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Model-based approaches are instrumental for successful drug development

and use. Anchored within pharmacological principles, through mathematical

modeling they contribute to the quantification of drug response variability and

enables precision dosing. Reinforcement learning (RL)—a set of computational

methods addressing optimization problems as a continuous learning

process—shows relevance for precision dosing with high flexibility for dosing

rule adaptation and for coping with high dimensional efficacy and/or safety

markers, constituting a relevant approach to take advantage of data from digital

health technologies. RL can also support contributions to the successful

development of digital health applications, recognized as key players of the

future healthcare systems, in particular for reducing the burden of non-

communicable diseases to society. RL is also pivotal in computational

psychiatry—a way to characterize mental dysfunctions in terms of aberrant

brain computations—and represents an innovative modeling approach

forpsychiatric indications such as depression or substance abuse disorders

for which digital therapeutics are foreseen as promising modalities.
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1 Reinforcement learning for precision dosing

Precision dosing, or the ability to identify and deliver the right dose and schedule (i.e.

the dose and schedule with highest likelihood of maximizing efficacy and minimizing

toxicity), is critical for public health and society. Precision dosing is not only important for

marketed drugs to reduce the consequences of imprecise dosing in terms of costs and

adverse events; but also for therapeutics in development to reduce attrition, often related

to the challenge of precisely characterizing the therapeutic window due to a suboptimal

understanding of drug-response variability. Achieving the benefit to society of precision

dosing requires the identification of the main drivers of response variability, as early as

possible in the drug development process, and the deployment into clinical practice
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through an infrastructure designed for real-time dosing decisions

in patients (Maxfield and Zineh, 2021; Peck, 2021).

Model-based approaches to clinical pharmacology, also

known as clinical pharmacometrics (PMX) play a critical role

in precision dosing. First, they contribute to the identification of

the determinants of response variability through quantitative

analysis of pharmacokinetic (PK) and pharmacodynamics (PD)

relationships, and second, they constitute a central part of the

infrastructure providing a simulation engine, predicting

individual patient’s response to a dose, and from which

optimal dosing is identified through reverse engineering.

Often this reverse engineering comprises two steps: first the

PMX model’s individual parameters are calculated through

Bayesian inference, i.e. through the calculation of the mode of

posterior distribution (maximum a posteriori or MAP); second,

an optimal dosing scheduling is calculated, often via an heuristic

approach through simulating various feasible dosing scenarios

on inferred individuals model’s instances.

Many examples exist in literature describing relevant PKPD

models for precision dosing. For instance, in oncology, a model

describing the time course of neutrophils following

chemotherapy treatment is an ideal candidate for optimizing

chemotherapy delivery (see (Friberg et al., 2002) as an example).

Studies have also reported clinical investigations of model-based

precision dosing approaches. For instance, the clinical study

“MODEL1” was a phase I/II trial and a clear clinical attempt

of a personalized dosing regimen of docetaxel and epirubicin

patients with metastatic breast cancer and was shown to lead to

improved efficacy-toxicity balance (Henin et al., 2016).

Reinforcement learning (RL) was also used for precision

dosing. Still in oncology, Maier et al. extended the classical

framework of model-driven precision dosing with RL coupled

or not with data assimilation techniques (Maier et al., 2021).

Previously, RL applications—although without clinical

confirmation—were developed for brain tumors (Yauney and

Shah, 2018) based on a model of tumor size response to

chemotherapy (Ribba et al., 2012). We have recently evaluated

the performance of RL algorithms for precision dosing of

propofol for general anesthesia and for which a meta-analysis

showed that the monitoring of the bispectral index (BIS)—a PD

endpoint—contributes to reduce the amount of propofol given

and the incidence of adverse reactions (Wang et al., 2021). In

(Ribba et al., 2022), we performed a theoretical analysis of

propofol precision dosing confronting RL to hallmarks of

clinical pharmacology problems during drug development, i.e.

the low number of patients and tested dosing regimen, the

incomplete understanding of the drivers of response and the

presence of high variability in the data.

