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Background: Gastric cancer (GC) is a multifactorial progressive disease with high
mortality and heterogeneous prognosis. Effective prognostic biomarkers for GC
were critically needed. Hippo signaling pathway is one of the critical mechanisms
regulating the occurrence and development of GC, and has potential clinical
application value for the prognosis and treatment of GC patients. However, there
is no effective signature based on Hippo signaling pathway-related genes (HSPRGs)
to predict the prognosis and treatment response of GC patients. Our study aimed to
build a HSPRGs signature and explore its performance in improving prognostic
assessment and drug therapeutic response in GC.

Methods: Based on gene expression profiles obtained from The Cancer Genome
Atlas (TCGA) database, we identified differentially expressed HSPRGs and conducted
univariate and the least absolute shrinkage and selection operator (LASSO) Cox
regression analysis to construct amultigene risk signature. Subsequently, the Kaplan-
Meier curve and receiver operating characteristic (ROC) were performed to evaluate
the predictive value of the risk signature in both training and validation cohort.
Furthermore, we carried out univariate and multivariate Cox regression analysis to
investigate the independent prognostic factors and establish a predictive nomogram.
The enriched signaling pathways in risk signature were analyzed by gene set
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enrichment analysis (GSEA). Tumor immune dysfunction and exclusion (TIDE) and drug
sensitivity analysis were performed to depict therapeutic response in GC.

Results: In total, 38 differentially expressed HSPRGs were identified, and final four
genes (DLG3, TGFB3, TGFBR1, FZD6) were incorporated to build the signature. The
ROC curve with average 1-, 3-, and 5-year areas under the curve (AUC) equal to .609,
.634, and .639. Clinical ROC curve revealed that risk signature was superior to other
clinicopathological factors in predicting prognosis. Calibration curves and C-index
(.655) of nomogram showed excellent consistency. Besides, in the immunotherapy
analysis, exclusion (p < 2.22 × 10–16) andmicrosatellite instability (p = .0058) performed
significantly differences. Finally, our results suggested that patients in the high-risk
group were more sensitive to specific chemotherapeutic agents.

Conclusion: Results support the hypothesis that Hippo-related signature is a novel
prognostic biomarker and predictor, which could help optimize GC prognostic
stratification and inform clinical medication decisions.

KEYWORDS

gastric cancer, hippo signaling pathway, prognostic prediction, drug sensitivity analysis,
therapeutic response

1 Introduction

Gastric cancer (GC) is an aggressive gastrointestinal malignancy,
ranking fourth in cancer-related death worldwide (Thrift and El-Serag,
2020), and seriously threatens human health. Radical resection of GC is
currently themain treatmentmethod for GC (Caruso et al., 2016), but the
curative effect of surgery for advanced GC is not high (Smyth et al., 2020).
As the field of GC treatment has made great strides, the morbidity and
mortality rates have progressively decreased in recent years (Wong et al.,
2021). However, the mortality rate remains high due to the late
presentation of GC and the prognosis of GC patients is still relatively
poor. At present, molecular targeted therapy has been one of the most
promising treatments of various cancers (Jahangir and Polin, 2016). Due
to the lack of a complete understanding of the molecular mechanism, the
effective targeted therapy for the clinical treatment of GC is less than that
of other cancers (Grech et al., 2015). Therefore, understanding the
biological pathways leading to the development of GC and developing
new prognostic stratification of GC patients based on this will be crucial
for improving GC prognosis and formulating appropriate treatment
strategies.

