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Activation of the aryl hydrocarbon receptor (AhR) through environmental

exposure to chemicals including polycyclic aromatic hydrocarbons (PAHs) and

polychlorinated dibenzo-p-dioxins (PCDDs) can lead to severe adverse health

effects and increase the risk of breast cancer. This review considers several

mechanisms which link the tumor promoting effects of environmental pollutants

with theAhR signalingpathway, contributing to the development andprogression

of breast cancer. We explore AhR’s function in shaping the tumor

microenvironment, modifying immune tolerance, and regulating cancer

stemness, driving breast cancer chemoresistance and metastasis. The

complexity of AhR, with evidence for both oncogenic and tumor suppressor

roles is discussed. We propose that AhR functions as a “molecular bridge”, linking

disproportionate toxin exposure and policies which underlie environmental

injustice with tumor cell behaviors which drive poor patient outcomes.
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Introduction—Environmental exposure and breast
cancer

Air pollution and occupational exposure studies have reported positive associations

with the risk of developing breast cancer (Amadou et al., 2021). Air pollution and ambient

particulate matter (PM) contain a complex mixture of compounds, including polycyclic

aromatic hydrocarbons (PAHs) and various metals (e.g. iron, nickel, copper), which may

induce reactive oxygen species (ROS) and inflammation (Rückerl et al., 2007; Grunig

et al., 2014) and stimulate the progression of breast cancer (Romaniuk et al., 2017). PAHs

are generated during combustion processes and derive from various sources such as

indoor fireplaces, wildfires, industrial activities, and vehicular traffic and the exposure to

PAHs has been identified as a risk factor for breast cancer (Lichtiger et al., 2021; Gamboa-
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Loira et al., 2022). Importantly, a stronger association of breast

cancer risk was found with traffic related air pollution (TRAP)

and higher PAH exposure intensity and duration of exposure

(Brody et al., 2007; Nie et al., 2007; Mordukhovich et al., 2016;

Large and Wei 2017; Shen et al., 2017; Lee et al., 2019). Vehicular

traffic is a major ambient source of PAH exposure and the PAH

benzo[a]pyrene (BaP) is classified as a human carcinogen by the

International Agency for Research on Cancer (IARC, 2010).

Furthermore, BaP and other PAHs have been identified as

ligands of the aryl hydrocarbon receptor (AhR), a ligand-

activated transcription factor, belonging to the bHLH-PAS

family, which regulates multiple target genes and is best

known for its role as a xenobiotic receptor (Boonen et al.,

2020; Vogel et al., 2020). The activation of the AhR signaling

pathway via environmental pollutants including dioxins and

PAHs has been associated with the development of breast

cancer (Birnbaum and Fenton 2003; La Merrill et al., 2010;

Murray et al., 2014; Warner et al., 2011; Kolluri et al., 2017;

Donovan et al., 2018; Narasimhan et al., 2018; Gearhart-Serna

et al., 2020). Reports from our team and other groups suggest an

important role of AhR as an immune-modulator and mediator of

toxic responses triggered by particulate matter (PM) derived

from TRAP (O’Driscoll et al., 2019; O’Driscoll and Mezrich,

2018; Castaneda et al., 2018; Yuan et al., 2020).

Recent studies confirmed an increased risk of breast cancer with

vehicular-specific PM exposure among African American and

Japanese American women living near major roads, highlighting

the link between environmental injustice and health disparities

(Cheng et al., 2020; Niehoof et al., 2020). Indeed, residential

proximity to major roadways is a recognized risk factor beyond

breast cancer, in cardiovascular disease (Hart et al., 2014; Kirwa et al.,

2014; Kingsley et al., 2015; Kubil et al., 2018) and renal disease (Lue

et al., 2013). Further, it disproportionately impacts racial and ethnic

minoritized groups and those of lower socioeconomic status, the

legacy of the widespread practice of redlining in the United States

(Hwa Jung et al., 2022; Swope et al., 2022). While the Fair Housing

Act of 1968 prohibited racial discrimination in housing and lending,

exclusionary zoning and other practices such as gentrification has

perpetuated residential segregation (https://www.brookings.edu/

research/neighborhood-segregation-persists-for-black-latino-or-

hispanic-and-asian-americans/). In a study of Hillsborough County

in Florida, Stuart et al. (2009) found that blacks, Hispanics, and

people living below the poverty line are much more likely to reside

close to sources of air pollution but further from air quality

monitoring sites while whites were found to live closer to

monitoring sites but significantly further from pollution sources.

