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Kidney renal papillary cell carcinoma (KIRP) has a high mortality rate and a poor

prognosis. Cu concentrations differed significantly between renal cancer

tissues and adjacent normal tissues. Cuproptosis is a newly identified cell

death. Long non-coding RNAs (lncRNAs) play a crucial role in the

progression of KIRP. In this study, we focused on constructing and validating

cuproptosis-related lncRNA signatures to predict the prognosis of KIRP patients

and their immune correlation. We created prognosis models using Cox

regression analysis and the least absolute shrinkage and selection operator

(LASSO) algorithm. We found that patients in the high-risk group had poorer

overall survival (OS) and progression-free survival (PFS) and higher mortality.

Risk score and stage are prognosis factors independent of other clinical

features. Kaplan-Meier analysis, receiver operating characteristic (ROC)

curves, and C-index curves showed that cuproptosis-related lncRNA

signatures could more accurately predict the prognosis of patients.

Functional enrichment analysis suggests that the function of differentially

expressed genes (DEGs) is associated with KIRP development and immunity.

In immune-related function analysis, we found a significant difference in

parainflammation responses between high-risk and low-risk groups. The

mutation frequencies of TTN, MET, KMT2C, PKHD1, SETD2, and KMT2D

genes in the high-risk group were higher than those in the low-risk group,

but the mutation frequencies of MUC16, KIAA109, CUBN, USH2A, DNAH8 and

HERC2 genes were significantly lower than those in the low-risk group. Survival

analysis of tumor mutation burden (TMB) and combined TMB-risk showed

better OS in patients with high TMB. Immune infiltration and immune

checkpoint analysis assessed the immune association of six high mutation

frequency genes (TTN, MET, KMT2C, PKHD1, SETD2, and KMT2D) with KIRP.

Finally, we performed a drug sensitivity analysis and screened 15 potential drugs

that differed between high-risk and low-risk patients. In this study, we

constructed and validated cuproptosis-related lncRNA signatures that can

more accurately predict the prognosis of KIRP patients and provide new

potential therapeutic targets and prognosis markers for KIRP patients.
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Introduction

Kidney renal papillary cell carcinoma is the second type of

renal cancer incidence, accounting for approximately 15%–20%

of renal cell carcinoma (Hong et al., 2021). The treatment

modalities of KIRP include traditional surgical treatment,

molecular targeted therapy, and chemoradiotherapy, while

molecular targeted therapy is an important treatment option

to improve the quality of life of KIRP patients. However, KIRP-

related therapeutic targets and prognosis markers are very

lacking. Therefore, finding new therapeutic targets and

prognosis markers for KIRP has important clinical implications.

LncRNAs are RNA transcripts > 200 nucleotides in length

(Wang et al., 2019) that are widely involved in vital physiological

processes such as metabolism and immunity and are closely

related to the development of diseases such as tumors,

cardiovascular diseases, neurological diseases, and

nephropathy. Some studies have shown that lncRNA

expression is significantly associated with the diagnosis and

prognosis of KIRP (Lan et al., 2017; Zuo et al., 2018; Kang

and Yang, 2022; Wu et al., 2022). Copper is essential during

metabolism, including iron uptake and mitochondrial

respiration (Ruiz et al., 2021). Increasing evidence suggests

that copper is involved in multiple processes of tumor growth

(Oliveri, 2022) and plays a vital role in the development of

tumors. Excess copper may lead to mitochondrial protein

aggregation and show different forms of cell death (Kahlson

and Dixon, 2022). Cuproptosis is a novel programmed cell death

discovered by Tsvetkov et al. (2022). Recently, some studies have

found that cuproptosis-related lncRNAs are involved in the

development of kidney renal clear cell carcinoma (KIRC),

bladder cancer, and colorectal cancer (Cancer Genome Atlas

Research Network, 2014; Kim et al., 2022; Zhu et al., 2022).

However, cuproptosis-related lncRNA-related studies are

currently lacking in KIRP.

Therefore, it is essential to identify the prognosis signatures

and associated underlying mechanisms of cuproptosis-related

lncRNAs in KIRP. In this study, we found for the first time that

cuproptosis-related lncRNA signatures can predict the prognosis

and immune correlation of KIRP and provide new potential

therapeutic targets and prognosis markers for KIRP patients.

Materials and methods

Data processing and identification of
cuproptosis-related lncRNAs

We obtained 290 KIRP patients from the Cancer Genome

Atlas (TCGA) database; see Supplementary Table S1 for clinical

details. In the Cancer Genome Atlas–Kidney renal papillary cell

carcinoma database (TCGA-KIRP, https://portal.gdc.cancer.gov/

), we obtained 321 RNA sequencing data, 291 clinical datasets,

and 282 gene mutation data for KIRP patients. Data analysis was

performed using R (version 4.2.1) and R Bioconductor packets.

We used the “limma” software package to perform co-expression

correlation analysis between cuproptosis-related gene expression

profiles and lncRNAs to identify cuproptosis-related lncRNAs.

Construction of the prognosis
cuproptosis-related lncRNA signature

From previous studies (Aubert et al., 2020; Bian et al.,

2022; Chen, 2022), we obtained 19 cuproptosis-related genes

(Supplementary Table S2). TCGA-KIRP data were randomly

divided into training and testing groups at a ratio of 1:1.

