Obesity also led to

a decrease in ERK1/2 phosphorylation (Fisher et al., 2010). Thus,

FGF21 resistance leads to the impairment of FGF21 signaling

cascade as well as reduced adiponectin secretion. Additionally,

the ability of FGF21 acts directly on adipose tissue, and

cardiovascular regulation of glucose and lipid metabolism is

also impaired (Yang et al., 2019). Studies have shown that the
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FGF21-adiponectin axis plays an important role in systemic

metabolism, and FGF21 acts indirectly on the liver and

cardiovascular system by inducing adiponectin secretion (Hui

et al., 2016). Overall, obesity-induced FGF21 resistance induces

various metabolic diseases by impairing the direct effects of

FGF21 and the indirect effects mediated by adiponectin or

other factors leading to metabolic disorders, which might

account for the explanation of the elevated FGF21 level in

metabolic diseases.

However, the administration of exogenous FGF21 or its

receptor agonist was approved to ultimately overcome

FGF21 resistance and improve the effects in target organs

related to metabolic homeostasis. Although the regulatory

mechanism is not clear by far, pharmacological strategies,

administration of exogenous FGF21 or its receptor agonist,

keep developing, due to the restoration of FGF21 effect in

target organs. During the last decades, the pleiotropic

beneficial actions of FGF21 on metabolic disorders in animals

promoted FGF21-based drugs for therapeutic purposes.

However, native FGF21 has a brief circulatory half-life

(0.5–2 h) due to proteolytic cleavage and rapid renal

clearance. Thus, this has led to the development of

FGF21 analogs and FGF21-receptor agonists. The update on

recent pharmaceutical development of FGF21-based drugs for

metabolic diseases, including their effects and current clinical

trial status was summarized in Table 1.

3.1 FGF21 analogs

3.1.1 LY2405319
LY2405319, an FGF21 analog developed by Lilly Research

Laboratories in 2013, has shown the same efficacy and biological

activity as native human FGF21 (Adams et al., 2013; Gaich et al.,

2013). It has an additional engineered disulfide bond at

Leu118Cys-Ala134Cys stabilized a loop at the C-terminal

domain of FGF21 introduced via point-specific mutagenesis

(Kharitonenkov et al., 2013).

In a 28-day trial, the safety and tolerability of

LY2405319 were shown in obese subjects with T2DM. The

four Lipid parameters (total cholesterol, LDL, HDL, and TGs)

and body weight showed statistically different compared to

baseline, which was consistent with the results of FGF21 or

LY2405319 administration to obese rhesus monkeys with

dyslipidemia (Kharitonenkov et al., 2007; Adams et al., 2013;

Gaich et al., 2013). The impact of LY2405319 treatment on

fasting TGs was rapid, accompanied by reduced plasma

ApoCIII and ApoB (Gaich et al., 2013). Body weight was also

reduced by LY2405319 over the 28-day treatment, which

coincided with the increase in plasma β-hydroxybutyrate. This
suggests fatty acid oxidation is enhanced by the analog similar

to the findings in rodents (Coskun et al., 2008; Fisher et al.,

2011; Gaich et al., 2013). At the same time, the mean fasting

insulin level decreased and the plasma adiponectin level

increased substantially in a dose-dependent manner (Gaich

et al., 2013).

LY2405319 has also been proven effective in suppressing liver

inflammation and fibrosis in preclinical experiments. A study

showed that FGF21 reduced α-SMA production by inhibiting

succinate -GPR91 signaling in HSCs and improved hepatic

steatosis and fibrosis in an MCD diet-induced mouse model

(Le CT et al., 2018). Another study found that LY2405319

improved metabolic parameters and symptoms of

steatohepatitis by increasing oxygen consumption rate and

fatty acid oxidation in muscle mitochondria (Le CT et al.,

2018). In addition, LY2405319 significantly reduced the serum

AST and ALT levels and decreased the expression of pro-fibrosis

markers TGF-β1 and collagen I, suggesting that liver injury was

alleviated (Lee et al., 2016).

