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Background: Osteosarcoma (OS) is a common primary tumor with extensive
heterogeneity. In this study, we used single-cell RNA sequencing (scRNA-seq)
and network pharmacology to analyze effective targets for Osteosarcoma treatment.

Methods: The cell heterogeneity of the Osteosarcoma single-cell dataset
GSE162454 was analyzed using the Seurat package. The bulk-RNA transcriptome
dataset GSE36001 was downloaded and analyzed using the CIBERSORT algorithm.
The key targets for OS therapy were determined using Pearson’s correlation analysis.
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses were performed on key targets. The DeepDR algorithm was used to
predict potential drugs for Osteosarcoma treatment. Molecular docking analysis
was performed to verify the binding abilities of the predicted drugs and key targets.
qRT-PCR assay was used to detect the expression of key targets in osteoblasts and
OS cells.

Results: A total of 21 cell clusters were obtained based on the GSE162454 dataset,
whichwere labeled as eight cell types bymarker gene tagging. Four cell types (B cells,
cancer-associated fibroblasts (CAFs), endothelial cells, and plasmocytes) were
identified in Osteosarcoma and normal tissues, based on differences in cell
abundance. In total, 17 key targets were identified by Pearson’s correlation
analysis. GO and KEGG analysis showed that these 17 genes were associated with
immune regulation pathways. Molecular docking analysis showed that RUNX2, OMD,
and CD4 all bound well to vincristine, dexamethasone, and vinblastine. The
expression of CD4, OMD, and JUN was decreased in Osteosarcoma cells
compared with osteoblasts, whereas RUNX2 and COL9A3 expression was increased.

Conclusion: We identified five key targets (CD4, RUNX2, OMD, COL9A3, and JUN)
that are associated with Osteosarcoma progression. Vincristine, dexamethasone,
and vinblastine may form a promising drug–target pair with RUNX2, OMD, and
CD4 for Osteosarcoma treatment.
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1 Introduction

Osteosarcoma (OS) is a malignant tumor that occurs mostly
in children and adolescents, and accounts for 20% of primary
bone tumors worldwide (Zhu et al., 2019; Zhao et al., 2021).
Currently, the methods of OS treatment mainly include surgery,
chemotherapy, and radiotherapy (Rothzerg et al., 2022).
However, current treatment methods for OS are unsatisfactory,
with an overall 5 year survival rate of 65%–70% (Rothzerg et al.,
2021). Therefore, there is an urgent need to develop novel
treatment options for OS.

Gene mutations are considered the underlying cause of OS
(Kuijjer et al., 2013). With the development of bioinformatics
analyses, an increasing number of genes have been shown to be
involved in the development of OS. For example, mutant

p53 promotes cell proliferation, migration, and
chemoresistance in OS (Tang et al., 2019a). LIM kinase one
overexpression contributes to metastasis, invasion, and
multidrug resistance in OS (Yang et al., 2018). Overexpression
of Notch homolog protein three is associated with metastasis and
poor prognosis in patients with OS (Tang et al., 2019b). All
evidence suggests that bioinformatic analysis may provide
valuable clues for the treatment of OS.

Single-cell sequencing (scRNA-seq) is a new bioinformatic
analysis technique that fills the gap in other bioinformatic
techniques for single-cell studies. Moreover, scRNA-seq technology
has been prominent in exploring tumor heterogeneity and providing
new therapeutic leads for the treatment of many cancers, including
pancreatic cancer (Han et al., 2021), gastric cancer (Jiang et al., 2022),
and Ewing sarcoma (Aynaud et al., 2020). Tumor heterogeneity

FIGURE 1
Identification of cell clusters and dimension reduction analysis. (A) Twenty-one cell clusters of dimension reduction analysis; (B) Ten cell types were
identified bymarker genes; (C) The expression ofmarker genes in eight cell types; (D) Kyoto Encyclopedia of Genes andGenomes (KEGG) enrichment analysis
for marker genes of eight cell types.
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plays an important role in cancer progression. Therefore,
understanding the gene expression patterns of individual cells
is particularly important in cancer treatment (Zhang et al.,
2021a). OS exhibits great tumor heterogeneity; thus, we
explored the potential targets for the clinical diagnosis and
treatment of patients with OS using scRNA-seq and network
pharmacology analysis.