As a critical tumor suppressor pathway, Hippo tumor suppressor
pathway plays a vital role in regulating cell proliferation, tissue
damage and regeneration, tumorigenesis, development, metastasis
and therapy (Gu et al., 2021). Previous studies have shown that hippo
pathway effectors Yes-associated protein (YAP) and transcriptional
co-activator with PDZ-binding motif (TAZ) play a particularly
important role in GC and are closely related to prognosis
(Seeneevassen et al., 2022). In addition, Helicobacter pylori can
also activate proliferation genes and inflammatory cytokines by
inducing YAP, a key effector of Hippo pathway (Wu et al., 2019).
Hippo signaling pathway-Related Genes (HSPRGs) might promote
the growth and metastasis of gastric cancer by inhibiting Hippo
pathway signaling to support YAP, which still requires further
confirmation. Traditional surgical treatment for gastric cancer has
low curative power. Based on the further study of the molecular
mechanism of gastric cancer, more chemotherapy drugs and
molecular targeted drugs are emerging. For example, verteporfin,
Sitagliptin and amphiregulin (AREG) are several promising anti-GC

drugs, targeting to inhibit the activation of the key Hippo pathway
effector YAP (Qiao et al., 2018; Yong et al., 2021). The identification
of drug sensitivity for gastric cancer patients still needs continuous
exploration for clinical exploration and drug guidance. Recent
researches have also proven that the activity of the Hippo
pathway is closely related to various anti-tumor immune
responses (Moroishi et al., 2016), which suggest new and
innovative strategies for the development of immunotherapy.

Given the critical role of the Hippo signaling pathway in GC growth
control and inhibition (Kang et al., 2016), we systematically analyzed the
differentially expressed HSPRGs between GC patients and health based
on TCGA cohort, and then constructed a prognostic signature related to
the Hippo pathway. The external dataset GEO (GSE84433) was used as a
validation cohort to illustrate its prognostic efficacy. Further, we explored
the predictive effect of HSPRGs-related signature on response to
immunotherapy and chemotherapy. We hypothesis that the Hippo-
related signature has a certain impact on the prognosis of GC, and
can be used for GC prognostic evaluation and medication guidance.

2 Materials and methods

2.1 Data collection

Complete RNA-seq transcriptome and clinical data sets of GC
patients were downloaded from The Cancer Genome Atlas (TCGA,
https://portal.gdc.cancer.gov/) and the Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/) databases. In total, 407 patients from
The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD)
were chose as training set, 357 patients fromGSE84433 (Yoon et al., 2020)
were selected for validation. All gene expression datasets and clinical data
sets of GC are publicly available. Totally 108HSPRGs were obtained from
the Kyoto Encyclopedia of Genes and Genomes (KEGG, https://www.
kegg.jp/kegg/), a website can understand high-level functions and utilities
of the Hippo signaling pathway genes. However, 19 genes related to
Hippo signaling pathway lacked the gene expression data in TCGA
dataset. As a result, 89 hippo-related genes with expression data were
chosen for further analysis.
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2.2 Differential expression and protein-
protein-interaction analysis

We extracted the transcriptome profiling and clinical data of
HSPRGs from TCGA dataset. Subsequently, the differential
expression HSPRGs in the TCGA dataset were selected using the
“limma” package, under the filter of |log fold change (logFC)| ≥
.5 and false discovery rate (FDR) < .05. The up-regulated, down-
regulated and indifferently expressed genes of the Hippo pathway
were represented by volcano plots. Differentially expressed
HSPRGs in normal and GC tissues were visualized into heatmap
plots. Additionally, protein-protein-interaction (PPI) analysis
was derived from the STRING database (http://www.string-db.
org/) to visualize protein-protein interactions related to
differentially expressed HSPRGs. Disconnected nodes are hidden
and a minimum interaction score of .700 was required in
drawing PPI.