Wu et al. (2014) found that particulate matter (PM) collected near a

major Los Angeles freeway (compared to an urban background

location) induced significantly higher production of the cytokines

IL-6, IL-8, and TNF-α, suggesting a link between AhR activation,

AhR-driven inflammation (Vogel et al., 2011; Vacher et al., 2018;

Wu et al., 2021) and proximity to pollution. The interaction between

environmental exposure, socio-economic related stress and

psychosocial stress in under-resourced neighborhoods has been

termed the environmental “riskscape” by Morello-Frosch &

Shenassa, 2006 (Morello-Frosch & Lopez, 2006). As noted by

Morello-Frosch, the Institute of Medicine recognizes this as a

type of “double jeopardy” in which elevated stress impairs the

ability of individuals living in under-resourced neighborhoods to

endure the myriad health consequences of chronic environmental

exposures (https://www.scientificamerican.com/article/end-double-

jeopardy/#).

Role of AhR in breast cancer

Approximately 2 decades ago, AhR was found to be

overexpressed in mammary cancer in rats (Trombino et al.,

2000) sparking curiosity as to its role in breast cancer

progression. Several studies have since shown that chemical

exposure and AhR activation affect processes of mammary gland

differentiation, disrupting pregnancy-related differentiation and

milk production, and increasing the risk of breast cancer

(Warner et al., 2002; Vorderstrasse et al., 2004; Lew et al., 2011;

Belton et al., 2018; Kay et al., 2022). Further studies have elucidated

AhR’s molecular contribution to carcinogenic progression and

ratified the oncogenic role of AhR in breast cancer cells (Wang

et al., 2017;Wang et al., 2020). In support of its role as a breast cancer

oncogene, AhR activation is sufficient to transform human

mammary epithelial cells and promote their migration, invasion

and epithelial-to-mesenchymal transition (EMT) (Brooks and

Eltom 2011). Work from our group showed that chronic

exposure of MCF10AT1 and MCF-7 cells to estradiol (E2)

resulted in AhR overexpression and downregulation of estrogen

receptor alpha (ERα) and progesterone receptor (Zou and

Matsumura 2003; Wong et al., 2009) accompanied by increased

proliferation, invasion, and apoptosis resistance. The resistance to

apoptosis was also demonstrated in human breast cancer cell lines

treated with the prototypical AhR ligand TCDDwhen apoptosis was

induced by chemotherapeutics (doxorubicin, lapatinib and

paclitaxel) (Bekki et al., 2015). Treatment with PAH mixtures

which bind to and activate AhR also increased cell proliferation

and expression of antiapoptotic proteins in MCF-7 cells via AhR

signaling (Gearhart-Serna et al., 2020).

Several studies have reported AhR overexpression in human

breast cancer (Li et al., 2014; D’Amato et al., 2015; Vacher et al.,

2018). Using samples from breast cancer patients, we found that

AhR is frequently over-expressed in ER-negative human breast

tumors, and this is closely correlated with elevated expression of

the NF-lB subunit RelB and inflammatory markers such as IL-8

(CXCL1 in mouse) and COX-2 (Vogel et al., 2011). This was also

observed by Vacher et al. with significant overexpression of

cytokines, including IL-8, in AhR high expressing tumors

(Vacher et al., 2018). We demonstrated that C/EBPβ serves as a

key transactivator for AhR-mediated COX-2 gene induction (Vogel

et al., 2000; Vogel et al., 2004). Interestingly, COX-2, CXCL1, and IL-
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8 have been identified as critical genes that mediate breast cancer