While RL does not present as a universal solution for all types

of precision dosing problems, it is an interesting modeling

paradigm worth exploring. In comparison to the way PMX

traditionally addresses precision dosing, RL presents several

advantages. First, the possibility to take into account high

dimensional PKPD variables while classical model-based

approaches are often limited to a low number of variables

(plasma concentration and one endpoint). In doing so, it

represents an opportunity for the integration of digital health

data such as from wearable devices or digital health technologies

in general. Second, the definition of the precision dosing policy in

a dynamic and adaptable manner through the continuous

learning of the algorithm through real and simulated

experience (data). RL is an approach by which both the

underlying model and the optimal dosing rules are learnt

simultaneously while for classical approaches, these represent

two sequential steps: in other words, the consequence of the dose

does not influence the model structure. Recently, studies have

been published illustrating methodologies for adapting PKPD

model structures through data assimilation (Lu et al., 2021; Bram

et al., 2022). While high dosing frequency is not a prerequisite

condition for the applicability of RL to precision dosing, this

approach is well suited when the solution space of dosing is large,

making heuristic approaches to find optimal dosing solutions

inadequate. In our example on propofol, dosing could happen

every 5 s so over a short period of 2 min, the space of solutions to

explore when considering dichotomous dosing even is greater

than 16 million possibilities.

RL is at the crossroads between two scientific fields. First, the

field of learning by trial and error that started with the study of

the psychology of animal learning and second, the field of

optimal control (Sutton and Barto, 2018). RL are often

formally described with Markov Decision Process or MDP

which includes all important features a learning agent should

have, namely, being able to sense the environment, being able to

take action and have clarity on the goal. In RL, a learning agent

takes an action and, as a result, transitions from one state to

another. After each action taken, the interaction between the

agent and its environment produces a reward. The goal of the RL

problem is tomap actions to situations (state), i.e. knowing which

actions to take in each state to maximize the accumulated reward.

As long as the optimization problem can be formulated within

the MDP framework, RL can be applied and its efficiency

explored.

For precision dosing of propofol, the state can be represented

by a table, an approach also called tabular solution methods. In

the next two sections, the state will be defined by a continuous

function. The reward was determined based on the value reached

by the BIS as a direct consequence of the action taken: the closer

the BIS to the target, the higher the reward. Finally, given the

theoretical study, the true PKPD model (linking the dose

application to BIS) was used as an experience (data)

generator. The left column of Table 1 summarizes the

characteristics of the application of RL to the propofol

precision dosing problem.

The minimal set of RL characteristics makes it a very flexible

paradigm, suitable for a large variety of problems. Herein, we will

in fact illustrate this flexibility by illustrating how this framework
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can be viewed as a bridge between a priori distinct areas such as

precision dosing of pharmacological drugs, digital health and

computational psychiatry.

In the appendix, we propose to demystify how RL

algorithms—such as temporal difference Q-learning, repeatedly

mentioned here—work, taking a simple illustration from video

gaming.

2 Reinforcement learning in digital
health

For several years, many reports have indicated the key

importance of digital health for reducing the burden to society

of non-communicable diseases such as cardiovascular, diabetes,

cancer or psychiatric diseases, in part due to the aging of the

population and—paradoxically—the success of

pharmacologically-based interventions in increasing life

expectancy while being affected by pathological conditions

(Fleisch et al., 2021). Prevention and interventions targeting

lifestyle are essential tools to address this societal challenge of

ever-growing importance as our healthcare systems risk collapse

under cost pressure.

In 2008, it was estimated that physical inactivity causes 6% of the

burden of coronary heart disease, 7% of type II diabetes, 10% of breast

cancer and 10% of colon cancer and overall the cause of more than

5.3 million of the 57 million deaths which occurred that year (Lee

et al., 2012). In that study, the authors also estimated that with 25%

reduction of physical inactivity, 1.3 million of deaths could be averted

every year. Given the constant increase of smartphone coverage

worldwide, it is natural to think of mobile health technologies to

support healthy lifestyle habits and prevention. The thinktank

Metaforum from KU Leuven dedicated its position paper 17 on

the use of wearables and mobile technologies for collecting

information on individual behavior and physical status—combined

with data from individual’s environment—to personalize

recommendations (interventions) bringing the subject to adopt a

healthier lifestyle (Claes, 2022).

When the intervention is intended to have a therapeutic

benefit, it falls in the field of digital therapeutics when associated

with demonstration of clinical effectiveness and approved by

regulatory bodies (Sverdlov et al., 2018). This point of junction

TABLE 1 Main characteristics of RL algorithm implementation to the precision dosing of pharmacological interventions (left column); the precision dosing of
digital intervention (middle column); and computational psychiatry (right column). While there are multiple similarities between the precision dosing of
pharmacological and digital interventions, the application of RL in computational psychiatry shows as a paradigm shift. RL computational machinery is not
deployed as a technical approach to address the optimal control problem of precision dosing but is fitted to (cognitive task) data assuming the algorithm
itself presents mechanistic similarities with how brain’s participants functioned during the task.