2.3 Construction and validation of the
HSPRGs-Based prognostic Signature

To figure out significantly prognostic HSPRGs associated with
OS, we conducted a univariate Cox regression analysis in TCGA
dataset using the “survival” package. Then, we performed the least
absolute shrinkage and selection operator (LASSO) to select reliable
predictors and applied multivariate Cox regression analysis to
construct a multigene prognostic risk signature and calculate the
risk score corresponding to each sample, using the “glmnet”
package. The risk score for each patient was calculated as
following formula: risk score � ∑n

i�1coef i * xi, with coefi
representing the regression coefficient, and xi representing the
expression level of each gene. Patients with GC in training set
were stratified into high- and low-risk groups base on the median
risk score. The plots of risk score distribution and survival status
were explored in each GC patient in the high- and low-risk groups.
Kaplan-Meier survival curve and log-rank test were applied to
assess survival differences between the two groups, using the
“survival” and “survminer” package. To further appraise the
prognostic accuracy of the signature, we constructed receiver
operating characteristic (ROC) curves for 1-, 3-, and 5-year
survival and calculated the area under the curve (AUC) values.
Besides, the same statistical operations were implemented in the
GSE84433 validation set, including calculation of risk scores,
subsequent group division, and validation of model stability.

2.4 Independence prognostic analysis of risk
signature

To identify the clinical application and evaluate the ability for
independent prognostic analyses of risk prognostic signature, we
performed univariate and multivariate Cox regression analyses with
risk score and other clinical factors (including age, gender, grade and
stage), which was visualized with a heatmap (* represents p < .05, **
represents p < .01, *** represents p < .001). Moreover, we carried out a
ROC curve to compare the prognostic effects between risk score and
other clinical factors.

2.5 Predictive nomogram construction

To visually describes the impact of prognostic factors and
predicted 1-, 3- and 5-year survival, age, stage and risk score which
were significant difference in the above analysis of clinical
independence were included to construct a robust nomogram,
using the “rms” package. Furthermore, calibration curves and
C-index were used to assess the accuracy and performance of the
nomogram.

2.6 Gene set enrichment analysis (GSEA) of
signature

GSEA was conducted to uncover the Kyoto Encyclopedia of Genes
and Genomes (KEGG) differentially enriched signaling pathways of
the HSPRGs between the low- and high-risk groups, using
“clusterprofiler” package. The gene set was obtained from the
“c2.cp.kegg.v7.4.symbols.gmt” file in GSEA software (Mootha et al.,
2003) (http://software.broadinstitute.org/gsea/). Only the first five
more prominent enriched pathways in high- and low-risk groups
were shown respectively.

2.7 Tumor immune dysfunction and exclusion
(TIDE)

TIDE is a computational approach based on modeling tumor
immune evasion mechanisms to predict responsiveness to
immunotherapy (Jiang et al., 2018). We evaluated the impact of
expression of the risk signature in the immune therapy response,
including microsatellite instability (MSI), exclusion and TIDE, and
visualized by violin diagram (* represents p < .05, ** represents p < .01,
*** represents p < .001). TIDE scores related GC patients were sourced
from TIDE analysis tool (http://tide.dfci.harvard.edu/).

2.8 Drug sensitivity analysis

Since not all patients with advanced GC are sensitive to
chemotherapy, we investigated the chemotherapy response in
different risk groups in GC. Predicting chemotherapeutic response
for each sample by the half maximal inhibitory concentration (IC50)
using “pRRophetic” package (Geeleher et al., 2014), based on
Genomics of Drug Sensitivity in Cancer (GDSC) (https://www.
cancerrxgene.org), currently the largest public pharmacogenomics
database.

2.9 Statistical analysis

R software (version 4.1.1; https://www.r-project.org/) was used for
all statistical analyses. For quantitative data, statistical significance was
estimated using Student’s t-tests. Survival curve and ROC curve
analyses were performed to examine the predictive accuracy of risk
score, and the “pRRophetic” R package was implemented for
chemotherapy response prediction. During all the result statistics,
p < .05 was considered as statistically significant difference.
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3 Results

3.1 Extraction and differential expression
analysis of HSPRGs

Merging mRNA expression profiling of TCGA dataset and
108 HSPRGs derived from KEGG. 38 genes are significantly different
expressed in GC. Volcano (red and green represented Up- and down-
regulated different expression HSPRGs respectively, Figure 1A) and
heatmap (Figure 1B) were drawn to show the differentially expressed
genes in detail. In total, 38 connected nodes and 74 edges were shown in
the PPI network diagram. Locating in the most central area of network,
CTNNB1, AXIN1, GSK3B, FZD2 and WNT6 were identified as highly
connected proteins. Connections of related functional proteins visualized
in networkmight play an important role in the regulation of cells and their
signaling (Figure 1C).