2 Materials and methods

2.1 RNA sequencing (RNA-seq) data
download and analysis

The single-cell dataset GSE162454 and bulk-RNA transcriptome
dataset GSE36001 for OS were downloaded from the Gene

FIGURE 2
Collection of differential cell types. (A) The CIBERSORT algorithm was used to obtain the differential abundance of eight cell types in OS and normal
tissues from the GSE36001 dataset; (B) Scatter plot of the correlation between the abundance of the four cell types (B cells, cancer-associated fibroblasts
(CAFs), endothelial cells, and plasmocytes) and the expression of immune checkpoints TDO2, PDCD1, LGALS9, and PVR.
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Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/gds)
database.

Seurat 4.0 (Hao et al., 2021) was used for quality control,
dimensionality reduction, clustering, and marker gene
screening of the single-cell dataset, GSE162454. Cell types were
annotated and differential gene analysis was performed using
singleR (Aran et al., 2019). Subsequently, the CIBERSORT
algorithm (Newman et al., 2015) was used to calculate the
abundance of cell types in the OS and normal samples from
GSE36001.

2.2 Identification of key targets in OS

OS-related targets were collected in the Genecards (Safran et al.,
2010) and DisGeNET (Piñero et al., 2020) databases by searching with
the keyword “osteosarcoma.” The search results were then merged and
duplicates were deleted. Subsequently, these target genes were
intersected with marker genes in the differentially expressed cells.
Pearson correlation analysis was performed to screen genes whose
expression levels were significantly correlated with differential cell
type abundance (p <.05).

2.3 Protein-protein interaction network
construction

The protein-protein interaction (PPI) network of key targets was
analyzed using the STRING database (Szklarczyk et al., 2021) and
visualized using the R packages ggraph (version 2.0.5) and igraph
(version 1.3.1).

2.4 Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses of key targets were performed using the
R package clusterProfiler (version 4.4.2) (Yu et al., 2012).

2.5 OS therapeutic drug prediction

In drug-disease association prediction, the deep learning-based
algorithm deepDR (Zeng et al., 2019) learns the high-level features of
drugs from a heterogeneous network through a multimodal deep
autoencoder. Then, the learned low-dimensional representations of
drugs and drug-disease pairs are encoded and decoded by the
autoencoder to perform drug indication inference and filter the
drug-disease pairs with high association based on the association
score.

2.6 Drug–target interaction prediction

Drug-target interactions (DTI) are used to indicate the
strength of the binding ability of a compound to a protein
target. The deep-learning algorithm DeepPurpose (Huang
et al., 2021) was used to perform DTI prediction using a
simplified molecular-input line-entry system (SMILES) of
compounds and amino acid sequence pairs of proteins as input
data. Drug-target pairs with higher scores were screened based on
the prediction scores.

2.7 Molecular docking analysis

The crystal structures of key target proteins were downloaded
from the RCSB Protein Data Bank (http://www.pdb.org/) (Burley
et al., 2017). Protein conformations were modified using PyMOL
and AutoDock 1.5.6, including the removal of the original ligands
and water, addition of hydrogen, optimization of amino acids, and
calculation of charges (Seeliger and de Groot, 2010). The structure
file of the drug in “mol2” format was downloaded via ZINC
(https://zinc.docking.org/) (Sterling and Irwin, 2015). The
downloaded protein and drug files were then converted to
PDBQT format using Open Babel GUI software. Finally,
molecular docking was performed using AutoDock 1.5.6, and
the results were visualized using PyMOL. The screening
criteria were binding energy less than −5.0 kcal/mol and the
formation of hydrogen bonds between ligand receptors (Feng
et al., 2021).

2.8 Cell culture

OS cell lines (U-2 OS, MG-63, and Saos-2) and human osteoblast
cell line (hFOB1.19) were purchased from ATCC (VA, United States).
OS cells were cultured in Dulbecco’s modified eagle medium (DMEM,
Gibco, CA, United States) containing 10% fetal bovine serum (FBS)
and 1% penicillin/streptomycin (Invitrogen, CA, United States).
hFOB1.19 cells were maintained in DMEM/F-12 (Gibco)

FIGURE 3
Screening out key targets for OS. (A) A Venn diagram of OS-
related targets and four different cell types marker genes; (B) Heat
map of 17 potential targets correlated with cell abundance in
B cells, CAFs, endothelial cells, and plasmocytes.
*p <.05, **p <.01.
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supplemented with 10% FBS, 2.5 mM L-glutamine, and .3 mg/mL
geneticin (Invitrogen).

