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Cutaneous melanoma (CM) is a highly aggressive malignancy with a dimal prognosis
and limited treatment options. Anoikis is believed to involve in the regeneration,
migration, andmetastasis of tumor. The exact role of anoikis-related genes (ARGs) in
the development and progression of cutaneous melanoma, however, remains
elusive. Four ARGs (SNAI2, TFDP1, IKBKG, and MCL1) with significant differential
expression were selected through Cox regression and LASSO analyses. Data for
internal and external cohorts validated the accuracy and clinical utility of the
prognostic risk model based on ARGs. The Kaplan–Meier curve indicated a much
better overall survival rate of low-risk patients. Notably, we also found that the action
of ARGs in the CMwas mediated by immune-related signaling pathways. Consensus
clustering and TIME landscape analysis also indicated that the low-risk score patients
have excellent immune status. Moreover, the results of immunotherapy response
and drug sensitivity also confirmed the potential implications of informing
individualized immune therapeutic strategies for CM. Collectively, the predictive
riskmodel constructed based on ARGs provides an excellent and accurate prediction
tool for CM patients. This present research provides a rationale for the joint
application of targeted therapy and immunotherapy in CM treatment. The
approach could have great therapeutic value and make a contribution to
personalized medicine therapy.
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Introduction

Cutaneous melanoma (CM) is a devastatingly aggressive malignancy with increasing
incidence and poor prognosis (Dika et al., 2019; Yu et al., 2022). The estimated annual
incidence is approximatelymore than 100,000 cases globally and the mortality of CM accounts
for 80%–85% of all skin cancer related death (Yang et al., 2022). CM is notorious for its
metastasis and loco-regional recurrence, which always results in a poor prognosis and high
mortality for patients. Early diagnosis and prompt surgical removal are reliable treatments for
localized CM; however, this strategy does not benefit patients with metastatic melanoma of the
later stages (Antohe et al., 2022). With development of immunotherapies and targeted
therapies, treatment options for CM have increased dramatically. Remarkably, an almost
inevitable acquired resistance to therapy is another hallmark of CM (Swami et al., 2020; Gullo
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et al., 2022). Thus, in-depth understanding the molecular mechanism
of CM development is imperative to identify novel diagnostic and
therapeutic biomarkers for CM patients.

Anoikis, as a programmed cell death, is a potential barrier to
cancer cell metastasis. Previous studies have pointed that the epithelial
or endothelial cells detached from extracellular matrix (ECM)
succumb to classical apoptosis commonly known as anoikis (Chi
et al., 2022; Sun et al., 2022). Evasion from apoptosis is one of the
essential changes in the malignant transformation of cells. In contrast
with healthy cells, tumor cells can evade anoikis, which contributes to
tumor progression and metastasis (de Sousa Mesquita et al., 2017;
Kakavandi et al., 2018). During tumorigenesis, the isolated tumor cells
bypass death signaling pathways and escape immune recognition,
which is the main reason for the occurrence of anoikis resistance (Shi
et al., 2022). Numerous studies have highlighted the important role of
anoikis resistance in tumor migration and metastasis (Saharat et al.,
2018; Fanfone et al., 2022). Thus, to better understand the progression,
metastasis and chemoresistance of CM, it is necessary to recognize the
functioning of anoikis.

The tumor microenvironment (TME) is indispensable in the tumor
development and progression (Kyriakou and Melachrinou, 2020).
Specifically, the tumor immune microenvironment (TIME) has
drawn much attention as a main contributor of CM progression and
metastasis, apoptosis, and invasion (Gray et al., 2017; Virtuoso et al.,
2022). Wang et al. pointed out that TIME was a potential biomarker for
CM cancer immunotherapy (Wang et al., 2020). Several lines of
evidence have highlighted that immunotherapies that block immune
checkpoints, such as programmed cell death 1 (PD-1)/PD-1 ligand (PD-
L1) axes and cytotoxic T lymphocyte antigen-4 (CTLA-4/CD28), were
related to the prognosis of CM patients (Herbreteau et al., 2018; Patel
et al., 2022). Of note, a significant number of patients experience drug
resistance andmetastasis and even died due to treatment-related adverse
drug reactions. Intriguingly, anoikis is an important barrier to
metastasis. Gaining anoikis resistance is a prerequisite for tumor
migration and metastasis of CM. Guadamillas et al. (2011) showed
that the abnormal microenvironment also helps the cancer evade
anoikis. Yet, to date, systematic research aimed at anoikis-related
genes (ARGs) and TIME in CM is still lacking.