Subsequently, we performed Lasso regression analysis to

identify cuproptosis-related lncRNAs. Univariate Cox

regression analysis (p < 0.05) was performed in the training

group to determine whether these lncRNAs were associated

with patient prognosis in the training group. Multivariate

regression analysis (p < 0.05) identified 11 cuproptosis-related

lncRNAs as independent prognosis factors. Then, using the

best model parameters, construct risk signatures and calculate

risk scores. Resulting model risk score = explncRNA1*coef-

lncRNA1 + explncRNA*coef-lncRNA2 + . . . +

explncRNAi*coef-lncRNAi.

Survival analysis of the signature

To validate the prognosis power of the model, we divided the

KIRP sample into high-risk and low-risk groups based on the

median risk score. Using the survival package, we analyzed OS

and PFS in different risk groups of KIRP patients. We performed

univariate and multivariate regression Cox analyses to assess the

prognosis value of the risk signatures. The R package “pheatmap”

was used to visualize clinicopathological variables in the high-

risk and low-risk groups from the entire set of TCGA-KIRP

samples and to draw a heatmap of patient survival status and

lncRNA expression.

Independent analysis of the prognosis
factor

To determine whether these risk signatures could be

independent prognosis factors, we performed univariate

and multivariate Cox regression analyses using the
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“survival” package. We used the “survminer” and “timeROC”

packages to calculate the 1-year, 3-year, and 5-year area under

the ROC curve (AUC) of the risk signature in training, testing,

and all groups.

Building nomogram and principal
component analysis

Using the R software packages “rms” and “regplot,” we

constructed a nomogram to predict the survival of KIRP

patients at 1, 3, and 5 years. Calibration curves were used

to assess whether predicted survival was consistent with actual

survival. We randomly selected one patient to confirm the

predictive utility of the nomogram. We used c-index curves to

validate the reliability of the prognosis model. Finally, to

determine whether these lncRNA signatures could predict

KIRP patients at different stages, we divided patients into

stages I-II and III-IV. Using “limma” and “scatterplot3d”

packages to conduct principal component analysis (PCA)

showed that these lncRNAs could be reliably used to

construct signatures.

FIGURE 1
Identification of cuproptosis-related lncRNAs and construction of prognosis signatures. (A) Sankey diagram showed the results of cuproptosis-
related genes and cuproptosis-related lncRNAs co-expression. (B) The correlation heatmap showed the relationship between cuproptosis-related
lncRNA signatures and cuproptosis-related genes. Red represents positive correlations, and blue represents negative correlations.
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Functional enrichment analysis

To understand the functions of DEGs, we used the R

package “limma” to identify differentially expressed genes

between high-risk and low-risk groups. Then, functional

enrichment analysis of differentially expressed genes was

performed using Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) databases.

Immune-related function analysis and
TMB analysis

To assess immune status in low-risk and high-risk groups,

we used BiocManager “limma”, BiocManager “GSVA”,

BiocManager “ABGSEase”, “phearmap”, and “reshape2”

packages to draw the heatmap of KIRP immune-related

functions. Draw waterfall plots using the BiocManager

“maftools” package. In addition, we also compared TMB

between high-risk and low-risk groups and plotted TMB

survival curves. The difference between TMB and patient

survival was determined, and a p-value < 0.05 was

considered statistically significant.

High mutant genes and KIRP tumor
immunoassay

We used the TCGA database-immunoassay (https://www.

aclbi.com/static/index.html#/immunoasy) and the TIMER

algorithm to observe the distribution of KIRP immune

scores in tumor tissues and normal tissues. Afterward, we

analyzed the expression distribution of KIRP immune

checkpoint genes in tumor tissues and normal tissues.

Then, we investigated the relationship between six genes

with high mutation frequency (TTN, MET, KMT2C,

PKHD1, SETD2, and KMT2D) and KIRP immune

infiltration. Finally, to further investigate the association

between highly mutated genes and KIRP tumor immunity,

we correlated the KIRP immune checkpoint genes (CTLA4,

HAVCR2, PDCD1, PDCD1LG2, and TIGIT) with high

mutation frequency genes (TTN, MET, KMT2C, PKHD1,

SETD2, and KMT2D).

Drug sensitivity analysis and screening of
potential KIRP drugs

By (http://bioinfo.life.hust.edu.cn/GSCA/#/drug), we analyzed

the correlation between drug sensitivity of high mutant genes and

their expression in the cancer therapeutic response portal (CTRP)

database. It provides some basis for the mechanism of drug

treatment. Finally, using the “ggpubr” package screened potential

drugs for KIRP patients.

Results

Identification of cuproptosis-related
lncRNAs and building prognosis signature

Using | R | > 0.4 and p < 0.001 as analysis criteria, we

extracted 19 cuproptosis-related genes and 16,876 lncRNAs

FIGURE 2
Identification of the cuproptosis-related lncRNAs. (A) The
forest plot showed different lncRNAs for high and low risk, with red
representing high-risk lncRNAs and green representing low-risk
lncRNAs. (B) Lasso regression screened cuproptosis-related
lncRNAs at the minimum point of cross-validation. (C) The
trajectory of each independent variable.
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from the KIRP cohort of the TCGA database for co-expression

analysis and identified 3,203 cuproptosis-related lncRNAs.

Using a Sanky plot, we visualized co-expression

relationships between cuproptosis-related lncRNAs and

cuproptosis-related genes (Figure 1A). The heatmap

showed the association between lncRNAs and cuproptosis-

related genes (Figure 1B). In the training group, cuproptosis-

related lncRNAs were identified by Lasso regression analysis,

85 cuproptosis-related lncRNAs were identified by univariate

Cox regression analysis (Figure 2A), and 11 cuproptosis-

related lncRNAs were identified as independent prognosis

factors by multivariate Cox analysis. Then, basing the

expression of 11 lncRNAs calculated the risk scores of each

sample (Figures 2A–C). Risk score = AC234031.1*

2.07217627199546 + TNFRSF14-AS1*

(-0.823489225724154) + . . . + AC015922.3

(-1.32818876134062) (Supplementary Table S3).