2.9 Quantitative real-time PCR (qRT-PCR)

Total RNAs were extracted with Trizol regent (Tiangen, China)
and reverse-transcribed to cDNA using the Reverse Transcription Kit
(Promega, China). Then, qRT-PCR was conducted on CFX96 Touch
(Bio-Rad, Hercules, CA, United States) system with thermocycling
conditions followed as 95°C for 3 min, 40 cycles for 95°C for 12 s and
62°C for 40 s. The relative expression of CD4, RUNX2, OMD,
COL9A3, and JUN was calculated with 2−ΔΔCT method and
GAPDH as a housekeeping gene. The primer sequences of these
genes are listed in Supplementary Table S1.

2.10 Statistics analysis

Data were expressed as mean ± standard deviation and analyzed
by Prism 8.0 software with t-test or one-way ANOVA. p <.05 has a
significant difference.

3 Results

3.1 Identification of cell clusters and
dimension reduction analysis

Using scRNA-seq analysis, 21 cell clusters and eight cell types
were identified (Figures 1A,B). Marker gene expression in the
eight cell types was different between the different cell types

FIGURE 4
Prognostic analysis of five key targets (CD4, RUNX2, OMD, COL9A3, and JUN) in OS. (A) The survival analysis of these five genes. (B) The receiver operator
characteristic (ROC) curve of these five genes. (C) The expression of immune checkpoints BTLA and PDL1 (CD274) were measured in the high- and low-risk
groups. *p <.05.
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(Figure 1C). KEGG enrichment analysis revealed significant
heterogeneity in the enriched pathways for marker genes in the
eight cell types (Figure 1D).

3.2 Collection of differential cell types

To further screen for differential cell types in OS, the
abundance of eight cell types in OS and normal tissues from
the GSE36001 dataset was analyzed using the CIBERSORT
algorithm (Figure 2A). Studies show that immune checkpoints
TDO2, PDCD1, LGALS9, and PVR play an important role in
cancer treatment and prognosis (Stamm et al., 2018; Fan et al.,
2020; Miao et al., 2020; Cui et al., 2022). Based on Pearson
correlation analysis, cell abundance was screened to be

significantly correlated with immune checkpoint expression
levels, and the results showed that the abundance of B cells,
cancer-associated fibroblasts (CAFs), endothelial cells, and
plasmocytes were significantly correlated with immune
checkpoints TDO2 (p = .043), PDCD1 (p = .017), LGALS9
(p = .017), and PVR (p = .026), respectively (Figure 2B).

3.3 Screening out key targets for OS

A total of 4,236 OS-related targets were retrieved from the
Genecards and DisGeNET databases. Next, overlapping with the
marker genes of the four cell types, we obtained 289 common targets
(Figure 3A). Finally, further screening by Pearson correlation
analysis yielded 17 key targets (GZMB, IL1A, IGFBP4, JUN,

FIGURE 5
Protein-protein interaction (PPI) network of 17 key targets. The line from purple to red indicates a higher score of the reciprocal relationship, and the
bigger size of the node indicates the higher degree.
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FIGURE 6
Function enrichment analysis of 17 key targets. (A) Top five terms of Gene Ontology (GO) enrichment analysis. GO consists of biological processes (BP),
cellular component (CC), molecular function (MF); (B) Top 15 pathways of Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis.
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KDR, CD2, FLT1, CCR7, CD4, COL9A3, SPRY4, OMD, RUNX2,
PTPRG, HSPA1A, SOX18, and PDGFRB) that were significantly
associated with the abundance of four differential cells (Figure 3B).

Subsequently, we obtained expression data for 17 key targets
corresponding to OS survival time information through the
TARGET database (https://ocg.cancer.gov/programs/target).
The five targets (CD4, RUNX2, OMD, COL9A3, JUN) may be
the important prognostic factor via the multivariate Cox
regression analysis. A combined prognostic marker model
consisting of these five genes was constructed based on a
multivariate Cox regression algorithm (Fisher and Lin, 1999).
The risk calculation formula was as follows: Risk score �
−0.31634 × CD4 + 0.68318 × RUNX2 − 0.26491 × OMD +
0.16464 × COL9A3 − 0.25361 × JUN. The results showed that the
five key genes were able to accurately grade the risk of OS (p =
.0019, Figure 4A). Moreover, the area under the curve (AUC)
values of the receiver operator characteristic (ROC) curve were
greater than .72 in the 3-, and 5-year survival analyses of OS
(Figure 4B).