3.1.2 Pegbelfermin (BMS-986036)
Pegbelfermin (PGBF), a polyethylene glycol (PEG)-

conjugated recombinant analog of human FGF21, has a

prolonged half-life that supports up to weekly dosing.

In phase 2 clinical study, PGBF was proved safe and well

tolerated in patients with obesity, T2DM treated daily or weekly

for 12 weeks. The treatment significantly improved the serum

HDL, TGs, adiponectin, and Pro-C3 of the participants (Charles

et al., 2019).

In another phase IIa trial, patients with stage 1–3 of NASH

were treated with PGBF at a dose of 10 mg daily or 20 mg weekly

subcutaneous injection for 16 weeks. The results showed

beneficial effects of PGBF on NASH, including decreased liver

fat fraction and improved metabolic parameters (blood

adiponectin and lipid concentrations), markers of liver injury

(ALT and AST), and fibrosis biomarkers (liver stiffness and Pro-

C3) (Sanyal et al., 2019). Further studies showed that

PGBF selectively downregulated serum levels of deoxycholic

acid (DCA) and conjugates in NASH patients and suggest

PGBF can modulate secondary BA synthesis, which may

contribute to the role of PGBF against NASH (Luo et al.,

2022). Furthermore, the FALCON phase IIb studies currently

in progress are to investigate the efficacy and safety of PGBF

specifically over a longer period (48 weeks) in patients with

NASH and advanced fibrosis with stage 3 fibrosis (FALCON1)

or compensated cirrhosis (FALCON2), who are at the highest

risk of decompensated liver disease and HCC (Abdelmalek

et al., 2021).

3.1.3 Efruxifermin (AKR-001)
Efruxifermin is a fusion protein of the human IgG1 Fc

domain linked to a modified human FGF21 (Fc-FGF21) with

a 3–3.5-day half-life. It has equal in vitro agonist potency for

FGFR1c, FGFR2c, and FGFR3c (Stanislaus et al., 2017). The

results from a phase I studies in individuals with T2D showed

improvements in glycemic control and lipoprotein profiles,
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TABLE 1 Pharmaceutical development of FGF21-based drugs for metabolic diseases.

Brand name Company Metabolic
diseases

Study species Beneficial effects Clinical trial
status

FGF21 analogs

LY2405319 Eli Lilly Obese; T2D Human, rhesus, mice Reduced plasma lipid, lipoproteins and fasting insulin level, increased HDL-c Phase IIa

Pegbelfermin (BMS-
986036)

Ambrx/Bristol-
Myers
Squibb

Obese; T2D; NASH Human, mice Increased HDL-C, adiponectin and whole-body insulin sensitivity, reduced LDL-C, fasting TG, fasting
glucose, insulin levels and hepatic fat fraction

Phase IIb

Efruxifermin (AKR-001) Akero T2D; NASH Human, mice Increased HDL-C and adiponectin, decreased TG, improved glycemic control and markers of insulin
sensitivity

Phase IIb

PF-05231023 Pfizer Obese; T2D;
hypertriglyceridemia

Human, cynomolgus,
mice

Reduced LDL-C, fasting glucose, TG, glucose and insulin level, increased HDL-C, adiponectin and
whole-body insulin sensitivity

—

BIO89-100 89 bio NASH or
phenotypic NASH

Human, cynomolgus Reduced liver fat, ALT, PRO-C3, and MRI-PDFF, increased adiponectin Phase IIa

B1344 Tasly Biopharma NAFLD; NASH Cynomolgus, mice Reduced body weight, liver fat, ALT, AST, TG, fasting glucose, IL1β, MCP1, TNFα, CD68, F4/80,
HbA1c, VLDL, increased adiponectin, improved plasma lipid profile

Phase I

FGF21-receptor agonists

C3201–HSA Amgen Inc. Obese Cynomolgus Reduced body weight, fasting plasma insulin levels and TC —

MimAb1; 39F7mAb Amgen Inc. Obese Cynomolgus, mice Reduced body weight, BMI, plasma glucose and insulin level, TC, TG —

MK-3655 (NGM313) Merck Sharp &
Dohme

NAFLD Human Reduced liver fat, HbA1c, insulin resistance and transaminase, improved dyslipidemia Phase IIb

BFKB8488A Genentech NAFLD Human, cynomolgus Reduced body weight, food intake, LDL-C, TG, increased HDL-C, adiponectin Phase IIb
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including triglycerides, cholesterol, and apolipoproteins B and

C3 (Kaufman et al., 2020).