Accordingly, the present study mainly focused on the association
between ARGs and the clinicopathological characteristics of CM based
on the analysis of The Cancer Genome Atlas database (TCGA) and the
Gene Expression Omnibus (GEO) database. A novel risk model was
constructed based on four prognostic ARGs. Next, the correlation of
risk score and the immune microenvironment landscape of patients
with CM was comprehensively explored. This research is expected to
help in the conception of new perspectives for the design of potential
therapeutic strategies and antitumor targets for CM.

Materials and methods

Data collection

The transcriptome matrix and clinical information were gained
from TCGA (https://portal.gdc.cancer.gov/) and GEO (https://www.
ncbi.nlm.nih.gov/geo/). GSE65904 was downloaded from the GEO
and annotated based on the microarray platform GPL10558.210. CM
samples were obtained from the GEO. The R package “sva” was
utilized to remove the batch effect of the transcriptome matrix in the

TCGA and GEO databases. The M stage (M0 vs. M1) of these cancers
was excluded in this study.

ARG collection and risk model construction

Thirty-four ARGs were derived from the MSigDB database (https://
www.gsea-msigdb.org/gsea/) (Supplementary Table S1). The prognostic
ARGs associated with the overall survival (OS) rate were identified by
univariate Cox regression. The LASSO algorithm was used to choose the
characteristic prognostic ARGs by applying the R package “glmnet.”
According to the coefficients calculated by multivariate Cox regression,
the risk score of each sample was calculated by the following formula: risk
score = coeff * expression of ARGs. The patients with CM were
categorized into low- and high-risk groups based on the median risk
score. The OS rate of CM patients was evaluated by the Kaplan–Meier
survival curve via a log-rank algorithm using the R package “survival.”

ARG prognostic signatures validation

To validate the independence of the ARG prognostic signatures,
the TCGA cohort was used as the internal cohort, and the GEO cohort
was used as the external cohort. With the ratio set at 1:1, the CM
samples were randomly divided into a training cohort and a test cohort
via R package “caret.” Meanwhile, GSE65904 was used to validate the
stability of the ARG prognostic signatures as an external validation
cohort.

Consensus clustering analysis

Consensus cluster analysis was utilized to classify the CM samples
into different molecular subtypes via the R package “Consensus
Cluster Plus.” The CM patients were randomized into two subtypes
in this study based on the consensus matrix (K = 2–9). For the
clustering analysis, patients were clustered based on the grounds of
partitioning around medoids with “Euclidean” distances, and
1,000 verifications were performed.

ARGs prognostic independence evaluation

Cox analyses were performed to evaluate that the risk model of
ARG prognostic signatures was a clinical independent factor for CM.
The R package “survival” was used to evaluate the OS rate of CM
patients with different clinicopathological characteristics. The R
package “rms” was used to construct a nomogram to evaluate the
OS rate of patients with CM in 1, 3, and 5 years. A calibration diagram
was used to assess the accuracy of the nomograms. The capability of
the risk model in evaluating prognosis for CM was validated using the
“timeROC” R package.

Functional enrichment analysis of differential
expression genes (DEGs)

The DEGs in the different risk groups were identified through the
R package “limma.” |Fold change| ≥ 2 and p < .05 were set as the
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threshold to select DEGs and visualized in a volcano diagram via the R
package “ggplot2.” The gene set variation analysis (GSVA) algorithm
was used to calculate the activity of the Kyoto Encyclopedia of Genes
and Genomes (KEGG) terms of the CM patients via the R package
“GSVA.” Gene oncology (GO) and KEGG enrichment analysis were
determined via the clusterProfiler package (Yu et al., 2012).