Additionally, cancer cells can undergo immune escape by
dysregulating immune checkpoint proteins (Morad et al.,
2021). To verify the accuracy of the high- and low-risk
groupings of the five key genes, the expression of the immune
checkpoints BTLA and PDL1 was detected. The expression levels
of BTLA and PDL1 (CD274) were higher in the low-risk group
than in the high-risk group (Figure 4C).

3.4 PPI network construction and functional
enrichment analysis

A total of 161 pairs of reciprocal relationships were obtained from the
PPI network analysis of 17 key targets using the STRING database
(Figure 5). GO and KEGG enrichment analyses were performed to
explore the functions of the 17 key targets. GO enrichment analysis
revealed 787 enriched terms (p <.05), and the top five terms of biological
processes (BP), cellular component (CC), and molecular function (MF)

are shown in Figure 6A. BP terms were primarily related to the regulation
of ERK1 and ERK2 cascade, MAPK cascade, and chemotaxis. CC terms
are located in the transcription regulator complex, RNA polymerase II
transcription regulator complex, and external side of plasma membrane.
The MF terms are associated with DNA-binding transcription activator
activity, RNA polymerase II-specific, growth factor binding, and protein
tyrosine kinase activity. Simultaneously, KEGG enrichment analysis was
enriched in 77 pathways (p <.05), primarily in the MAPK signaling
pathway, PI3K-Akt signaling pathway, and Human T-cell leukemia virus
one infection (Figure 6B).

3.5 Drug–target interaction prediction

Using the deepDR algorithm, ten drugs with a high score
association with OS were obtained (Table 1). The interaction
relationship between 17 key targets and 10 drugs was predicted
using the DeepPurpose algorithm (Figure 7). The results of
screening scores with greater than 75% quartiles yielded six drugs
(DB04572, DB01005, DB01234, DB00541, DB00570, and DB00309)
that may act on 17 key targets (Table 2).

To confirm that these six drugs were suitable for the treatment of
OS, molecular docking analysis of six drugs and CD4, RUNX2,
OMD, COL9A3, and JUN were performed using AutoDock Vina.
The docking results showed RUNX2 has good binding affinity with
vincristine (DB00541), vinblastine (DB00570), and dexamethasone
(DB01234); OMD has good binding affinity with vincristine
(DB00541), vinblastine (DB00570), and dexamethasone
(DB01234); CD4 has good binding affinity with vincristine
(DB00541), vinblastine (DB00570), and dexamethasone
(DB01234) (Table 3; Figure 8).

3.6 Cell validation assay

To evaluate the prognostic effects of key targets on OS, qRT-
PCR assay was used to detect the expression of CD4, RUNX2, OMD,

TABLE 1 The top 10 results of predict drugs against OS.

DrugID DrugName Pubchem_ID DiseaseID DiseaseName predict.score

DB00541 Vincristine 5978 C0585442 Osteosarcoma of bone .90791

DB00888 Mechlorethamine 4033 C0585442 Osteosarcoma of bone .89119

DB00570 Vinblastine 13342 C0585442 Osteosarcoma of bone .88823

DB04572 Thiotepa 5453 C0585442 Osteosarcoma of bone .85945

DB00290 Bleomycin 5360373 C0585442 Osteosarcoma of bone .83893

DB01234 Dexamethasone 5743 C0585442 Osteosarcoma of bone .79852

DB00970 Dactinomycin 457193 C0585442 Osteosarcoma of bone .78679

DB01005 Hydroxyurea 3657 C0585442 Osteosarcoma of bone .76333

DB00309 Vindesine 40839 C0585442 Osteosarcoma of bone .76033

DB00262 Carmustine 2578 C0585442 Osteosarcoma of bone .75087
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COL9A3, and JUN in OS and osteoblast cells. The results showed
that the expression of CD4, OMD, and JUN was decreased in OS
cells compared with hFOB1.19 cells, whereas RUNX2 and
COL9A3 expression was increased (p < .01; Figure 9).