3.2 Establishment and validation of the
prognostic signature

In the training set, univariate Cox regression analysis (Figure 2A)
indicated that five genes (DLG3, TGFB3, TGFBR1, SERPINE1, FZD6)
were significantly linked to the OS in GC patients. Then, five
prognostic genes mentioned above were filtered via the LASSO
regression analysis (Figures 2B,C). Multivariate regression showed
that only FZD6 independently associated with GC prognosis

(Figure 2D). Four genes (DLG3, TGFB3, TGFBR1, FZD6) selected
by LASSO logistic regression to establish an excellent prognostic
multigene signature. The risk score was calculated as follows: Risk
score = (−.0531 × DLG3 expression) + (.0444 × TGFB3 expression) +
(.0217 × TGFBR1 expression) + (.0243 × FZD6 expression). The
median risk score calculated by the prognostic formula above was
used to classify GC patients into high- and low-risk groups. The
survival time of each patient showed that more deaths were found in
the high-risk group (Figures 3A, B, 4A, 4B). Kaplan-Meier curves
significantly indicated that worse OS in high-risk group patients
compared to low-risk group in training (log-rank p = .003,
Figure 3C) and validation sets (log-rank p < .001 for GSE84433 set,
Figure 4C). Furthermore, in training and validation sets, the AUCs for
1-, 3-, and 5-year survival were .609, .634, .639 and .653, .625, .648,
respectively (Figures 3D, 4D). In general, all results from the training
and validation sets similarly revealed the excellent prognostic validity
of our four genes signature.

3.3 Independent prognostic value of the
HSPRGs signature

Following that, the independent prognostic role of risk signature was
assessed using the analyses of univariate and multivariate Cox regression
by comparing with other clinical factors including age, stage, grade,
gender. Grade and N stage signed **(p < .01, Figure 5A) in heatmap,
which indicated that Grade and N stage are significantly correlated with

FIGURE 1
Identification of HSPRGs between GC and normal tissues. (A) Volcano plot depicting up-regulated differentially expressed HSPRGs in red, down-
regulated differentially expressed HSPRGs in green, and non-significant genes in black. (B) Heatmap of differential expression HSPRGs. (C) The protein
interaction biological relationship network of PPI.
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risk score. Univariate and multivariate analysis indicted that only age
(HR = 1.024, p < .008; HR = 1.032, p < .001), stage (HR = 1.508, p < .001;
HR= 1.607, p< .001) and risk score signature (HR= 1.169, p< .001; HR=
1.170, p < .001) were independent prognostic risk factors (Figures 5B, C).
In the clinical independent ROC (Figure 6E), the AUC values for the risk
score (AUC = .609) were higher than age (AUC = .587), stage (AUC =
.597), grade (AUC = .557) and gender (AUC = .524). Thus, the four-gene
signature we built was superior to other clinical variables in predicting OS
of GC.

3.4 Construction and validation of predictive
nomogram

In TCGA dataset, independent risk factors (Risk score, Age and T
stage) were included in constructing a nomogram for effective prediction
of survival in GC, based on the four-gene signature (Figure 6A).
Calibration curves for 1-, 3-, and 5-year OS in GC patients were
relatively close to the reference line, indicating excellent agreement
between nomogram predictions and observed survival probabilities

FIGURE 2
Construction of a HSPRGs signature for the prognosis of GC. (A) Univariate cox regression analysis (B) The minimum value was selected as the optimal
parameter (λ) in the LASSO signature (C) LASSO coefficient map of prognosis-related HSPRGs. (D) Multivariate cox regression analysis.