Analysis of immune infiltration landscape

The R package “estimate” was used to evaluate the stromal and
immune cells of the CM samples, include tumor purity, stromal,
ESTIMATE, and immune scores. The proportion of 22-type immune
cells was evaluated using the CIBERSORT algorithm via the
“CIBERSORT R script v1.03” script. The 23-type immune cells
were evaluated by the ssGSEA algorithm. In addition, the immune
function score of the CM samples was estimated by the R package
“GSVA”, and 14 immune function scores were evaluated. The R
package “ggplot2” was utilized to investigate the correlation of
prognostic ARGs and immune infiltration cells via the Spearman-
ranked correlation algorithm.

Immunotherapy response and drug sensitivity
analysis

The immunophenoscore (IPS) database, tumor immune
dysfunction and exclusion (TIDE) scores, and an anti-PD1/PD-L1
immunotherapy cohort (IMvigor210) were utilized to evaluate the
response of immunotherapy for CM patients. The result of IPS was
collected from the TCIA database (https://tcia.at/home). The response
of anti-PD1/PD-L1 for CMwas evaluated by the Imvigor210 cohort. In
addition, the TIDE score of CM was evaluated via the TIDE database
(http://tide.dfci.harvard.edu). The drug sensitivity (IC50) of each CM
sample was predicted by “pRRophetic” according to the GDSC
database. The Spearman-ranked correlation algorithm was used to
analyze the relationship between the risk score and drug sensitivity
(IC50).

Statistical analysis

All statistical analyses were carried out in the R software (version
4.1.0) (https://cran.r-project.org/) and Perl software. The Spearman-
ranked correlation algorithm was used to estimate the correlations
between different data points, and a p-value <.05 was regarded as
statistically significant. The Wilcoxon rank-sum test assessed the
significance between the two groups, and p < .05 was judged to be
statistically significant.

Result

Risk model construction based on the ARG
prognostic signatures

A new prognostic risk model based on ARGs was constructed to
assess the prognostic value of the ARGs in patients with CM. As
represented in Figures 1A, B, five prognostic ARGs associated with the

CM OS rate were verified by the LASSO analysis. Following the
multivariate Cox regression analyses, four independent prognostic
ARGs that evaluate the prognosis of CM were validated to construct
the risk model, including SNAI2, TEDP1, IKBKG, and MCL1. The
Kaplan–Meier survival curve showed that the OS rate in the patients
with high-risk scores was relatively lower (Figures 1C, D).
Furthermore, a remarkable distinction was observed between the
low- and high-risk groups via the principal component analysis
(Figure 1E).

The prediction risk model combining the
prognostic signature of ARGs evaluates the
CM prognosis

The independence and accuracy of the ARG prognostic signatures
in evaluating the prognosis for CM were further investigated. CM
patients were divided into a training cohort and a test cohort based on
the ARG prognostic signatures. The CM patients in cohorts were
ranked referring to the ARG prognostic signatures and the median risk
score. The survival time was significantly correlated with the risk score
revealed by the scatter dot plot (Figures 2A, B). Conversely, the
contrary phenomenon was observed in the GEO cohort
(Figure 2C). In line with the findings of the training and test
cohorts (Figures 2D, E), the Kaplan–Meier survival curve analysis
indicated that high-risk patients had a worse OS rate than the low-risk
patients in the GEO cohort (Figure 2F). The AUCs of the new
prognostic model were .691, .657, and .763 in the training, test,
and GEO cohort, respectively (Figures 2G–I). Together, these
findings demonstrate that the prediction ability of the risk model
based on the ARG prognostic signatures is highly accurate and
reliable.