4 Discussion

Over the past decades, traditional bioinformatics techniques have
partially revealed the pathological mechanisms of OS; however, further

FIGURE 7
Drug-target interaction score dispersion points. The horizontal coordinate is the action score, and the vertical coordinate is the drug-target pair. The
green dashed line is the 75% quartile of the score.
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TABLE 2 Predicted drugs with interactions with 17 key targets.

Pubchem_ID Drug_name Target_uniprot Target_gene Score

40839 Vindesine Q9C004 SPRY4 5.8344

13342 Vinblastine Q9C004 SPRY4 5.7434

5743 Dexamethasone Q9C004 SPRY4 5.7027

40839 Vindesine Q13950 RUNX2 5.8562

13342 Vinblastine Q13950 RUNX2 5.7793

5743 Dexamethasone Q13950 RUNX2 5.6826

40839 Vindesine P23470 PTPRG 5.7527

13342 Vinblastine P23470 PTPRG 5.6951

40839 Vindesine P09619 PDGFRB 7.3506

13342 Vinblastine P09619 PDGFRB 8.2389

5978 Vincristine P09619 PDGFRB 8.1492

5743 Dexamethasone P09619 PDGFRB 6.6296

40839 Vindesine Q99983 OMD 5.9503

13342 Vinblastine Q99983 OMD 5.934

5978 Vincristine Q99983 OMD 5.8099

5743 Dexamethasone Q99983 OMD 5.8695

40839 Vindesine P35968 KDR 7.5846

13342 Vinblastine P35968 KDR 7.92

5978 Vincristine P35968 KDR 7.9899

5743 Dexamethasone P35968 KDR 6.2217

3657 Hydroxyurea P05412 JUN 5.6947

40839 Vindesine P01583 IL1A 5.742

13342 Vinblastine P01583 IL1A 5.7095

40839 Vindesine P10144 GZMB 6.353

13342 Vinblastine P10144 GZMB 6.3015

5978 Vincristine P10144 GZMB 6.135

5743 Dexamethasone P10144 GZMB 6.1824

40839 Vindesine P17948 FLT1 7.5469

13342 Vinblastine P17948 FLT1 7.947

5978 Vincristine P17948 FLT1 8.0129

5743 Dexamethasone P17948 FLT1 6.5217

40839 Vindesine Q14050 COL9A3 5.9884

13342 Vinblastine Q14050 COL9A3 5.9115

5978 Vincristine Q14050 COL9A3 5.7568

5743 Dexamethasone Q14050 COL9A3 5.8115

5453 Thiotepa Q14050 COL9A3 5.6851

40839 Vindesine P01730 CD4 6.1276

13342 Vinblastine P01730 CD4 6.0338

5978 Vincristine P01730 CD4 5.8116

(Continued on following page)
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research is still required. scRNA-seq technology can reveal the development
of disease at the individual cell level. Therefore, in this study, we used
scRNA-seq technology combined with network pharmacology analysis to
explore effective therapeutic targets for OS treatment.

Tumors are heterogeneous cell populations that contain
transformed cancer, supporting, and tumor-infiltrating cells
(Prasetyanti and Medema, 2017). In this study, scRNA-seq with
an unbiased approach was used to characterize cellular heterogeneity
in OS. We identified the abundance of B cells, CAFs, endothelial
cells, and plasmocytes has correction with the expression of immune
checkpoints TDO2, PDCD1, LGALS9, and PVR. B cells are the main
component of humoral immunity. It has been suggested that an
increase in B cells is associated with good prognosis of OS (Li et al.,
2021). CAFs are activated fibroblasts present within the tumor
microenvironment that promote tumor cell growth, invasion,
metastasis, and drug resistance (Zhang et al., 2021b). Based on
these data, we confirmed that OS exhibits cell heterogeneity, and
the differential abundance of cell types could affect the malignant
progression of OS.