Precision dosing of a
pharmacological intervention

Precision dosing of a digital
intervention

Computation psychiatry

Study case
[References]

Optimal dosing of propofol administration
(Ribba et al., 2022)

Just-in-time-adaptive-intervention for
HeartSteps, mobile app aimed at reducing
physical inactivity (Liao et al., 2020)

Population analysis of signal-detection task
in anhedonic subjects (Huys et al., 2013)

Type of RL solution Tabular Continuous

State Is directly linked to the state of the patient Is linked to the situation the participant to the
task is presented with and based on which an

action must taken

PK drivers and/or PD endpoint such as the BIS Contextual drivers (e.g. weather conditions,
time of the day) and patient-related status
derived from wearable device equipment

Belief of the correctness (weight) of each
stimuli present in the task

Action Dose or not Dose (walking suggestion message) or not Participant’s answer choice

Reward Defined to enable the algorithm converging to the optimal dosing solution Corresponds to whether the answer is correct
or wrong

Simple function of BIS leading to high reward
when actual BIS is close to its target

Step count in the 30 min window after each
decision time

Automatically derived from the answer as
per task design and setup

Use of simulated
experience?

Yes No

The true underlying PKPD model is used Linear model assimilating real data No need for simulated experience, RL
algorithm is mapped to the trial-by-trial data

Algorithm Temporal difference Q-learning Thomson Sampling Temporal difference Q-learning

Free parameters Used to calibrate model of patient’s response to dosing event Used to calibrate RL algorithm

Parameters of the PKPD model Parameters of the linear model for reward
prediction under alternative dosing scenarios

Learning rate and reward sensitivity
parameter
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between digital health applications and pharmacological drugs

represents a ground for attempting to reframe PMX—a

recognized key player in the development of the latter—as a

key support to the development of the former, in particular when

it comes to precision dosing for digital health.

The precision dosing of digital therapeutics overlaps with the

concept of just-in-time adaptive intervention or JITAI (Nahum-Shani

et al., 2018). In the mobile technology literature, JITAI has been

primarily considered as a critical topic for increasing adherence and

retention of users; but within a therapeutic perspective, it should

encompass both the topic of adherence and retention to the

therapeutic modality and the topic of its optimal dosing in order

to maximize clinical benefit. For clarity, these two different learning

problems should be distinguished as many existing applications focus

primarily on the first one. For example, a growing number of mobile

applications developed under the concept of virtual coaching aim to

optimize the design of the interventions (time and content, e.g.

messages sent by the app to the users with the form of a prompt

appearing on a locked screen) to incite the user to take actions.

HeartSteps was designed to encourage user to increase their physical

activity and where content delivery, such as tailored walking

suggestion messages, is optimized with an RL algorithm (Liao

et al., 2020). Here, RL is used to address the first learning

problem: How to deliver the content so that the user is doing

what is recommended. We each need different forms of

prompting and potentially different forms of exercise to increase

our physical activity. Overall, this problem is similar to that of

adherence to a pharmacological regimen. But a second problem is:

what is the right dose of the desired intervention? In other words:

How many steps is optimal for each patient? This is the usual

precision dosing problem for drugs and there is a clear

opportunity for digital health applications to extend the domain of

application of JITAIs to that problem as well.

One of the particularly interesting aspects of the research on

RL algorithms for HeartSteps is that, beyond the innovative

nature of the work purely related to the design of

personalized interventions, it also includes ways to objectively

evaluate its efficiency. An experimental design called micro-

randomized trial (MRT) is proposed as a framework to

evaluate the effectiveness of personalized versus non-

personalized interventions (Klasnja et al., 2015; Qian et al.,

2022). The principle of MRT is to randomize the

interventions multiple times for each subject. Statistical

approaches have been studied to leverage MRT-derived data

in order to inform treatment effects and the response variability

(Qian et al., 2020). In the theoretical propofol example described

in the previous section, we used the true PKPDmodel to simulate

experience. In the real-life RL application of HeartSteps, the

authors had the objective to design a method for learning quickly

and for accommodating noisy data (Liao et al., 2020). To address

these points, the authors used a simulation engine to enhance

data collected from real experience and this simulation engine

was built with simple linear models. Precisely, the authors

modeled the difference in reward function under alternative

dosing options with low dimensional linear models, which

features were selected based on retrospective analysis of

previous HeartSteps data and based on experts’ guidance. The

precision dosing problem was addressed using posterior

sampling via Thompson-Sampling, identified as performant in

balancing exploration and exploitation (Russo and Van Roy,

2014; Russo et al., 2018). The definition of the state was based on

several individual’s features including contextual information or

sensor data from wearable devices while the reward was defined

as the step counts within 30 min after the “dosing” event. The

middle column of Table 1 summarizes the main characteristic of

RL application to this problem.