Correlation of clinicopathological
characteristics and the ARG prognostic
signatures

Subgroup analysis was employed to further validate the prognostic
roles of ARG prognostic signatures in the different important
clinicopathological characteristics. Subsequently, the median of
ARG prognostic signatures is used in combination with
clinicopathological characteristics to classify the CM patients into
the low- and high-risk groups. The results of the Kaplan–Meier
survival curve analysis suggested that the patients with low-risk
scores had a higher OS rate among the age >65, age ≤65, female,
male, N 0–1, N 2–3, stage 2–4, and T 2–4 groups. Moreover, the OS
rate of patients with low-risk scores was similar to the OS rate of
patients with high-risk scores in stages 0–1 and T 0–1 (Figure 3).
Collectively, above findings demonstrate that the prognostic role of the
ARGs risk model could more exactly evaluate the CM prognosis
relative to the clinicopathological characteristics.

ARG prognostic signatures of CM are an
independent prognosis predictor

Cox regression analysis was employed to identify the
independence of the ARG prognostic signatures for CM. As shown
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in Figure 4A, age, stage, T, N, and risk score were strongly associated
with the OS rate in CM. Multivariate Cox regression analysis further
suggested that age (p = .023), T, N, and risk score were independent
prognostic predictors in CM (Figure 4B). The ROC analysis displayed
that the AUC of ARG prognostic signatures was .668 (Figure 4C).
Thereafter, 1-, 3-, and 5-year survival probabilities for CM patients
were evaluated by a nomogram model based on the ARG prognostic
signatures and other clinicopathological characteristics (Figure 4D).
Satisfactory agreement with predictions was illustrated in the
calibration curve result (Figure 4E). Time-dependent ROC curves
for the 1-, 3-, and 5-year OS rates were plotted with AUCs of .691, .711,
and .726, respectively (Figure 4F).

The same essential analyses were performed in the GEO cohort to
further confirm the above results. The same Cox regression analysis
results can also be seen in Supplementary Figures S1A, B. The ROC
analysis showed that the AUCs of risk score, age, and gender were .763,
.510, and .480, respectively (Supplementary Figures S1C). The ARG-
based risk model could accurately predict the survival probability of
CM patients through the nomogram and calibration curve results

(Supplementary Figures S1D, E). The time-dependent ROC curve also
suggested a favorable stability of the ARG prognostic power
(Supplementary Figures S1F). Taken together, the risk score
calculated by the prediction model based on ARGs is an
independent prognosis factor for CM, and an ARG prognostic
signature-based nomogram to predict the survival probability of
CM is precise and feasible.

DEGs and functional enrichment analysis

Enrichment analysis and GSVA revealed the underlying
regulatory mechanism of DEGs in the different risk groups. The
DEGs are illustrated in a volcano diagram in Figure 5A. The
GSVA results indicated that signaling pathways related to the
immune were significantly downregulated in the high-risk group
(Figure 5B). KEGG enrichment analysis results show the cytokine-
cytokine receptor interaction is dramatically enriched with DEGs
(Figure 5C). GO enrichment analysis illustrated that immune-

FIGURE 1
Risk model construction based on the prognostic ARGs in CM. (A) Identification of prognostic ARGs via the univariate Cox regression analysis. (B) The
result of LASSO regression analysis. (C) The Kaplan–Meier survival curve indicates that the low-risk score patients have higherOS rates. (D) The classification of
the CM patients according to the ARG prognostic signatures and the scatter dot plot reveals the correlation between the ARG prognostic signatures and
survival time. (E) A clear distribution between the different risk groups is revealed by principal component analysis.
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related biological process was significantly enriched, such as positive
regulation of cell activation, positive regulation of leukocyte activation,
and leukocyte mediated immunity (Figure 5D). These findings point
to a crucial role for immune-related signaling pathways in mediating
the function of ARGs in the development of CM.