A total of 17 key targets were obtained from the intersection of
marker genes of the four cell types and OS-related targets using
Pearson correction analysis. Network pharmacology analysis was
performed to determine the functions of the 17 key targets. GO
analysis showed that these targets were involved in the regulation
of ERK1 and ERK2 cascade, MAPK cascade, and chemotaxis.
Reportedly, ERK signaling is involved in various cellular
progress, such as proliferation, migration, and differentiation
(Bonjardim, 2017). A study found that blocking ERK1/

2 signaling pathway inhibits OS cell growth and metastasis
(Yuan et al., 2020). Another study found that blocking the
nuclear translocation of phosphor-ERK suppresses the migration
and invasion of OS cells (Kim et al., 2021). MAPK signaling has a
major effect on cell survival and apoptosis (Chen et al., 2016). It has
been reported that activating the MAPK signaling pathway induces
cell death in human OS (Lv et al., 2020). Zhou et al. (2020) found
that inhibiting the function of TLR4-mediated MAPK-NF-ĸB
signaling pathway against the oncogenesis of OS.

KEGG analysis showed that these targets act against OS via the
MAPK signaling pathway, PI3K-Akt signaling pathway, human
T-cell leukemia virus 1 infection, and so on. CD4-positive T cell are
involved in the tumor immune environment in OS (Liu et al.,
2020). T follicular helper (Tfh) cells are a subpopulation of CD4-
positive T cell that may play an important role in the tumor
microenvironment (Ochando and Braza, 2017). Study has shown
that inhibition of the PI3K/Akt/mTOR pathway enhances the
ability of OS Tfh cells to promote B cell maturation and
immune function (Jiang et al., 2021). RUNX2 is an important
transcription factor for bone development and osteoblast
differentiation, and both metastasis and chemoresistance are
associated with dysregulation of RUNX2 in OS (Vega et al.,
2017). A review reported that mutual activation of the PI3K/Akt
pathway and RUNX2 may be one of the main drivers of tumor
progression or migration (Cohen-Solal et al., 2015). JUN is a factor
of the JNK pathway, JNK pathway activation induces apoptosis and
autophagy of OS cells (Li et al., 2020). In our study, qRT-PCR assay
exhibited that the expression of CD4, OMD, and JUN was

TABLE 2 (Continued) Predicted drugs with interactions with 17 key targets.

Pubchem_ID Drug_name Target_uniprot Target_gene Score

5743 Dexamethasone P01730 CD4 5.9288

40839 Vindesine P32248 CCR7 5.9338

13342 Vinblastine P32248 CCR7 5.8254

5743 Dexamethasone P32248 CCR7 5.7351

TABLE 3 The information of molecular docking.

Drug_pubchem_id DrugName geneName Uniprot Free binding energy (kcal/mol)

5978 vincristine RUNX2 Q13950 −5.1

13342 Vinblastine −5.8

5743 Dexamethasone −6.4

5978 vincristine OMD Q99983 −5.5

13342 Vinblastine −5.6

5743 Dexamethasone −6.9

5978 vincristine CD4 P01730 −5.7

13342 Vinblastine −6.1

5743 Dexamethasone −6.3
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decreased in OS cells compared with hFOB1.19 cells, whereas
RUNX2 and COL9A3 expression was increased. Moreover,
multi-factor Cox regression algorithm and ROC curve analyses
showed that five key genes are effective in the diagnosis and
prognosis of OS. Furthermore, molecular docking results
showed that vincristine, dexamethasone, and vinblastine all
bound well to the key targets RUNX2, OMD, and CD4.
Vincristine, dexamethasone, and vinblastine are common drugs
used to treat OS (Boscoboinik et al., 1994; Ahlström et al., 2005;
Chen et al., 2019). These results suggested that these five key targets
could be potential targets for OS treatment.

In conclusion, four cell types (B cells, CAFs, endothelial cells, and
plasmocytes) were identified inOS andnormal tissues, based ondifferences
in cell abundance. We identified five key targets (CD4, RUNX2, OMD,
COL9A3, and JUN) that are associated with OS progression. GO and
KEGG analysis showed that these five genes were associated with immune
regulation pathways. Vincristine, dexamethasone, and vinblastine may
form a promising drug–target pair with RUNX2, OMD, and CD4 for OS
treatment. However, there are still shortcomings in our study. For example,
we have only carried out a simple experimental validation of the
bioinformatics results and our results lack the support of clinical
results. Our study identified potential targets for the treatment of OS.

FIGURE 8
Molecular docking analysis of vincristine, dexamethasone, and vinblastine with RUNX2, OMD, and CD4.
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