invasion and metastasis to lung and lymph nodes (Freund et al.,

2003;Minn et al., 2005; Ahmed et al., 2021). A recent report suggests

that inhibition of COX-2 expression reduces mammary tumor

multiplicity and size in the polyoma middle T antigen (PyMT)

mouse model (Esbona et al., 2016). In our recent study we

demonstrated that overexpression of AhRR (Aryl Hydrocarbon

Receptor Repressor) suppresses AhR-driven (TCDD-stimulated)

growth of syngeneic mammary tumors as well the onset, growth

and metastasis of spontaneous mammary tumors in PyMT mice

(Vogel et al., 2021). In human breast cancer, high expression of

AhRR, the dedicated AhR repressor, independently predicts

prolonged metastasis-free survival (Vacher et al., 2018), in

agreement with our findings in PyMT mice (Vogel et al., 2021).

Interestingly, knockdown of AhRR in normal human mammary

epithelial cells resulted in anchorage-independent cell growth

suggesting that the AhRR may function as a tumor suppressor

gene (Zudaire et al., 2008).

In a mouse model of BRCA1-associated breast cancer, AhR

was found to transcriptionally induce the EGF receptor ligand,

Amphiregulin, driving tumor growth and macrophage

infiltration. Of note, this was inhibited by the combination of

an AhR inhibitor and an EGF receptor inhibitor, suggesting new

therapeutic possibilities for this type of breast cancer (Kubli et al.,

2019). The relationship between AhR activation and breast

cancer-related death was recently assessed using an artificial

intelligence tool to analyze the scientific literature, with strong

evidence that AhR activation is an adverse outcome pathway in

breast cancer (Benoit et al., 2022).

Interestingly, many studies have also provided evidence for a

tumor suppressor role for AhR, with evidence that AhR can inhibit

tumor growth (Fritz et al., 2007; Jin et al., 2014; Feng et al., 2020)

while inhibition of AhR or AhR deficiency promotes tumor

development (Abdelrahim et al., 2003; Safe et al., 2017). For

example, in the ApcS580/+; KrasG12D/+ mouse model of colon

tumorigenesis, intestinal epithelial specific AhR knockout promoted

tumorigenesis through enhancedWnt signaling (Han et al., 2021). In

p53 deficientmice, AhRknockout significantly increased incidence of

thymic lymphomas and sarcomas and decreased survival (Phillips

et al., 2022). In a mouse model of sonic hedgehog type-

medulloblastoma, AhR deletion in cerebellar granule cell

progenitors accelerated tumorigenesis through increased TGFβ-
SMAD3 signaling (Sarić et al., 2020) with high AhRR expression

linked to decreased patient survival. Further, in an unbiased

functional genomics screen, AhR was identified as metastasis

suppressor in a lung cancer model (Nothdurft et al., 2020). In

in vitro studies, AhR was demonstrated to cooperate with the Rb

tumor suppressor to prevent S-phase cell cycle entry (Puga et al.,

2000) while activation of AhR by the prototypical ligand TCDD

inhibited the growth of MCF7 breast cancer cells (Vogel and Abel

1995). David Sherr’s team investigated AhR agonists and antagonists

in a direct comparison and concluded that the sustained activation of

AhRdrives the later, more lethal stages of some cancers, but that AhR

agonists under some circumstances can counteract tumor

development and may also serve as cancer therapeutics

(Narasimhan et al., 2018). In this vein, O’Donnell (O’Donnell

et al., 2021) and others (Rowland et al., 2019) have pursued

SMAhRTs, Select Modulators of AhR-regulated Transcription, to

specifically exploit the anti-cancer functions of AhR. Notably, they

identified a modulator which induced AhR-dependent Fas ligand

expression and breast and liver tumor cell apoptosis without

increasing expression of the prototypical AhR target gene,

CYP1A1, suggesting that AhR transcriptional activity can be fine-

tuned, to specifically unlock its function as a tumor suppressor.