In addition, a randomized, placebo-controlled phase IIa trial

(BALANCED) study in patients with NASH via weekly

subcutaneous administration of Efruxifermin for 16 weeks

demonstrated that Efruxifermin significantly reduced hepatic

fat fraction (HFF) in patients with F1-F3 NASH (Harrison

et al., 2021).

3.1.4 PF-05231023
PF-05231023 is a long-acting FGF21 analog. It has been

shown in rodents to reduce body weight and improve glucose

tolerance (Weng et al., 2015). Another study in obese non-

human primates showed that PF-05231023 reduced body

weight only by lowering food intake and had no direct effect

on energy expenditure (Thompson et al., 2016). In a placebo-

controlled study of overweight/obese patients with T2D, PF-

05231023 reduced body weight and improved plasma lipoprotein

profiles and adiponectin levels significantly, with no obvious

effect on glycemic control (Talukdar et al., 2016b). These studies

support this molecule for the treatment of obesity.

However, in obese patients with high triglycerides with and

without T2DM, PF-05231023 administration once a week

significantly reduced serum TG level without weight loss.

However, adverse changes that systolic blood pressure, diastolic

blood pressure, and pulse rate were found increased by PF-

05231023 in a dose- and time-dependentmanner (Kim et al., 2017).

3.1.5 Pegozafermin (BIO89-100)
Pegozafermin is another long-acting glycol PEGylated

FGF21 analog, which is currently the only one with the

potential of use once every 2 weeks dosing. Recently, a phase

Ib/IIa trial enrolled and randomized NASH subjects with liver

fat ≥10% to 12 weeks of treatment with BIO89-100 or placebo.

The results showed decreased liver fat in all BIO89-100 groups,

accompanied by significant decreases in ALT, and Pro-C3, along

with increases in adiponectin levels observed (89bio, 2022a).

There were 63% of patients achieved NAS score improvement by

more than two points without deteriorated fibrosis, and 74% of

patients achieved NAS score improvement. Additionally, no

adverse effects associated with deaths, blood pressure, or heart

rate were reported (89bio, 2022b).

FIGURE 2
FGF21 resistance, the potential mechanism leading to metabolic diseases.
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3.1.6 B1344
B1344 is a recombinant PEGylatedhuman FGF21 protein. The

safety and efficacy of B1344 in the treatment of non-human

primate or rodent NAFLD models have been investigated.

B1344 subcutaneous injection for 11 weeks remarkably reduced

body weight and improved the degree of steatosis, inflammation,

and fibrosis of liver tissues, lipid profiles, and glycemic control of

cynomolgus monkeys withNAFLD (Cui et al., 2020). Consistently,

improvement of lipotoxic injury by B1344 was also observed in the

MCD diet-induced NASH model of mice (Cui et al., 2020).

Moreover, in our recent study, B1344 administration to NASH

model of mice fed an HFD-high fructose diet twice per week for

8 weeks obviously ameliorated the liver fibrosis degree in addition

to the reduction of other metabolism-related parameters. Recently,

clinical trials of B1344 were approved for the treatment of NASH

by FDA and for the treatment of T2D by China State Drug

Administration.

3.2 FGF21-receptor agonists (FGFRAs)

3.2.1 C3201-HSA
The first FGF21receptor agonist is C3201, an 18 kDa

bispecific avimer peptide with high affinity and specificity for

the FGFR1-KLB receptor complex. Fusion with human serum

albumin forms C3201-HAS, which has a longer half-life of about

50 h. It has been found that C3201-HAS could trigger the effects

of FGF21 in obese monkeys, reducing body weight, fasting

insulin concentrations, and plasma TG levels (Smith et al., 2013).