Survival analysis of the signature

A prognosis model was constructed using multiple Cox

regression results to investigate further the prognosis ability of

11 cuproptosis-related lncRNAs in KIRP. We proceeded risk score

for each patient and divided the KIRP sample into high-risk and low-

risk groups based on themedian risk score = 1.We found thatOS and

PFS were significantly higher in the low-risk group than in the high-

risk group in training, testing, and all groups (Figures 3A–D). The risk

curve reflects the relationship between different risk groups and

survival status in KIRP patients, and we found that low-risk

patients had lower mortality than high-risk patients (Figures

4A–F). High-risk and low-risk levels for 11 lncRNAs are shown in

the heatmap; For example, AC234031.1, AC011921.1, AC005332.5,

RNF32-AS1, and CKMT2-AS1 are high-risk lncRNAs and

TNFRSF14-AS1, AL031275.1, NINJ2−AS1, EMX2OS, AC092140.2,

and AC015922.3 are low-risk lncRNAs (Figures 4G–I).

FIGURE 3
Kaplan-Meier survival analyses of patients. Patients were divided into high-risk and low-risk groups based on the median risk score to predict
overall survival (OS) and progression-free survival (PFS) in each subgroup. (A)OS in the testing group. (B)OS in the training group. (C)OS in all groups.
(D) PFS in all groups.
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Independent analysis of the prognosis
factor

To determine whether risk signatures are likely to be

independent prognosis factors, univariate and multivariate

Cox regression analyses were used to investigate the prognosis

value of cuproptosis-related lncRNA signatures in KIRP.

Multivariate Cox regression results showed that the risk score

(hazard ratio = 1.000, 1.000-1.000; p < 0.05) and stage (hazard

ratio = 2.480, 1.844-3.337; p < 0.05) of cuproptosis-related

lncRNA signatures were significantly associated with patient’s

OS (Figures 5A, B). The result showed that the risk signature is an

independent prognosis factor in KIRP. In addition, the AUCs for

stage and risk score were better than gender and age in ROC

curves, which further illustrates the reliability of the risk model

(Figure 5F). Similarly, In the training group, the AUCs for 1-year,

3-year, and 5-year OS were 0.948, 0.857, and 0.882, respectively

(Figure 5C); in the testing group, the AUCs for the 1-year, 3-year,

and 5-year OS were 0.890, 0.763, and 0.638, respectively

(Figure 5D). In all groups, the AUCs for 1-year, 3-year, and

5-year OS were 0.879, 0.823, and 0.845, respectively (Figure 5E).

The above results indicate that this prognosis signature has

reliable diagnostic significance.

Building nomogram and PCA

To more reliably predict OS at 1, 3, and 5 years in patients

with KIRP, we developed a nomogram that combined

clinicopathological features and risk scores. The patient’s

combined risk score was 164, suggesting that the predicted

survival probability of this patient in the following 1, 3, and

5 years was 96.7%, 91.2%, and 81.0% (Figure 6A). Calibration

curves of OS at 1-, 3-, and 5 years affirmed the predictive power

of the prognosis model (Figure 6B). In addition, the risk score’s

C-index value was also higher than age, gender and stage

(Figure 6C). To validate the clinical grouping model, we

divided the patients into early (I-II) and late (III-IV) groups

by stage. The results showed that there was a significant

difference in OS between the early-stage and late-stage

patients (p < 0.05) (Figures 6D, E), which indicated the

predictive reliability. Finally, we performed PCA. PCA results

showed that risk lncRNAs (Figure 7D) could better classify KIRP

patients into low and high-risk groups compared to all genes

(Figure 7A), cuproptosis-related genes (Figure 7B), and

cuproptosis-related lncRNAs (Figure 7C), this suggests that

these lncRNAs can be used more reliably to construct

prognosis signatures.

FIGURE 4
Predicting the performance of signature. The risk curve is based on the risk score for each sample in the (A) training group, (B) testing group, and
(C) all groups, where red and blue dots indicate high- and low-risk samples, respectively. The scatter plot is based on the survival status of each
sample from (D) the training group, (E) the testing group, and (F) all groups, where red and blue dots indicate death and survival, respectively. The
heatmap represented the signature of lncRNAs in the (G) training group, (H) testing group, and (I) all groups.

Frontiers in Pharmacology frontiersin.org06

Xie et al. 10.3389/fphar.2022.1103986

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1103986


Functional enrichment analysis

To elucidate the function of DEGs, we utilized GO and KEGG

databases to analyze related pathways. We found that GO is

divided into three categories: biological pathway (BP),

cytological component (CC), and molecular function (MF).

These DEGs were mainly involved in membrane invagination,

phagocytosis, recognition, cell recognition, fibrillar collagen trimer,

banded collagen fibril, basement membrane, circulating,

immunoglobulin complex, transmembrane receptor protein

tyrosine kinase activity, immunoglobulin receptor binding,

antigen binding in GO analysis (Figure 8A). In addition, KEGG

pathway analysis showed that DEGs are mainly involved in cell

activation, positive regulation of B cell activation, B cell receptor

signaling pathway, kidney development, regulation of B cell

activation, B cell-mediated immunity B cell vasculature

FIGURE 5
Independent analysis of prognosis factor. The prognosis value of the signature for KIRP. (A) Univariate and (B) multivariate independent
prognosis analysis to analyze whether the risk score was independently associated with OS. 1-, 3-, and 5-year area under the ROC curve (AUC) of
signature in the (C) training, (D) testing, and (E) all groups. (F) ROC curves for the risk score (AUC = 0.879) and other clinical features.
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activation, immunoglobulin mediated immune response, renal

system recognition development, glomerulus development

(Figure 8B). Figure 8 C, D shows the location, the number of

genes, and the number and proportion of differential genes for GO

and KEGG.