Cytokines and chemokines in breast
cancer and the tumor
microenvironment

The tumor microenvironment (TME) corresponds to the fact

that tumor cells are surrounded in close proximity by a number of

non - cancerous cells including cancer associated fibroblasts (CAFs),

mesenchymal stem cells (MSCs), adipocytes, myeloid-derived

suppressor cells (MDSCs), tumor associated macrophages

(TAMs), tumor associated neutrophils (TANs), tumor infiltrating

lymphocytes (TILs), and endothelial cells (Joyce and Pollard 2009;

Lazennec and Lam2016; Binnewies et al., 2018). In addition to direct

contact with tumor cells, TME cells will interact with tumor cells

though a number of different soluble factors including cytokines and

chemokines, which will reshape TME to support cancer initiation,

progression, and metastasis (Ali and Lazennec 2007; Lazennec and

Richmond 2010; Mancini et al., 2021) (Figure 1).

In breast cancer, many chemokines and cytokines have been

analyzed and identified as important factors contributing to the

development of breast tumors (Narita et al., 2016; Masih et al.,

2022). In particular the CXCR4/CXCL12 axes has been reported

to control breast cancer metastasis and the involvement of CAFs

(Muller et al., 2001; Orimo et al., 2005). The CAF-driven CXCR4/

CXCL12 axis may also stimulate the accumulation of

protumorigenic lipid associated macrophages which supports

an immunosuppressive microenvironment in breast cancer

(Timperi et al., 2022).

CCL2 and CCL5 have also retained attention in breast cancer, as

they are expressed by cancer cells and promote the recruitment of

TAMs and metastasis by inducing Th2 polarization of CD4+ T cells

(Chavey et al., 2007; Soria and Ben-Baruch 2008; Zhang et al., 2015;

Brummer et al., 2018). In addition, the ligands of CXCR2 (CXCL1, 2,

3, 5, 6, 7, 8) have been shown in a number of studies to be involved in

the aggressiveness of triple negative breast cancers (TNBC) (Bieche

et al., 2007; Chavey et al., 2007; Acharyya et al., 2012). The genes of

these chemokines are encoded by a small region of chromosome

4q21 and have been found to be coregulated in TNBC (Bieche et al.,

2007). Moreover, cancer cells expressing high levels of CXCL1 and

CXCL2 acquire an advantage in terms of survival in metastatic sites

and favor the recruitment of TANs (Acharyya et al., 2012).
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Interestingly, CXCR2 itself is also playing a major role in the

aggressiveness of TNBC, in particular through its expression on

TANs (Boissiere-Michot et al., 2020; Boissiere-Michot et al., 2021).

Although the levels of CXCR2-expressing neutrophils is correlated

to high grade breast cancers, its role is rather to counteract tumor

progression (Boissiere-Michot et al., 2021), as it is correlated with a

better survival of the patients and its deletion favors tumor growth

and metastasis (Timaxian et al., 2021). There are many links

between AhR and CXCR ligands in particular. For instance, we

have shown that the complex of AhR and NFkB RelB was able to

bind to a specific binding elements of chemokines including the

CXCL8 promoter and to promote its activation though protein

kinase A (Vogel et al., 2007). RelB/AhR complex is also involved in

the overexpression of CXCL8 in breast cancer (Vogel et al., 2011;

Bekki et al., 2015). A significant elevated level of CXCL8 mRNAs

expression (56-fold) has also been found in tissue samples of high

stage compared to low stage patients and adipose-derived stem cells

(Razmkhah et al., 2010). AhR may also interact with NFkB RelA

causing the upregulation of c-myc and stimulation of tumorigenesis

in MCF-7 cells (Kim et al., 2000). Further HER2 overexpression in

MCF-7 cells resulted in pro-inflammatory signaling and induction

of IL-6 enhancing mammosphere formation in an AhR-dependent

manner (Zhao et al., 2013). The role of AhR as amediator of chronic

inflammation in breast cancer has been recently reviewed elsewhere

(Guarnieri 2020). Moreover, a recent study by Kubli et al. has shown

that AhR was induced by reactive oxygen species (ROS) in

mammary epithelial cells, which in turn enhance AREG

(amphiregulin) production (Kubli et al., 2019). In basal-like and

BRCA1-related breast cancers, ROS expression was correlated with

AhR levels and the expression of the chemokines CXCL1, CXCL2,

and CCL5. Targeting AhR or AREG reduced the recruitment of

macrophages in tumors inmousemodels andAREG expression was

associated with the density of macrophages in human tumors.