Consensus clustering and immune
microenvironment landscape analysis of CM

The patients with CM were stratified into different subgroups
depending on four prognostic ARGs by consensus clustering analysis.
The consensus clustering heatmap demonstrated the classification of
CM samples (K = 2), with 167 samples in Cluster A and 287 samples in
Cluster B (Figure 6A). The Kaplan–Meier survival curve analyses

reported that the patients in Cluster A had better OS rates (Figure 6B).
It showed a clear clustering pattern according to the four prognostic
ARGs on the PCA plot (Figure 6C). Next, we utilized the ESTIMATE
algorithm to estimate the stromal and immune status of CM patients.
Compared to the patients in Cluster B, patients in Cluster A had
greater stromal, immune, and ESTIMATE scores and lower tumor
purity (Figures 6D–G). The CIBERSORT algorithm suggested a higher
proportion of follicular helper T cells, M0 macrophages, and
regulatory T cells (Tregs) in Cluster A, whereas the proportion of
M1macrophages, resting mast cells, M2 macrophages and eosinophils
were significantly higher in Cluster B (Figure 6H). ssGSEA result
indicated a higher immune infiltration status of patients in Cluster A
(Figure 6I). In short, these findings demonstrate that the ARGs are
closely related to the prognosis and immune infiltration landscape for
CM patients.

FIGURE 2
Validation of ARG prognostic signatures in CM. Risk model construction based on the ARG prognostic signatures in (A) training cohort, (B) test cohort,
and (C)GEO cohort. The Kaplan–Meier survival curve analysis of the patients in the (D) training cohort, (E) test cohort, and (F)GEO cohort. The AUC of the risk
model in the (G) training cohort, (H) test cohort, and (I) GEO cohort.
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Immune microenvironment landscape and
correlation analysis of risk score

Multiple immune assessment algorithms were applied to better
investigate the immune infiltration landscape of the patients with
different risk scores. The ESTIMATE results illustrated that the low-
risk score patients obtained higher immune, stromal, and ESTIMATE
scores and a lower tumor purity (Figures 7A–D). The CIBERSORT
result showed a higher proportion of plasma cells, CD8 T cells, naïve
B cells, Tregs, CD4 memory-activated T cells, and eosinophils in the
low-risk group. The proportions of CD4 memory-resting T cells,
M0 macrophages, resting mast cells, and M2 macrophages were
lower (Figure 7E). Compared with the high-risk score, a
significantly higher percentage of 23-type immune cells were
observed in the low-risk score patients, indicating a higher immune
status (Figure 7F).

Then, the associations between four prognostic ARGs and the
immune infiltration landscape were assessed by correlation analysis.

As displayed in Figure 7G, a remarkable association of the four
prognostic ARGs and 22-type immune cells was determined using
the CIBERSORT algorithm. For example, SNAI2 was negatively
associated with M0 macrophages, naïve B cells, and CD4 memory-
activated T cells but positively associated with resting mast cells,
M2 macrophages, and CD4 memory-resting T cells CD4.
Moreover, the correlation result illustrated a remarkable negative
correlation between SNAI2 and TFDP1 and 23-type immune cells;
MCL1 and IKBKGwere positively associated with the 23-type immune
cells (Figure 8H). Collectively, these results demonstrate that the risk
model for ARGs could reflect the immune status of CM patients.

Risk score associated with immunotherapy
response

Immunotherapy is considered the most promising treatment
strategy and has attracted great attention in the clinical

FIGURE 3
The Kaplan–Meier survival analysis of CM patients in the different clinicopathological characteristic subgroups. The Kaplan–Meier survival curve analysis
shows the OS rate of patients in the low- and high-risk groups among the (A, B) age (age > 65 vs. age ≤ 65), (C, D) gender (female vs. male), (E, F)N (N 0–1 vs. N
2–3), (G, H) stage (stage 0–1 vs. stage 2–4), (I, J) T (T 0–1 vs. T 2–4).
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management of CM (Ralli et al., 2020). Given the remarkable
difference in the TIME landscape of patients with CM in the
different risk groups, the potential immunotherapy response of CM
patients was further evaluated. The immune function score results
indicated the low-risk score patients had a markedly higher immune
function score than the high-risk score patients (Figure 8A). In
addition, the patients in Cluster A with higher OS rates had higher
immune function scores (Figure 8B). IPS results suggested that the
patients with low-risk scores were sensitive to anti-CTLA-4, -PD-1,
and -CTLA-4/PD-1, which suggested the potential role of
immunotherapy in CM patients (Figure 8C). The result of ICI
reflected that the expressions of LAG3, CTLA4, PD-1, PDCD1LG2,
and PD-L1 were higher in the patients with low-risk scores than in
patients with high-risk scores (Figures 8D–F). Based on the TIDE
analyses, the low-risk CM patients had a higher TIDE score