Immune-related function analysis and
TMB analysis

We evaluated the immune status of the high-risk and low-

risk groups by immune-related function analysis. The results

FIGURE 6
Building nomogram. Nomogram and clinical subgroups for predicting KIRP outcomes. (A)Nomogram to predict the OS in KIRP. (B) Calibration
curves for 1, 3, and 5 years. (C) C-index curve analyzed the concordance index of the risk score. Patients were grouped to see if the model applied to
KIRP patients at (D) stages I-II and (E) III-IV.
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showed a significant difference in parainflammation response

between the high-risk and low-risk groups (p < 0.05), and

parainflammation responses were significantly higher in the

high-risk group than in the low-risk group. But there was no

significant difference in other immune functions (Figure 9A).

In addition, the mutation frequencies of TTN, MET, KMT2C,

PKHD1, SETD2, and KMT2D genes were higher in the high-

risk group than in the low-risk group, but the mutation

frequencies of MUC16, KIAA109, CUBN, USH2A,

DNAH8, and HERC2 genes were significantly lower than in

the low-risk group (Figures 9B, C). We compared tumor gene

mutation frequencies and further investigated the difference

in TMB between different risk groups. The result showed no

statistically significant TMB between the two groups

(Figure 9D). We then explored the survival analysis of

TMB, and the results showed that OS was significantly

better in the high-TMB group than in the low-TMB group

(Figure 9E). Finally, we performed a combined TMB-risk

analysis, and survival showed a clear difference between

them (Figure 9F).

High mutant genes and KIRP tumor
immunoassay

Because cuproptosis plays a crucial role in developing the

tumor immune microenvironment in KIRP, we used the TIMER

algorithm to observe the distribution of KIRP immune scores in

tumor tissues and normal tissues. The results showed that the

expression of CD4 + T cells, neutrophils and macrophages in

tumor tissues was significantly higher than in normal tissues

(Figure 10A). Afterward, we analyzed the expression distribution

of KIRP immune checkpoint genes in tumor tissues and normal

tissues. The results showed that CTLA4, HAVCR2, PDCD1,

PDCD1LG2, and TIGIT significantly differed in tumor tissues

and normal tissues (Figure 10B). In addition, we analyzed the

FIGURE 7
Principal component analysis. PCA observed the distribution of patients according to (A) all genes. (B) Cuproptosis-related genes. (C)
Cuproptosis-related lncRNAs. (D) Risk lncRNAs. Patients with high-risk scores are denoted in red, while those with low-risk scores are represented in
blue.
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association of six genes (TTN, MET, KMT2C, PKHD1, SETD2,

KMT2D) with KIRP immune infiltration. The results showed

that TTN, MET, KMT2C, PKHD1, SETD2 and KMT2D

expression were positively correlated with CD4 + T cell

expression, and their correlations were statistically significant.

Only PKHD1 expression was negatively correlated with CD8 +

T cell expression (Figure 10C). To further investigate the

relationship between KIRP tumor immunity, we performed

the correlation analysis between KIRP immune checkpoint

genes (CTLA4, HAVCR2, PDCD1, PDCD1LG2, and TIGIT)

and high mutation frequency genes (TTN, MET, KMT2C,

PKHD1, SETD2, and KMT2D). We found that

HAVCR2 expression was negatively correlated with TTN,

MET, KMT2C, PKHD1, SETD2, and KMT2D expression,

PDCD1 expression was positively correlated with TTN and

KMT2D expression, PDCD1LG2 expression was positively

correlated with KMT2C, KMT2D, and SETD2 expression,

TIGIT expression was positively correlated with KMT2D

expression, and their correlation was statistically significant

(Figure 10D).

Drug sensitivity analysis and screening of
potential KIRP drugs

Drug therapy is an essential means of KIRP tumor

treatment through drug sensitivity analysis to provide a

specific basis for the mechanism of drug treatment. Drug

sensitivity analysis was performed to explore the potential

of TTN, MET, KMT2C, PKHD1, SETD2, and KMT2D as

targets for KIRP drug scanning. The results showed that TTN,

KMT2C, PKHD1, SETD2, and KMT2D expression were

FIGURE 8
Functional enrichment analysis. (A) GO enrichment analyses of the differentially expressed genes. (B) KEGG enrichment analyses of the
differentially expressed genes. (C,D) shows the location, the number of genes, and the number and proportion of differential genes of GO and KEGG.
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negatively correlated with most drugs in the CTRP. In

contrast, the expression of MET was positively correlated

with most drugs in the CTRP (Figure 11A). Afterward, we

screened 15 potential drugs that differ between high-risk and

low-risk patients (Figure 11B–P), such as AMG-706, BMS-

509744, BX-795, CGP-60474, GNF-2, GW843682X, HG-5-88-

01, Imatinib, JNK Inhibitor VIII, Paclitaxel, PHA-665752, SL

0101-1, VX-680, Z-LLNle-CHO, Sunitinib. We found that the

concentration inhibiting cell growth by 50% (IC50) was

significantly lower in high-risk patients than in low-risk

patients, representing high-risk patients as more sensitive

to these drugs.