Another cytokine upregulated by AhR activation is IL-22 which

is an important factor controlling host defense and gut immunity.

However, dysregulation of IL-22may contribute to the development

of TNBC and the pathology in breast cancer (Kim et al., 2014; Voigt

et al., 2017;Wang et al., 2018; Katara et al., 2020). IL-22 has also been

described to mediate macrophage infiltration in the TME and the

migration of breast cancer cells (Kim et al., 2020). Results from

MCF-7 cells co-cultured with preadipocytes and an in vivo zebrafish

model showed that prototypical AhR ligand TCDD enhanced the

invasive and metastatic potential of MCF-7 cells implicating the

importance of AhR in the TME (Koual et al., 2021).

AhR as a critical player in the tumor
microenvironment of breast cancer

The development of metastatic disease, which accounts for

greater than 90% of cancer mortality, requires collaboration

between tumor cells and their environment. Recent studies

reveal that the TME possesses remarkable cellular

heterogeneity with an important role of immune cells in

the development and progression of breast cancer (Ben-

Baruch 2003; Place et al., 2011). The TME also consists of

an acellular component (e.g., soluble cytokines, chemokines,

and growth factors), that forms part of the stromal structure as

described above. TAMs and MDSCs are tumor-associated

myeloid cells (TAMCs) and have been identified as key

players in breast cancer progression and metastasis (Cha

and Koo 2020). MDSCs are myeloid cells at earlier stages

of differentiation and serve as precursor of TAMs (Coffelt

et al., 2009). Their presence and frequency have been directly

correlated with tumor aggressiveness and is associated with

poor survival rates in breast cancer (Leek et al., 1996; Mukhtar

et al., 2011a; Mahmoud et al., 2012; Zhang et al., 2012; Zhao

et al., 2017; Qiu et al., 2018). They have been found to drive

FIGURE 1
Schematic of proposedmechanisms bywhich traffic-associated air pollution (TRAP) activates AhR to induce the accumulation of TAMCs (1) and
expression of immune suppressive factors (2) leading to a tumor promoting microenvironment (3) and growth and metastasis of breast cancer.
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cancer progression via immune regulatory functions creating

a tolerogenic environment allowing the tumor to progress

(Figure 1). TAMCs inhibit tumor immune responses by

blocking T cell functions and proliferation, but they also

directly trigger tumor growth by promoting cancer

stemness, angiogenesis, EMT and metastasis formation. In

breast cancer patients, levels of MDSCs in peripheral blood

were found to be about 10-fold higher compared to healthy

control individuals (Safarzadeh et al., 2019). Moreover, they

found a direct relationship between MDSC levels and tumor

stage of breast cancer patients. The study underlines the

importance of MDSCs in tumor progression and invasion

which was supported by Diaz-Montero et al. (Diaz-Montero

et al., 2009) showing that MDSC levels are associated with the

clinical stage and metastatic disease burden in patients with

breast cancer. MDSCs possess strong immunosuppressive

activities and interact with other immune cells to regulate

their functions. The number and abundance of TAMs and

MDSCs is considered to be an important factor in the clinical

success of cancer immunotherapy, underlining their critical

role in suppression of immunity in breast cancer patients

(Gnant et al., 2011; Gomez-Roca et al., 2015).

AhR plays a critical role in carcinogenesis and tumor

immunity (Murray et al., 2014; Xue et al., 2018). Activation of

AhR via Kynurenine (Kyn) produced by the immunosuppressive

enzyme indoleamine 2, 3-dioxygenase (IDO) in glioblastoma

cells has been found to induce the accumulation of TAMs

(Takenaka et al., 2019; McKay et al., 2021). They reported

that the AhR ligand Kyn is able to activate AhR in TAMs,

leading to an increased expression of the chemokine receptor

CCR2 by TAMs, which enhances the recruitment of TAMs in

response to CCL2. Moreover, AhR stimulates the production of

the exonucleotidase CD39 by TAMs, interfering with the

function of cytotoxic CD8+ T cells (Takenaka et al., 2019). In

melanoma patients, high levels of IDO1 are associated with high

levels of Kyn and immunosuppression (Campesato et al., 2020).