(Figure 8H). As shown in Figure 8I, the risk score in the CR/PR
group was markedly lower than in the SD/PD group of patients in the
IMvigor210 cohort (Figure 8I). These results imply that the risk score
might facilitate immunotherapy prediction for CM patients.

The analysis of drug sensitivity

Drug targeting is another promising strategy in cancer therapy.
Several antineoplastic drugs were selected to shed light on the
relationship between antineoplastic drug sensitivities and risk
scores. As shown in Figures 9A–H, the IC50 results revealed that
the IC50 values of saracatinib, ruxolitinib, rapamycin, sunitinib,
paclitaxel, lapatinib, and dasatinib were significantly higher in the
high-risk group, however, the IC50 value of sorafenib was lower. The

FIGURE 4
Independent ARG prognostic signature-based prognosis analysis and clinicopathological characteristics in the TCGA cohort. (A) The association results
suggested by univariate Cox regression analyses. (B) Multivariate Cox regression analyses indicate that the ARG prognostic signature is an independent
prognosis predictor for CM. (C) ROC curve displays the AUC of ARG prognostic signatures and other clinicopathological characteristics. (D)Nomogram of the
ARG prognostic signatures and clinicopathological characteristics to predict the survival time of patients with CM. (E)Calibration curve analysis of the 1-,
3-, and 5-year OS rates predicted by nomogram and actual OS rates. (F) The AUC of the time-dependent ROC curve.
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correlation analysis showed that the risk score was positively
correlated with saracatinib, ruxolitinib, rapamycin, sunitinib,
paclitaxel, lapatinib, and dasatinib but negatively correlated with
sorafenib (Figures 9I–P). Collectively, the results presented above
indicate a clear efficacy benefit for the antineoplastic drugs for
patients in the different risk subgroups, giving a novel perspective
for precisely targeted therapy for CM.

Discussion

CM is a lethal malignancy with an alarming and increasing incidence
rate worldwide over the past years (Song et al., 2022). It is well known that
metastasis is a main factor leading to poor efficacy and prognosis of CM
patients, despite the introduction of novel therapeutic approaches such as
immunotherapy (Burzi et al., 2021). Thus, seeking a novel biomarker and
therapeutic target is of the utmost importance. Accumulating evidence
indicated that anoikis plays a vital role in tumorigenesis and development
and promotes tumor invasion and metastasis (Su et al., 2013; Ness et al.,
2017). Nevertheless, the characteristics of the ARGs have not yet been
systematically profiled in CM. In the present study, five novel ARGs were
identified as being correlated with OS. A risk model based on four ARGs
was constructed to classify CM patients accurately and effectively into
high- and low-risk groups. Subgroup analysis results further
demonstrated that the prognostic signatures of the ARGs, which were
associated with the clinicopathological characteristics, could accurately
evaluate the prognosis of CM patients. The result of the enrichment

analysis showed that the role of ARGs in the development of CM was
mediated by immune-related signaling pathways. The analysis of the
immune microenvironment landscape demonstrated the risk model
based on ARGs correlated tightly with the prognosis and immune
infiltration landscape of CM patients, providing new insight for CM
immunotherapy. Analysis of the drug sensitivity landscape further
revealed a promising new field for antineoplastic drugs for CM
patients in the different risk subgroups. Overall, the current research
provides a framework regarding the co-administration of targeted therapy
and immunotherapy in CM treatment that may also assist in the
development of individualized treatment.