Discussion

Our study identifies 11 cuproptosis-related lncRNAs,

constructs their prognosis-related signatures, and finds

FIGURE 9
Immune-related function analysis and TMB. (A) Immune-related functions of the 11 cuproptosis-related lncRNAs. (B,C) These waterfall plots
show somatic mutations of the most significant 15 genes among (B) low-risk and (C) high-risk KIRP patients. (D) Differential TMB in high-risk and
low-risk groups in KIRP. (E) Survival curves for the high-TMB and low-TMB groups in KIRP. (F) The combined TMB-risk survival curve. (*p<0.05,
**p<0.01,***p<0.001, asterisks (*) stand for significance levels).
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AC234031.1, AC011921.1, AC005332.5, RNF32-AS1 and

CKMT2-AS1 are high-risk lncRNAs, while TNFRSF14-AS1,

AL031275.1, NINJ2-AS1, EMX2OS, AC092140.2, and

AC015922.3 are low-risk lncRNAs. Relevant studies have

shown that the lncRNA signature of AC005332.5 is a

potential diagnostic biomarker for HBV-related

hepatocellular carcinoma (HCC) patients (Fu et al., 2022),

the lncRNA signature of CKMT2-AS1 is closely related to the

prevention of colorectal cancer (Zhuang et al., 2022), the

lncRNA signature of TNFRSF14−AS1 can be used as a

prognosis marker for bladder cancer (Wang et al., 2021a),

the lncRNA signature of AC015922.3 is a novel biomarker for

esophageal squamous cell carcinoma (Liu et al., 2020), and

downregulation of lncRNA EMX2OS can independently

predict shorter recurrence-free survival in classical papillary

thyroid cancer (Gu et al., 2018). However, this study first

investigated the prognosis profile of NINJ2-AS1, RNF32-AS1,

AC234031.1, AC011921.1, AC092140.2, and AL031275.1.

According to the results of functional enrichment analysis,

we found that DEGs were highly enriched in B cell receptor

signaling pathway, kidney development, regulation of B cell

activation, B cell-mediated immune B cell vascular activation,

transmembrane receptor protein tyrosine kinase activity,

renal system recognition development, glomerulus

development, etc. Therefore, we can reasonably assume that

cuproptosis may be closely related to the development and

immunotherapy of KIRP.

In immune-related function analysis, only

parainflammation responses were differences in the

immune-related function. Parainflammation is a

“parainfluenza” state that exists between basal homeostatic

conditions and actual inflammation and is an adaptive

response of the immune system to low levels of tissue

stress (i.e., low levels of “dangerous” stimuli), and its role is

to maintain physiological balance in the body (Chen and Xu,

2015). Related studies have shown that parainflammation may

be a driver of p53 mutagenesis significantly associated with the

development and progression of cancer types containing

p53 mutations (Aran et al., 2016). Similarly, Wang et al.

found that microbiota-driven parainflammation is a factor

leading to the carcinogenesis of colonic epithelial cells (Wang

et al., 2021b). These provide a direction for future studies of

KIRP therapeutic targets.

In TMB analysis, we found increased TTN expression in

patients of the high-risk group. OS was significantly higher in

the high TMB group than in the low TMB group. It has been

previously demonstrated that TMB is an independent

prognosis factor and can predict survival after

immunotherapy for cancer types (Samstein et al., 2019).

TTN is associated with prognosis in a variety of cancers

(Zheng et al., 2021). Zhu et al. found that TTN can

promote the proliferation and migration of prostate cancer

by inhibiting miR-1271 levels, indicating that TTN may be a

prognosis target for prostate cancer (Zhu et al., 2021). Cui

et al. found that TTN could inhibit the proliferation and

invasion of colorectal cancer cells by blocking the

activation of PI3K/Akt/mTOR signaling by interacting with

miR-497 (Cui et al., 2019). Similarly, Qi and Li (2020) found

that TTN promoted the increase and migration of non-small

cell lung cancer (NSCLC) by regulating the miR-491-5p/

FIGURE 10
High mutant genes and KIRP tumor immunoassay. (A) In patients with KIRP, the TIMER algorithm was used to observe differences in immune
cells in tumor versus normal tissue. (B) Different expressions of immune checkpoints in tumor tissue and normal tissue in KIRP (*p<0.05, **p<0.01,
***p<0.001, asterisks (*) stand for significance levels. (C) The correlation between six high-mutation genes and immune infiltration. (D) The
correlation analysis between six high-mutation genes and immune checkpoints. (*p< 0.05, **p < 0.01, ***p < 0.001, asterisks (*) stand for
significance levels).
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ZNF503 axis. Our results are consistent with previous findings

and suggest that TTN may serve as a Prognosis therapeutic

target in cancer.

In KIRP tumor immunoassays, CD4 + T Cell, neutrophil,

and macrophage expression were significantly higher in

tumor tissues than in normal tissues. CD4 + T cells are

vital regulatory cells in the immune response and play an

essential role in tumor development and progression. It has

been found that CD4 + T cells infiltrating breast tumor tissue

can effectively predict the survival of breast cancer and can

examine patients through their signatures (Gu-Trantien

et al., 2013). Neutrophils can produce and release active

cytokines, such as IL6-1, IL-6 and vascular endothelial

growth factor (VEGF), which alter the balance of

inflammation and anti-inflammation in the tumor

microenvironment, making inflammatory response

biomarkers promising prognosis factors in renal cell

cancer (RCC) (Fox et al., 2013). Related studies have

demonstrated that neutrophils promote the occurrence of

breast cancer and are closely associated with the therapeutic

effect of breast cancer (Zhang et al., 2020). Similarly, Zhang

et al. found that tumors with higher neutrophil-to-

lymphocyte ratios in KIRP were larger and more advanced

stages (Zhang et al., 2021a). To some extent, these related

studies can affirm our study results.