Using a melanoma model, it was shown that tumors expressing

high levels of IDO1 present an enrichment of TAMs and selective

inhibition of AhR decreases tumor progression, by inhibiting the

immunosuppression mediated by IDO1. Another link of AhR

with immune response in cancer is highlighted by the fact that

AhR mediates the induction of the poliovirus receptor CD155 by

IL-4 and LPS in macrophages, as CD155 is suppressing T cell

function (McKay et al., 2021). In the same line, the inhibition of

AhR activity in a model of pancreatic cancer promotes the

infiltration of CD8+ T cells and improves the response to

immune therapy (Hezaveh et al., 2022). This study also

showed that AhR is highly expressed in TAMs, involved in

their polarization, and associated with a reduction of iNOS,

CCL4, and TNFα levels. Further, Neamah et al. (2019) found

that treatment with the AhR ligand TCDD induces the

accumulation of MDSCs in the peritoneal cavity. Interestingly,

we found an accumulation of CD11b+ F4/80+ and CD11b+ F4/

80- Ly6G + cell subsets in adipose tissue associated with a

significant increase of the chemokine CXCL5 in TCDD-

treated mice (Vogel et al., 2016) which indicates accumulation

of TAMs and MDSCs (Ugel et al., 2015). Although TAMs and

MDSCs are regarded as separate populations, some markers

including CD11b are shared among TAMs and MDSCs (Ugel

et al., 2015). There are specific markers (e.g., Ly6G and Ly6C)

that can be used to distinguish them. Further, MDSCs and TANs

express high levels of S100A9 and the immunosuppressive

enzymes IDO and arginase 1 (Arg1) which are specific for

their immune-suppressive activity in TME of breast cancer

(Fridlender et al., 2009; Ostrand-Rosenberg 2016).

The polarization of TAMs and MDSCs within the TME is

highly dependent on the local milieu of immune regulatory factors

(e.g., C/EBPβ and S100A9) and cytokines and chemokines which

can originate from stromal cells (Figure 1). Recently, we identified

C/EBPβ as a critical transcription factor in AhR-dependent

induction of S100A9 after treatment with PM rich in PAHs

(Dahlem et al., 2020). The S100 calcium binding protein

S100A9 has been shown to play a critical role in mediating the

expansion of MDSCs in breast cancer models (Zhao F et al., 2012).

Moreover, S100A9 can act as a transcriptional coactivator during

breast cancer development (Song and Struhl 2021) and promotes the

immune-suppressive activity of MDSCs (Ostrand-Rosenberg 2016).

Regardless of any direct lineage link and distinction between

MDSCs, TANs and TAMs, the most important criteria for their

role in carcinogenesis are their immune-suppressive and pro-

tumoral activities. Importantly, the AhR has been demonstrated

to regulate the expression of immune-regulatory markers including

Arg1, IDO, IL-10, COX-2, C/EBPβ, and S100A9 (Vogel et al., 2008;
Bankoti et al., 2010; Benson and Shepherd 2011; Simones and