A few CM prognosis models have been established, such as the
hypoxia-related risk model and the cuproptosis-related model.
Meanwhile, new biomarkers related to DNA and RNA molecular
mechanisms have also been investigated to study the prognosis of
melanoma in recent years (Riefolo et al., 2019; Jarell et al., 2022).
However, the efficacy and prognosis are poor due to the metastasis of
CM. In general, anoikis has previously been described essentially as a
protective mechanism in tumor biology (Chen et al., 2020). Acquisition
resistance to anoikis is a hallmark of cancer cells for tumor invasion and
metastasis (Tsai et al., 2021). In the present article, four ARGs were
selected to construct the risk model. Here, the high expressions of SNAI2
and TFDP1 were observed in the high-risk score patients; however, the
expression of IKBKG and MCL1 was lower. Snail family transcriptional
repressor 2(SNAI2), a member of the Snail family, was regarded as an
epithelial-to-mesenchymal transition-inducing transcription factor (Peng
et al., 2022); (Jin et al., 2022). Extensive research has shown that SNAI2

FIGURE 5
DEG Functional enrichment analysis in the different risk groups. (A) Volcano diagram of the significant DEGs. The threshold: |FC| ≥ 2 and p < .05. (B)GSVA
analysis shows the KEGG term of CM patients in the different risk groups. (C) The results of KEGG enrichment analysis. (D) GO enrichment analysis illustrates
the enriched biological process.
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plays a critical role in melanocytes, adipocytes, and germ cells,
contributing to cell differentiation and tumor initiation (Zhao et al.,
2016). The absence of SNAI2 is associated with the level of malignancy in
melanoma (Caramel et al., 2013). TFDP1, an important transcription
factor, could coordinate with E2F proteins to promote transcription from
E2F target genes (Chen et al., 2014). Reports stated that TFDP1 also

interacts with pRB and p53 to modulate the cell cycle and apoptosis.
IKBKG is an inhibitor of kappa light polypeptide gene enhancer in B cells
and is also anNF-κB essential modulator. Notably, IKBKGwas implicated
in various cancer to promote tumorigenesis. The activation of IKBKE
could facilitate cell transformation; suppression of IKBKE in cancer cell
lines with IKBKE overexpression results in cell death (Frans et al., 2017;

FIGURE 6
The result of consensus clustering and immune infiltration landscape analysis in different subgroups. (A) Consensus clustering heatmap demonstrates a
suitable classification of CM samples (K = 2). (B) The Kaplan–Meier survival curve analysis of patients in Cluster A and Cluster B. (C) PCA analysis exhibits a
distinction between patients in Cluster A and Cluster B according to the four prognostic ARGs. (D–G) The stromal, immune, and ESTIMATE scores and tumor
purity results. (H) The fraction of 22-type immune cells in Clusters A and B. (I) The proportion of 23-type immune cells in Clusters A and B. *p < 0.05, **p <
0.01, ***p < 0.001, ****p < 0.0001.
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Boisson et al., 2019). Barbie et al. (2014) have suggested that IKBKG was
aberrantly expressed in breast carcinomas associated withNF-κB pathway
activation. Myeloid cell leukemia-1 (MCL1), a typical anti-apoptotic
protein belonging to the oncogenic BCL-2 family, was originally
identified in myeloid cells (Reissig et al., 2022). MCL1 has been found
to be overexpressed in many solid tumors, and many studies highlighted

the potential importance ofMCL1 as a therapeutic target (Pereira-Castro
et al., 2022; Quentmeier et al., 2022). It is worth noting that
demethylzeylasteral was found to evoke the apoptosis of melanoma
cells by downregulating the level of MCL1 (Zhao et al., 2017). This
extensive literature has claimed that ARGs in CM substantially contribute
to tumor growth and progression. The Kaplan–Meier survival curve

FIGURE 7
The results of immune infiltration landscape: (A) immune score, (B) ESTIMATE score, (C) stromal score, (D) tumor purity, (E) the proportion of 22-type
cells of patients in the different risk groups, (F) the proportion of 23-type cells. (G,H) Correlation analysis of ARGs and immune cells. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.
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results in the GEO cohort showed that patients with low-risk scores had a
greater OS rate. Cox regression analysis further exemplified that the risk
score is a clinically independent prognosis factor for CM. Collectively, the
four ARG-based risk models could accurately evaluate the prognosis for
CM patients.