In the correlation of KIRP immune infiltration, we found

that only PKHD1 expression was negatively correlated with

CD8 + T cell expression, and the correlation between the two

was statistically significant. CD8 + T cell is closely related to

the development of KIRP (Zhang et al., 2021b). CD8 +T cell is

less expressed in recurrent renal cells but increases cancer-

associated fibroblast (CAFs) infiltration compared to KIRP

(Peng et al., 2022). PKHD1 gene is an essential factor leading

to autosomal recessive polycystic kidney disease (ARPKD) in

children. High PKHD1 mutations, on the other hand, may

increase susceptibility to colorectal cancer (Ward et al.,

2011). And related studies have shown that PKHD1 is

associated with renal damage (Burgmaier et al., 2021).

In gene correlation analysis, we found that

HAVCR2 expression was negatively correlated with TTN,

MET, KMT2C, PKHD1, SETD2 and KMT2D expression.

HAVCR2 is also a valuable gene in the KIRP immune

checkpoint. Previous studies have shown a significant

association between HAVCR2 methylation and mRNA

expression and immune cell infiltration in melanoma

(Holderried et al., 2019). Liu et al. (2018) found that high

expression of HAVCR2 in hepatocellular carcinoma indicates

poor prognosis, and HAVCR2 could also enhance Treg-

mediated immunosuppression by mediating effector T-cell

depletion and apoptosis. Cheng et al. (2015) also found that

HAVCR2 can be used as an independent prognostic factor to

predict the prognosis of gastric cancer patients in gastric

cancer. Similarly, our study also showed that HAVCR was

highly expressed in tumors and correlated with the

development and immunotherapy of KIRP.

The results of the drug sensitivity analysis showed that MET

expression was positively correlated with most drugs in the

CTRP. Albiges et al. (2014) found that high MET expression

is present in all KIRPs and is a therapeutic target. MET is an

effective drug target, and the outcome of KIRPs is generally worse

when treated with conventional therapies (Pal et al., 2021). We

screened 15 potential drugs that differed between high-risk and

low-risk patients. HG-5-88-01 and GNF-2, Z-LLNle-CHO are

FIGURE11
Drug sensitivity analysis and screening of potential KIRP
drugs. (A) Drug-sensitivity analysis of six high-mutation genes in
KIRP. (B–P) Potential 15 drugs for KIRP.
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the most sensitive in high-risk patients. Currently, there is a lack

of drug studies with HG-5-88-0. GNF-2 inhibits the growth of

Bcr-abl positive cells, improves survival in chronic myelogenous

leukemia, and can potentially treat solid tumors (Jones and

Thompson, 2020). Meng et al. (2011) found that GSI-I

(Z-LLNle-CHO0) triggered cell death in precursor B acute

lymphoblastic leukemia by inhibiting γ-secretase and

proteasome. As can be seen, the therapeutic range of these

drugs is small, and we should increase the study of these

drugs in KIRP in the future. In vitro, sunitinib inhibited cell

proliferation by targeting the cytosolic MEK/ERK and SAPK/

JNK pathways in RET/PTC1 cells. And sunitinib also has good

activity against anaplastic thyroid cancer (ATC) cells in vivo

(Ferrari et al., 2019). Zhang et al. (2013) found that autophagy

inhibition enhanced paclitaxel’s preferential toxicity on

folliculin-deficient renal carcinoma cells. These related studies

largely corroborate the therapeutic value of the 15 potential drugs

selected for this study in cancer. It can provide direction for

future studies of drug therapy in KIRP patients.

This study provides insights into cuproptosis-related

lncRNA signatures and their functional and immune

correlation. However, our study is still limited. First, we did

not perform a tumor immunity correlation analysis for lowly

mutated genes. Second, in vivo and in vitro experiments should

be performed to confirm our results further. Again, our study

data are based on public databases and lack useful information on

new clinical patients.

Conclusion

Our study identified 11 cuproptosis-related lncRNAs and

their prognosis signatures in KIRP. We have also validated

that prognosis models can reliably predict the prognosis of

KIRP patients. We preliminarily elaborated on the function

of cuproptosis-related lncRNAs. The immune-related

functional analysis assessed immune status in high and

low-risk groups and found differences only in

parainflammation responses. We investigated the

difference in TMB between different risk groups and its

association with survival and found that OS was better in

the high-TBM group. Finally, we performed a drug sensitivity

analysis, screening 15 potential drugs, and found that

patients in the high-risk group were highly sensitive to

potential drugs. Our study can provide some direction for

subsequent investigation of the therapeutic target or

prognosis value of cuproptosis-related lncRNAs in KIRP.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding author.

Author contributions

WL and MT designed the study. TX, BL, YZ, DL, QY, and

DW prepared the manuscript. All authors approved the final

version of the manuscript.

Funding

This study was supported by the Hunan Province Natural

Science Foundation (No. 2022JJ40253, No. 2021JJ40939), the

Scientific research project of Hunan Health Commission

(No. 202102041763, No. 20200985), the Changsha

Municipal Natural Science Foundation (No. kq2014267),

and the Hunan Cancer Hospital Climb Plan (No.

2020QH001).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fphar.