Shepherd 2011; Vogel et al., 2013; Neamah et al., 2019; Dahlem

et al., 2020), which are critical factors in the pathogenesis of breast

cancer (Yu et al., 2013; Yu et al., 2014; Dey et al., 2021). Moreover,

TCDD increased the activity of the immunosuppressive enzyme

IDO which mediates tumor immunity in breast cancer cells (Bekki

et al., 2015). Interestingly, AhR as well as NFkB RelB have been

shown to induce IDO expression (Vogel et al., 2008; Yu et al., 2014),

which is also critically involved in the immunosuppressive

mechanisms of myeloid-derived suppressor cells (MDSCs) in

breast cancer (Yu et al., 2013). The number and frequency of

TAMs and MDSCs have been directly correlated with tumor

aggressiveness, and indirectly correlated with clinical outcome in

breast cancer (Mukhtar et al., 2011b). The literature also shows that

accumulation of TAMCs is a significant prognostic factor in breast

cancer (Zhao et al., 2017). A significant heterogeneity of TAMCs in

mammary tumors has been described (Movahedi et al., 2010) and

the activation of AhR has been shown to activate TAMs (Takenaka

et al., 2019) and induce the accumulation of MDSCs (Neamah et al.,

2019). Themechanisms that are driving the polarization of immune-

suppressive TAMCs in the TME by AhR signaling activated through

the exposure to PM, PAHs, and dioxin like chemicals are not clear

yet. In summary, data from the literature strongly suggest AhR’s
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critical role in the microenvironment of mammary tumorigenesis

promoting tumor progression and metastasis.

The intersection between
environmental exposure and cancer
stemness

Breast cancer stem cells (BCSCs), a small but highly plastic

subpopulation of tumor cells, have taken center stage in the interplay

between chemoresistance, recurrence, and metastasis (Shan et al.,

2021). BCSCs, capable of both self-renewal and recapitulation of

tumor heterogeneity, are multidrug-resistant (MDR) and highly

immune-evasive. MDR is due in part to robust expression of the

ABCG2 efflux protein, also known as Breast Cancer Resistance

Protein (BCRP) (Zhou et al., 2001; Zattoni et al., 2022), a direct

transcriptional target of AhR (Tan et al., 2010). Substantial efforts

have focused on strategies whichwill lead to the effective elimination

of BCSCs, however it is recognized that standard endocrine and

chemotherapy regimens paradoxically enrich for BCSCs with

mesenchymal features, driving tumor recurrence (Li et al., 2008;

Creighton et al., 2009; Famta et al., 2022).

AhR has been implicated in cancer stemness and immune

evasion in various tumor types serving as a “molecular bridge”

between environmental exposure and poor patient prognosis. In

lung and nasopharyngeal carcinoma cells, AhR was shown to drive

the expression of a panel of stemness genes, including ABCG2 (Yan

et al., 2018). Interestingly, ABCG2 has been directly implicated in

expanding the stem population in osteosarcoma cells (Zhou et al.,

2001). In non-small cell lung carcinoma, the deubiquitinase

UCHL3 promoted cancer stemness through stabilization of AhR

(Ouyang et al., 2020). Recently, activation of AhR by the endogenous

ligand kynurenine was linked to colon cancer stemness, immune

evasion through PD-L1 induction and metastasis (Miyazaki et al.,

2022). In an oral squamous cell carcinoma model, tumor cell- and

immune cell-expressed AhR collaborated to promote tumor

FIGURE 2
Overview of the link between systemic exclusion, environmental injustice, and AhR-driven tumor biology. Discriminatory housing and lending
policies (ex: redlining) drove neighborhood racial/ethnic and socioeconomic segregation which persists today due to ongoing systemic
discrimination and gentrification. Resources were and are disproportionately allocated to wealthier neighborhoods, contributing to neighborhood
disinvestment. The proximal neighborhood has more traffic, pollution-generating factories and dump sites. It has less green space for stress
relief and exercise, worsening the riskscape that individuals in the proximal neighborhood must navigate. Individuals living in the proximal
neighborhood are chronically exposed to environmental toxins, tipping the scales of environmental justice against them. Polycyclic aromatic
hydrocarbons (PAHs), Polychlorinated dibenzo-p-dioxins (PCDDs), and Polychlorinated biphenyls (PCBs) are generated by combustion processes as
components of ambient particulate matter (PM) derived from urban areas and industrial activities. PAHs, PCDDs and PCBs robustly activate the AhR
signaling pathway, promoting cancer stemness and interrelated functional outcomes, including plasticity, chemoresistance, EMT and immune
evasion, which synergize to drive breast cancer metastasis and disparate outcomes for individuals in proximal neighborhoods.
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immune evasion with AhR knockout in tumor cells restoring anti-

tumor immunity (Kenison et al., 2021).