FIGURE 3
Validation of the signature. (A) Distribution of risk scores, patients are grouped by the median of risk scores. (B) Distribution of survival in high- and low-
risk groups (C) Kaplan-Meier analysis of high- and low-risk groups. (D) 1-, 3-, and 5-year OS predictive ROC plots and AUC values.
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(Figures 6B–D). Moreover, the C-index of .655 also estimated the
outstanding prediction performance of our nomogram.

3.5 GSEA

The GSEA (c2.cp.kegg.v7.4.symbols.gmt) was applied for
selecting the various pathways were active in high- and low-risk
groups. High-risk group patients were mainly enriched in dilated
cardiomyopathy, extracellular matrix–receptor (ECM-receptor)
interaction, focal adhesions, hypertrophic cardiomyopathy
(HCM) and vascular smooth muscle contraction pathways. Low-
risk group patients were mainly enriched in huntingtons disease,

oxidative phospho, peroxisome, proteasome and ribosome
pathways (Figure 7).

3.6 Immunotherapy response in GC patients

To predict the relationship between immunotherapy response
and prognosis of risk scores using the TIDE algorithm. There was
significant difference in microsatellite instability (MSI, p = .0058,
Figure 8A) between high- and low-risk groups. The exclusion (p <
2.22 × 10–16,Figure 8B) was higher in high-risk group, manifesting
that the low-risk group patients were more likely to be responsive to
immunotherapy. Results concluded that the four-gene signature

FIGURE 4
Validation of the independent dataset GSE84433. (A) Distribution of risk scores in GC patients (B) Distribution of survival status of high- and low-risk
groups (C) Kaplan-Meier analysis of high- and low-risk group (D) 1-, 3-, and 5-year OS predictive ROC plots and AUC values.

FIGURE 5
Analysis of clinical independence. (A) Heatmap of the relationship between risk score and clinical factors (* represents p <.05, ** represents p <.01, ***
represents p <.001). (B) and (C) Univariate and multivariate cox analysis of risk score and other clinical factors.
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was potential for indicating the immunotherapy response in GC
patients. However, there was no significant difference in TIDE (p =
.27, Figure 8C).

3.7 Chemotherapeutic responses of high- and
low-risk patients with GC

In addition to immunotherapy, chemotherapy is currently the
main adjuvant therapy for GC treatment. However, the gradual

development of resistance to chemotherapy drugs in GC patients is
a major problem. Therefore, it is vital important to select
chemotherapeutic drugs for individual treatment of GC patients.
Analysis of the sensitivity of chemotherapeutic drugs showed that
patients in the high-risk group were more sensitive to Bortezomib,
Doxorubicin, Etoposide, Imatinib, Lapatinib, Paclitaxel,
Rapamycin, and Sunitinib (Figures 9A–H), while patients in the
low-risk group were more sensitive to BIBW2992, Metformin,
Methotrexate, and Sorafenib (Figures 9I–L). However, further
experiments are required to verify these results.

FIGURE 6
Construction of signature-based predictions. (A) Nomogram employed to predict 1-, 3-, and 5-year OS in GC patients. (B–D) Calibration curves
representing the relationship between nomogram predicted survival probability and actual survival probability. (E) ROC curve and AUC values of signature and
clinicopathological factors.

FIGURE 7
Gene set enrichment analysis in (A) high-risk and (B) low-risk groups.
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4 Discussion

Overexpression of the Hippo signaling pathway effector YAP has
been observed in GC, and research has discovered that Yap is a crucial

factor for maintaining GC migration and viability (Yan et al., 2018;
Kim et al., 2019). Past studies have shown the promise of HSPRGs as
potential biomarkers in GC, but biomarkers for predicting prognosis
and treatment response based on HSPRGs in GC have not been

FIGURE 8
Tumor Immune Dysfunction and Exclusion between high- and low-risk groups. (A) Violin plot of MSI. (B) Violin plot of exclusion. (C) Violin plot of TIDE.