Immune cell infiltration reflects the TIME around the tumor
tissues and reportedly performs an important role in tumorigenesis

and tumor progression of CM (Dong et al., 2022). A prior study
implied that multiple mechanisms are involved in regulating anoikis
resistance during tumor development and metastasis; the abnormal
TME also helps the cancer evade anoikis (Feng et al., 2014). In this
article, following the operation of the CIBERSORT algorithm, we
found a significant correlation between four ARGs and 22-type
immune cells. A remarkable negative correlation was found

FIGURE 8
Evaluation of immune function score and immunotherapy response. (A) Immune function score of patients in the different risk groups. (B) Immune
function score of patients in the clusters. (C–F) Immunophenoscore (IPS). (G) The expression of ICI in the low- and high-risk groups. The expression is
transformed by log2 (expression +1). (H) TIDE score. (I) The risk score in the IMvigor210 cohort. PR, partial response; PD, progressive disease; SD, stable
disease; CR, complete response. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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between SNAI2, TFDP1, and immune cells, whereas the opposite
relationship exists with MCL1 and IKBKG. T cells and
M1 macrophages are regarded as the principal effectors of
antitumor immunity, while immune evasion is characterized by
Tregs, mast cells, and M2 macrophages (Hong et al., 2022).
Overall, the findings strongly favor that the four ARG-based risk
model is strongly associated with the immune infiltration landscape,
reflecting the immune status of patients with CM.

Checkpoint blockade immunotherapy has emerged as a promising
direction in the clinical treatment of CM (Huang and Zappasodi,
2022). Immune checkpoint inhibitors, such as CTLA-4, PD-1, PD-L1,

and PD-L2, regulated the function and inhibited the antitumor
immunity of activated T cells (Zhou et al., 2021). In the current
study, the IPS result suggested that low-risk score patients displayed a
greater response to the anti-CTLA-4, anti-PD-1, and anti-CTLA-4/
anti-PD-1 of CM. Incidentally, anti-PD-1 and anti-CTLA4 have
achieved significant therapeutic effects in metastatic melanoma,
which is consistent with our results. CTLA-4 and PD-1 are the
major negative-regulatory receptors expressed on decreasing T cell
antitumor responses (Patel et al., 2022). PD-1 inhibits T cell activation
and limits immune effector responses when bound by its ligands PD-
L1 and PD-L2. Lymphocyte activation gene 3 (LAG3), a key regulator

FIGURE 9
Chemotherapy response of patients in the different risk groups. (A) Sorafenib, (B) saracatinib, (C) ruxolitinib, (D) rapamycin, (E) sunitinib, (F) paclitaxel, (G)
lapatinib, (H) dasatinib. (I–P) Correlation analysis of the risk score and drug sensitivity (IC50).
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of immune homeostasis, negatively regulates T cell immune responses
and homeostasis, mainly by inhibiting T cell activation and
proliferation (de Vos et al., 2022). Our results indicated that the
low-risk score group had a higher expression level of LAG3, CTLA4,
PD-1, PDCD1LG2, and PD-L1. Taken together, these results show that
patients in the different risk subtypes respond differently to
immunotherapy, indicating a fresh insight for the future
individualized immunotherapy for CM.

In summary, a prognostic risk model based on ARGs was
constructed and successfully divided CM patients into low- and
high-risk groups in the present study. Our findings indicate that
the prognostic signature established by four ARGs is a new
promising model for predicting the prognosis of CM.
Landscape analysis of the TIME reveals that the signaling
pathways related to immunity may mediate the role of ARGs
in CM. The present study demonstrates the risk impact on CM
management and clinical decisions using an ARG-based risk
model. However, no clinical data, such as immunochemistry
and FISH test results, are available to verify this diagnostic
(Gerami et al., 2012; Jarell et al., 2022). Future research will
address this point. Collectively, the present study provides
potential new biomarkers for the development of
individualized therapeutic targets for CM.
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