In breast cancer, tranilast, a tryptophan metabolite and AhR

agonist, was shown to inhibit the BCSC population inMDA-MB-231

(triple negative) breast cancer cells and abrogate metastasis in a tail

vein injectionmodel (Prud’homme et al., 2010), in anAhR dependent

manner. In agreement with these findings, several studies reported

that AhR activation inhibits the BCSC population (Saito et al., 2021;

Yamashita et al., 2021). In MCF7 (ER+) cells expressing a

constitutively active AhR or treated with the AhR agonists 3-

Methylcholanthrene (3MC) or β-naphthoflavone (β-NF), the

BCSC population was decreased (Zhao S et al., 2012). Most

recently, camalexin, an indole phytoalexin and AhR agonist was

shown to decrease the BCSC population of MCF7 and T47D (ER+)

breast cancer cells (Yamashita et al., 2022). Conversely,AhR activation

by the potent agonists TCDD and DMBA was found to increase the

breast cancer stem cell population and was implicated in doxorubicin

resistance of MCF-7 breast cancer cells (Al-Dhfyan et al., 2017). In

Tamoxifen-resistant MCF7 cells, AhR antagonism inhibited the

BCSC population and also inhibited tumor growth (Dubrovska

et al., 2012). In Hs578T (triple negative) and SUM149

(inflammatory) breast cancer cells, AhR was shown to augment

the BCSC population, and its inhibition decreased tumor growth

and sensitized cells to both adriamycin and paclitaxel (Stanford et al.,

2016). This study also found a significant correlation between AhR

activity and “cancer stem cell- andmigration/invasion-associated gene

sets” in an analysis of 79 human breast cancer cells lines and more

than 1,850 humanbreast cancers. In inflammatory breast cancer, AhR

was linked to BCSC maintenance through the Wnt5a/β-catenin
signaling pathway (Mohamed et al., 2018). AhR crosstalk with

Wnt/β-catenin signaling in the regulation of CSCs has been

reported in several studies (Al-Dhfyan et al., 2017; Akhtar et al., 2022).

The role of AhR in cancer stemness and breast cancer

stemness more specifically is complex, influenced by mode of

AhR activation, engagement with various signaling pathways and

cell context. Nevertheless, the collective evidence strongly

suggests that AhR activation by environmental toxins and

endogenous ligands (Ala 2021) aligns with chemoresistance,

recurrence and metastasis, the hallmarks of cancer stemness.

This places AhR at the intersection between racial/ethnic and

socioeconomic disparities in toxin exposure in under-resourced

neighborhoods, as discussed previously, and cancer stemness,

undermining response to cancer therapy, worsening the

riskscape that an individual must navigate. In a recent review

by Lagunas-Rangel, the authors pose the question “Can Exposure

to Environmental Pollutants Be Associated with Less Effective

Chemotherapy in Cancer Patients?” The authors summarize

evidence which strongly supports this hypothesis, which

includes toxins which activate AhR (Lagunas-Rangel et al.,

2022). Therachiyil examines this from the perspective of

gynecological cancers. (Therachiyil et al., 2022).

Conclusion

Collectively, the body of literature indicates that the role of AhR

in cancer is complex, with ample evidence for both an oncogenic and

tumor suppressor function, depending on cell and tissue context and

mode of AhR activation. However, exposure studies indicate that

environmental pollutant-mediated activation of AhR is consistently

oncogenic, highlighting the potential for cautious therapeutic

intervention. The data from human and in vivo studies, as well as

in vitro experiments suggest that exposure to environmental

pollutants especially PAHs and dioxin-like chemicals, potent

ligands for AhR, increases breast cancer risk and worsens

outcome through chemoresistance, immune evasion, EMT, tumor

cell proliferation, and metastasis, linked functional outcomes of

cancer stemness (Figure 2). Some critical questions remain,

including how AhR activation modulates the tumor

microenvironment. This review also highlights the role of AhR at

the interface between historical and existing systemic practices -

which reinforce residential segregation and environmental injustice -

and the molecular drivers of aggressive tumor biology.While policies

and molecules are not frequently in the same conversation, greater

dialogue is needed and opportunities for “upstream” disease

prevention through systemic change should be prioritized.
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