2022.1103986/full#supplementary-material

References

Albiges, L., Guegan, J., Le Formal, A., Verkarre, V., Rioux-Leclercq, N., Sibony,M., et al.
(2014). MET is a potential target across all papillary renal cell carcinomas: Result from a

large molecular study of pRCC with CGH array and matching gene expression array.
Clin. Cancer Res. 20 (13), 3411–3421. doi:10.1158/1078-0432.CCR-13-2173

Frontiers in Pharmacology frontiersin.org14

Xie et al. 10.3389/fphar.2022.1103986

https://www.frontiersin.org/articles/10.3389/fphar.2022.1103986/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2022.1103986/full#supplementary-material
https://doi.org/10.1158/1078-0432.CCR-13-2173
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1103986


Aran, D., Lasry, A., Zinger, A., Biton, M., Pikarsky, E., Hellman, A., et al. (2016).
Widespread parainflammation in human cancer. Genome Biol. 17 (1), 145. doi:10.
1186/s13059-016-0995-z

Aubert, L., Nandagopal, N., Steinhart, Z., Lavoie, G., Nourreddine, S.,
Berman, J., et al. (2020). Copper bioavailability is a KRAS-specific
vulnerability in colorectal cancer. Nat. Commun. 11 (1), 3701. doi:10.1038/
s41467-020-17549-y

Bian, Z., Fan, R., and Xie, L. (2022). A novel cuproptosis-related prognostic gene
signature and validation of differential expression in clear cell renal cell carcinoma.
Genes. (Basel) 13 (5), 851. doi:10.3390/genes13050851

Burgmaier, K., Brinker, L., Erger, F., Beck, B. B., Benz, M. R., Bergmann, C.,
et al. (2021). Refining genotype-phenotype correlations in 304 patients with
autosomal recessive polycystic kidney disease and PKHD1 gene variants.
Kidney Int. 100 (3), 650–659. doi:10.1016/j.kint.2021.04.019

Chen, M., and Xu, H. (2015). Parainflammation, chronic inflammation, and age-
related macular degeneration. J. Leukoc. Biol. 98 (5), 713–725. doi:10.1189/jlb.
3RI0615-239R

Chen, Y. (2022). Identification and validation of cuproptosis-related
prognostic signature and associated regulatory Axis in uterine corpus
endometrial carcinoma. Front. Genet. 13, 912037. doi:10.3389/fgene.2022.
912037

Cheng, G., Li, M., Wu, J., Ji, M., Fang, C., Shi, H., et al. (2015). Expression of Tim-
3 in gastric cancer tissue and its relationship with prognosis. Int. J. Clin. Exp. Pathol.
8 (8), 9452–9457.

Cancer Genome Atlas Research Network (2014). Comprehensive molecular
characterization of gastric adenocarcinoma. Nature 513(7517), 202–209. doi:10.
1038/nature13480

Cui, Z., Han, B., Wang, X., Li, Z., Wang, J., and Lv, Y. (2019). Long non-coding
RNA TTN-AS1 promotes the proliferation and invasion of colorectal cancer cells by
activating miR-497-mediated PI3K/Akt/mTOR signaling. Onco Targets Ther. 12,
11531–11539. doi:10.2147/OTT.S229104

Ferrari, S. M., Centanni, M., Virili, C., Miccoli, M., Ferrari, P., Ruffilli, I., et al.
(2019). Sunitinib in the treatment of thyroid cancer. Curr. Med. Chem. 26 (6),
963–972. doi:10.2174/0929867324666171006165942

Fox, P., HudsonM.Brown, C., Lord, S., Gebski, V., De Souza, P., et al.
(2013). Markers of systemic inflammation predict survival in patients with
advanced renal cell cancer. Br. J. Cancer 109 (1), 147–153. doi:10.1038/bjc.
2013.300

Fu, P., Gong, B., Li, H., Luo, Q., Huang, Z., Shan, R., et al. (2022). Combined
identification of three lncRNAs in serum as effective diagnostic and prognostic
biomarkers for Hepatitis B virus-related hepatocellular carcinoma. Int. J. Cancer
151 (10), 1824–1834. doi:10.1002/ijc.34201

Gu, Y., Feng, C., Liu, T., Zhang, B., and Yang, L. (2018). The downregulation of
lncRNA EMX2OS might independently predict shorter recurrence-free survival of
classical papillary thyroid cancer. PLoS One 13 (12), e0209338. doi:10.1371/journal.
pone.0209338

Gu-Trantien, C., Loi, S., Garaud, S., Equeter, C., Libin, M., de Wind, A., et al.
(2013). CD4⁺ follicular helper T cell infiltration predicts breast cancer survival.
J. Clin. Invest. 123 (7), 2873–2892. doi:10.1172/JCI67428

Holderried, T. A. W., de Vos, L., Bawden, E. G., Vogt, T. J., Dietrich, J., Zarbl, R.,
et al. (2019). Molecular and immune correlates of TIM-3 (HAVCR2) and galectin 9
(LGALS9) mRNA expression and DNAmethylation in melanoma. Clin. Epigenetics
11 (1), 161. doi:10.1186/s13148-019-0752-8

Hong, B., Hou, H., Chen, L., Li, Z., Zhang, Z., Zhao, Q., et al. (2021). The
clinicopathological features and prognosis in patients with papillary renal cell
carcinoma: A multicenter retrospective study in Chinese population. Front. Oncol.
11, 753690. doi:10.3389/fonc.2021.753690

Jones, J. K., and Thompson, E. M. (2020). Allosteric inhibition of ABL kinases:
Therapeutic potential in cancer.Mol. Cancer Ther. 19 (9), 1763–1769. doi:10.1158/
1535-7163.MCT-20-0069

Kahlson, M. A., and Dixon, S. J. (2022). Copper-induced cell death. Science 375
(6586), 1231–1232. doi:10.1126/science.abo3959