3 Reinforcement learning in
computational psychiatry

Like mechanistic modelling, computational psychiatry refers

to a systems approach aimed at integrating underlying

pathophysiological processes. However, while mechanistic

modelling efforts typically use multiscale biological processes

as building blocks, some models that fall within the remit of

computational psychiatry (such as RL) use different types of

building blocks, and in particular brain cognitive processes.

Model-based approaches have shown relevance for

addressing major challenges in neuroscience (see (Conrado

et al., 2020) for an example for Alzheimer disease).

Quantitative systems pharmacology and mechanistic-based

multiscale modelling are, in particular, associated with major

hopes while acknowledging significant challenges such as the lack

of quantitative and validated biomarkers, the subjective nature of

clinical endpoints and the high selectivity of drug candidates not

reflecting the complex interactions of different brain circuits

(Geerts et al., 2020; Bloomingdale et al., 2021). These challenges

are equally valid for attempting to address psychiatric conditions.

This can partly explain the efficiency of non-pharmacological

interventions, such as targeted psychotherapy approaches,

recognized as one of the most precise and powerful

approaches (Insel and Cuthbert, 2015).

The efficiency of such interventions is a testimony of how the

brain’s intrinsic plasticity can alter neural circuits. Some

(discursive) disease models—with a focus on systems

dimensions–propose new perspectives in the understanding of

such conditions. For instance, it has been reported that emotion-

cognition interactions gone awry can lead to anxiety and

depression conditions; with anxious individuals displaying

attentional-bias toward threatening stimuli and have difficulty

disengaging from it (Crocker et al., 2013). Further data-driven

understanding—at the systems level—is key to increase the

likelihood of success of such non-pharmacological

interventions, as it is equally the case for research and

development of pharmaceutical compounds (Pao and Nagel,
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2022). Such data-driven understanding can be integrated in the

design of relevant non-pharmacological interventions, with some

of them known to be amenable to digital delivery through, for

instance, digital therapeutics (Jacobson et al., 2022).

A precision medicine initiative—precision psychiatry—has been

initiated for psychiatric indications, such as major depression or

substance abuse disorder, constituting a major part of non-

communicable diseases (Insel and Cuthbert, 2015). The core idea

of precision psychiatry lies in the reframing the diagnosis and care of

affected subjects by moving away from a symptom-based to a data-

driven categorization through a focus on system dimension via

integration of data from cognitive, affective and social

neuroscience, overall shifting the way to characterize these

conditions in terms of brain circuits (dys-)functioning. This

concept materialized in proposing the Research Domain Criteria

(RDoc) in 2010 (Insel et al., 2010) as a framework for research in

pathophysiology of psychiatric conditions.

Integrating into a multiscale modelling framework, data from

cognitive, affective and social neuroscience is an objective of

computational psychiatry, defined as a way to characterize

mental dysfunction in terms of aberrant computation in the

brain (Montague et al., 2012). Not surprisingly, by its mimicking

of human and animal learning processes, RL plays a key role in

computational psychiatry. RL in computational psychiatry

proposes to map brain functioning in an algorithmic language

offering then the possibility to explore, through simulations, the

dysfunctioning of these processes as well as the theoretical benefit

of interventional strategies. Two examples will be further

developed here and the readers can refer to (Seriès, 2020) for

an overview of more computational psychiatry methods, models

and study cases.

In a RL framework, actions by the learner are chosen according to

their value function, which holds the expected accumulated reward.

The value function is updated through experience using feedback

from the environment to the action taken. This update is also called

temporal difference. An analogy has been drawn between this

temporal difference and reward-error signals carried by dopamine

in decision-making. Temporal difference reinforcement learning

algorithms learn by estimating a value function based on temporal

differences. The learning stops as this different converges to zero (see

SupplementaryMaterial for further details). Such a framework can be

used to reframe addiction as a decision-making process gone awry.