FIGURE 9
Chemotherapeutic drug sensitivity analysis. (A–H) drugs more sensitive in high-risk group. (I–L) drugs more sensitive in low-risk group.

Frontiers in Pharmacology frontiersin.org08

Jiang et al. 10.3389/fphar.2022.1096055

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1096055


explored. Therefore, we are committed to research in this area, we
found that our prognostic model can significantly distinguish high-
risk GC patients with poor prognosis, which provides a novel reference
to prognosis prediction of GC patients. Additionally, we collected the
prognostic risk score and clinical factors of GC patients to present a
new nomogram for evaluating the clinical prognosis of GC, which
provides an important reference for clinical prognosis. At the same
time, our model can examine the sensitivities of GC patients in
different risk groups to immunotherapy and chemotherapy drugs,
which has important application value for the clinical medication
decisions of GC patients. As far as we know, we are pioneers in the
construction of new models for prognostic prediction and treatment
response based on genes associated with the Hippo pathway.

Prior researchers have established effective and predictive GC
signatures related to immunity, ferroptosis and hypoxia genes.
However, these prognostic models were limited by insufficient
validation (Liu et al., 2020), limited to one sex of patients and a
small number of samples for validation (Xu et al., 2021), and lack of
drug response (Shao et al., 2021). The Hippo pathway has been shown
to be involved in the progression of GC, but there is no study on the
association between HSPRGs and GC prognosis. Our study
established a novel signature, which may improve the predictive
accuracy of the prognosis in GC patients and rationality in the
selection of personal treatment strategies.

Genes constructing the risk signature are DLG3, TGFB3, TGFBR1
and FZD6. The principal functions of these four genes and their
association with cancer are as follows. According to previous studies,
and the increase of Discs large homolog 3 (DLG3) gene can activate the
Hippo signaling pathway (Chen et al., 2020a) and has the effect of
suppressing further deterioration of GC (Li et al., 2020), oral
squamous cell carcinoma, breast cancer (Liu et al., 2019), colon
cancer and lung cancer. In addition to the Hippo pathway, DLG3
can also inhibit the activation of the phosphatidylinositol 3-kinase/
protein kinase B (PI3K/AKT) pathway (Liu et al., 2021), and the PI3K/
AKT signaling pathway is implicated in the occurrence and
progression of GC (Chen et al., 2020b). Interestingly, activation of
the PI3K/AKT pathway can inhibit the Hippo pathway (Qian et al.,
2021). However, whether DLG3 can affect GC through the PI3K/AKT
pathway has not been explored. Transforming growth factor beta 3
(TGFB3) and transforming growth factor beta receptor 1 (TGFBR1)
are both transforming growth factors, which are potent growth
inhibitors that can effectively regulate cell growth, differentiation
and apoptosis functions, and are frequently disturbed during the
development of tumors, including GC (Chen et al., 2014). As target
genes involved in the TGF-β pathways, TGFB3 and TGFBR1 may can
accumulate YAP/TAZ proteins and inhibit Hippo pathway
(Mohamed et al., 2019). TGFB3 can regulate cell growth and
differentiation, differentiation, migration (Lichtman et al., 2016)
and the expression of TGFB3 is related to the protection of gastric
mucosa (Laverty et al., 2009), TGFB3 exhibits abnormal colocalization
and overexpression in human GC cells (Naef et al., 1997). Mutations
in the TGFBR1 gene induce tumorigenesis and promote tumor
metastasis, which are associated with increased risk of breast,
ovarian, and colorectal cancers (Lin et al., 2017). Frizzled receptor
6 (FZD6) is one of the key molecules of the Wingless-type MMTV
integration site (Wnt) signaling network, repressing GC cell
proliferation, mobility and invasion by activating Wnt pathway
(Yan et al., 2016), FZD6 receptor is involved in transduction of
Wnt5A signaling in GC (Katoh, 2005) and Wnt ligands can