3.2.2 MimAb1 and 39F7mAb
Two fully humanized FGF21-mimetic monoclonal agonist

antibodies (mAbs) (mimAb1 and 39F7 mAb) for FGF21 receptor

were developed by Amgen Inc. They can bind to distinct

conformational epitopes of KLB with high affinity and

specificity, activate the receptor complex, and drive

downstream signaling. Administraion of mimab1 in obese

monkeys led to FGF21-like metabolic regulatory effects,

including body weight loss and improvement in plasma

insulin, lipid, and glucose levels (Foltz et al., 2012).

3.2.3 MK-3665 (NGM313)
Recently, Merck Sharp &Dohme have developed amonthly used

antibody MK-3655 (previous name NGM313) that can activate the

FGF21 receptor complex. Clinical trials have proved that treatment of

MK-3665 once every 36 days reduced liver steatosis degree, improve

hyperlipidemia, and decrease HbA1c level and transaminases in

patients with obesity, IR, and NAFLD (Depaoli et al., 2019).

3.2.4 BFKB8488A
BFKB8488A is a full-length, humanized bispecific

antiFGFR1c/KLB agonist antibody. It can selectively activate

FGFR1 in a KLB-dependent manner and mimics the

FGF21function. It has been demonstrated in a randomized

study, improvement in body weight, cardiometabolic

parameters, and reduced preference for carbohydrate intake

and sweet taste in overweight/obese human with BFKB8488A

administration. (Baruch et al., 2020). In a Phase Ib clinical trial,

the efficacy was also demonstrated with improved parameters

observed in patients with both T2D and NAFLD, especially with

a dose- and time-dependent reduction of hepatosteatosis in

patients with NAFLD (Wong et al., 2022). Therefore,

Genentech recently initiated a Phase 2b (BANFF) clinical trial

to evaluate the efficacy, safety, and pharmacokinetics of the drug

in NASH patients with F2-3 fibrosis score.

4 Conclusion

The rapid increasing prevalence of metabolic syndrome,

T2DM, and NASH constitutes great burden on global public

health, which need effective intervention to prevent them from

developing into serious diseases like cardiovascular disease, stroke,

and liver cirrhosis, etc. Emerging evidence demonstrates that

circulating FGF21 can be used as a predictor or biomarker of

some metabolic diseases such as diabetes, and CAD, because of its

aberrantly increasing level. More importantly, FGF21-based drugs

are explored to ameliorate metabolic diseases because of their

crucial actions in regulating systemic glucose and lipid

metabolism. And during past decades, the beneficial effect of

FGF21 analogs and FGF21-receptor agonists confirmed by

preclinical and clinical experiments has indicated that FGF21 is

an attractive target for the treatment of metabolic diseases,

particularly for obesity, T2DM, and NASH.

However, the safety associated with FGF21-based drugs still

warrants further research. The adverse effect of FGF21 treatment

such as reduced fertility in female mice (Owen et al., 2013),

increased plasma corticosterone (Bookout et al., 2013), and

impaired bone mineral density has been observed (Wei et al.,

2012). But there are also inconsistent results. In clinical trials,

obese subjects receiving PF05231023 treatment showed changes

in bone markers (Talukdar et al., 2016a), whereas no changes in

bone density were observed in patients with Pegbelfermin

treatment (Sanyal et al., 2019). The effect of FGF21 on female

fertility may be related to relatively substantial weight loss

(Coskun et al., 2008), which may be overcome by intaking an

HFD to increase the kisspeptin expression (Singhal et al., 2016a).

Previous studies considered FGF21 had less risk of cancer

induction since it is the only family member without

mitogenic action. However, aberrant expression of FGF21 has

been found related to cancer development, and it is suggested as a

promising cancer biomarker (Sui and Chen, 2022).

Therefore, further understanding of the mechanisms involved

in the metabolic regulation attributed to targeting FGF21 is

necessary, which will facilitate the development of more

effective and safer drugs for the treatment of metabolic diseases.
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