Based on the observation that addictive drugs produce a transient

increase in dopamine through neuropharmacological mechanisms,

the proposed model assumes that an addictive drug produces a

positive temporal difference independent of the value function so

that the action of taking drug will be always preferred over other

actions (Redish, 2004). This model provides a tool to explore the

efficiency of public health strategies. For instance, the model proposes

some hypotheses to explain the incomplete success of strategies based

on offering money as an alternate choice from drug intake.

RL models are used for the analysis of data of cognitive tasks

and in particular tasks related to decision-making. Instead of

focusing on the summary statistics of such tests (e.g, total number

FIGURE 1
Illustration of the mutual benefits of increased permeability between model-based approaches to precision dosing and digital health, on one
hand, and computational psychiatry on the other hand.
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of errors), RL-based approaches allow for the integration of trial-

by-trial data similarly to what model-based approaches typically

do—with longitudinal data analysis—to better decipher response

variability via the characterization of PK and PD processes. In the

same way, trial-by-trial data can be leveraged to estimate RL-

model based parameters which, in turn, can be compared to

clinical endpoints such as measures of symptom severity to

disentangle the role of brain circuit mechanisms overall

contributing to a better understanding of response variability.

RL for cognitive testing data in psychiatric populations is a

complete paradigm change with respect to its application for

precision dosing problems. While–in the two previous

examples—RL was used to solve the problem of optimal

dosing, now the RL algorithm is mapped to neuro-cognitive

processes. Quantitatively characterizing these processes for each

patient (estimating parameters from RL algorithms) is proposed

as a methodology for extracting relevant information towards

disease characterization and thus, response variability.

In (Huys et al., 2013), the authors use RL models to analyse

population data of a behavioural test (signal-detection task) to study

aspects of anhedonia—a core symptom of depression—related to

reward learning. The authors proposed a RL model based on

Q-learning update integrating two parameters: the classical

learning rate and a parameter related to reward sensitivity

modulating the percentage of the reward value actually

contributes to the update of the Q value function. By performing

a correlation analysis of the inferred parameters with anhedonic

depression questionnaire, the authors found a negative correlation

between the reward sensitivity but no correlation with the learning

rate. Overall, these results led to the conclusion that the sensitivity to

the reward and not the learning rate could be the main driver

explaining why in anhedonic individuals, reward has less impact

than in non-anhedonic individuals. Unravelling these two

mechanisms is important for the planning of successful digital,

behavioural and pharmacological strategies. The right column in

Table 1 depicts the summary characteristics of RL applied to that

study.

4 Conclusion

In this perspective, we have illustrated the flexibility of RL

framework throughout the described applications in precision

dosing, digital health and computational psychiatry and with that

have demonstrated the benefit for the modeling community to

become familiar with these approaches. The contrary is also true,

and the field of precision digital therapeutics and computational

psychiatry can benefit much from a proximity to the PMX

community.

First, PMX methods could make RL even better. The field of

computational psychiatry could benefit from input from the

PMX community when it comes to statistical aspects related

to parameters inference and clinical endpoint modelling. Two

areas for which PMX has adopted as its state-of-the-art,

population approach (with powerful algorithms such as

stochastic approximation expectation-maximization algorithm

(Lavielle, 2014)) and joint modelling respectively.

Second, the field of digital health should benefit from what

constitutes one of the essential objectives of model-based drug

development approaches, namely: elucidating response

variability. It is particularly important for the successful

development of digital therapeutic interventions to know how

to characterize the efficacy and safety profiles and to know how to

develop personalization strategies based on this understanding.

The fact that it is about digital interventions should not prevent

developers from prioritizing research in understanding

underlying causal biological and (patho)-physiological

processes of response, which will always be a key factor of

successful therapy development, either pharmacological or

not. Figure 1 proposes an illustration of these mutual benefits.

5 Legend

Table 1: Main characteristics of RL algorithm

implementation to the precision dosing of pharmacological

interventions (left column); the precision dosing of digital

intervention (middle column); and computational psychiatry

(right column). While there are multiple similarities between

the precision dosing of pharmacological and digital

interventions, the application of RL in computational

psychiatry shows as a paradigm shift. RL computational

machinery is not deployed as a technical approach to address

the optimal control problem of precision dosing but is fitted to

(cognitive task) data assuming the algorithm itself present

mechanistic similarities with how brain’s participants

functioned during the task.
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