Trigger YAP1 to affect the Hippo pathway (Kriz and Korinek,
2018). Notably, the expression of FZD6 has a strong correlation
with tumor malignancy prognosis. In addition, multivariate
regression analysis of FZD6 gene in our study was significant,
which indicated that it was independently associated with
prognosis, which means that it has the most potential to become a
GC biomarker. These genes have various implications for cancer
therapy, and the detailed mechanism of action of DLG3, TGFB3,
TGFBR1 and FZD6 genes in GC has not been studied, and needs
further researches to explore.

Immunotherapy has already been an effective treatment for GC (Li
et al., 2021). TIDE algorithmwas utilized to predict patient response to
immunotherapy. MSI is more susceptible to immunotherapy
approaches and its test is suitable for diagnosis of GC tumor stage
(Ratti et al., 2018). Through the MSI characteristic, we assessed the
relationship with immune response and prognosis. The result of
immune exclusion suggested that low-risk groups are more
promising treatments for immunotherapy. The result of MSI
indicated that there was a significant relationship between immune
response and prognosis. Based on the above results, we confirmed that
the HSPRGs-based prediction signature can be further developed as a
reliable biomarker for the treatment of GC.

In addition to immunotherapy, chemotherapy is also crucial for
improving the prognosis of GC, and is typically used in the treatment
of advanced GC patients. However, most of the chemotherapy drugs
for GC are cytotoxic and have serious adverse reactions, and patients
have gradually developed resistance to chemotherapy drugs, which
directly affect the efficacy of GC. In our study, we used GDSC to
predict the sensitivity of subgroups of GC patients to different drugs.
Our results show that Hippo-related signatures differ significantly
among different drugs. Patients in the high-risk group were more
sensitive to Bortezomib, Doxorubicin, Etoposide, Imatinib, Lapatinib,
Paclitaxel, Rapamycin, and Sunitinib. Bortezomib, Doxorubicin,
Lapatinib and Paclitaxel are currently the first-line
chemotherapeutic drugs for the clinical treatment of GC (Jatoi
et al., 2008). Imatinib and is particularly effective in the treatment
of gastrointestinal stromal tumours and significantly improve the
survival rate of patients (Blay et al., 2021). Lapatinib selectively
inhibits HER2-amplified gastric cancer cells (Wainberg et al.,
2010), and Rapamycin and Sunitinib target angiogenesis,
significantly inhibiting tumor angiogenesis in vivo (Lang et al.,
2007; Lyros et al., 2010). The chemotherapy drugs are generally
used in combination to enhance the treatment effect and reduce
the drug resistance of patients. For example, chidamide combined
with bortezomib has the effect of anti-cancer GC (Zhang et al., 2020).
However, the specific mechanism and efficacy of these drugs in GC
still require further explored.

Overall, the prognostic signature we constructed is the first novel
Hippo pathway-related prognostic model, which provides a strong
rationale for the development of Hippo pathway-related biomarkers
and therapeutic targets. In addition, contrasting with other models, we
constructed a prognostic nomogram, adding immunotherapy and
chemotherapeutic drug treatment responses, which had better
performance in predicting patient clinical survival and response to
immune and drug therapy. In our study, there are still limitations.
The prognostic signature was constructed and validated based on the
TCGA andGEO database, data in which are incomplete.Moreover, based
on retrospective analysis, our research lacked prospective clinical trials
and corresponding clinical experimental support.
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5 Conclusion

In consequence, we successfully construct and validate a novel
prognostic signature associated with HSPRGs in GC. Our findings
suggest that the hippo-associated signature might facilitate clinical
prognosis prediction and medication guidance in individualized
management of GC.
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