Kang, Z., and Yang, J. (2022). Construction and validation of an autophagy-
related long non-coding RNA signature to predict the prognosis of kidney renal
papillary cell carcinoma. J. Investig. Med. 70 (7), 1536–1544. doi:10.1136/jim-2022-
002379

Kim, R., Hong, J. Y., Lee, J., Kwon, G. Y., Jeong, B. C., and Park, S. H. (2022).
Genomic sequencing for bladder urothelial carcinoma and its clinical
implications for immunotherapy. Cancer Res. Treat. 54 (3), 894–906.
doi:10.4143/crt.2021.854

Lan, H., Zeng, J., Chen, G., and Huang, H. (2017). Survival prediction of
kidney renal papillary cell carcinoma by comprehensive LncRNA

characterization. Oncotarget 8 (67), 110811–110829. doi:10.18632/
oncotarget.22732

Liu, F., Liu, Y., and Chen, Z. (2018). Tim-3 expression and its role in
hepatocellular carcinoma. J. Hematol. Oncol. 11 (1), 126. doi:10.1186/s13045-
018-0667-4

Liu, Y., Wang, L., Liu, H., and He, J. (2020). The prognostic significance of
metabolic syndrome and a related six-lncRNA signature in esophageal
squamous cell carcinoma. Front. Oncol. 10, 61. doi:10.3389/fonc.2020.00061

Meng, X., GirodonF.Mazel, T., Willman, C. L., AtlaS, S., et al. (2011). GSI-I
(Z-LLNle-CHO) inhibits γ-secretase and the proteosome to trigger cell death in
precursor-B acute lymphoblastic leukemia. Leukemia 25 (7), 1135–1146. doi:10.
1038/leu.2011.50

Oliveri, V. (2022). Selective targeting of cancer cells by copper
ionophores: An overview. Front. Mol. Biosci. 9, 841814. doi:10.3389/
fmolb.2022.841814

Pal, S. K., Tangen, C., Thompson, I. M., Jr, Balzer-Haas, N., George, D. J., Heng,
D. Y. C., et al. (2021). A comparison of sunitinib with cabozantinib, crizotinib, and
savolitinib for treatment of advanced papillary renal cell carcinoma: A randomised,
open-label, phase 2 trial. Lancet 397 (10275), 695–703. doi:10.1016/S0140-6736(21)
00152-5

Peng, Y. L., Xiong, L. B., Zhou, Z. H., Ning, K., Li, Z., Wu, Z. S., et al. (2022).
Single-cell transcriptomics reveals a low CD8(+) T cell infiltrating state mediated by
fibroblasts in recurrent renal cell carcinoma. J. Immunother. Cancer 10 (2), e004206.
doi:10.1136/jitc-2021-004206

Qi, G., and Li, L. (2020). LncRNA TTN-AS1 promotes progression of non-small
cell lung cancer via regulating miR-491-5p/znf503 Axis. Onco Targets Ther. 13,
6361–6371. doi:10.2147/OTT.S238890

Ruiz, L. M., Libedinsky, A., and Elorza, A. A. (2021). Role of copper on
mitochondrial function and metabolism. Front. Mol. Biosci. 8, 711227. doi:10.
3389/fmolb.2021.711227

Samstein, R. M., Lee, C. H., Shoushtari, A. N., Hellmann, M. D., Shen, R.,
Janjigian, Y. Y., et al. (2019). Tumor mutational load predicts survival after
immunotherapy across multiple cancer types. Nat. Genet. 51 (2), 202–206.
doi:10.1038/s41588-018-0312-8

Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M.,
et al. (2022). Copper induces cell death by targeting lipoylated TCA cycle proteins.
Science 375 (6586), 1254–1261. doi:10.1126/science.abf0529

Wang, J., Shen, C., Dong, D., Zhong, X., Wang, Y., and Yang, X. (2021).
Identification and verification of an immune-related lncRNA signature for
predicting the prognosis of patients with bladder cancer. Int.
Immunopharmacol. 90, 107146. doi:10.1016/j.intimp.2020.107146

Wang, X., Lai, Q., He, J., Li, Q., Ding, J., Lan, Z., et al. (2019). LncRNA
SNHG6 promotes proliferation, invasion and migration in colorectal cancer
cells by activating TGF-β/Smad signaling pathway via targeting UPF1 and
inducing EMT via regulation of ZEB1. Int. J. Med. Sci. 16 (1), 51–59. doi:10.
7150/ijms.27359

Wang, X., Undi, R. B., Ali, N., and Huycke, M. M. (2021). It takes a village:
Microbiota, parainflammation, paligenosis and bystander effects in colorectal
cancer initiation. Dis. Model. Mech. 14 (5), dmm048793. doi:10.1242/dmm.
048793

Ward, C. J., Wu, Y., Johnson, R. A., Woollard, J. R., Bergstralh, E. J., Cicek, M. S.,
et al. (2011). Germline PKHD1 mutations are protective against colorectal cancer.
Hum. Genet. 129 (3), 345–349. doi:10.1007/s00439-011-0950-8

Wu, Z., Huang, X., Cai, M., and Huang, P. (2022). Potential biomarkers for
predicting the overall survival outcome of kidney renal papillary cell carcinoma: An
analysis of ferroptosis-related LNCRNAs. BMC Urol. 22 (1), 152. doi:10.1186/
s12894-022-01037-0

Zhang, Q., Schoen, S., Chen, J., Jin, X. B., and Wu, G. (2013). Suppression of
autophagy enhances preferential toxicity of paclitaxel to folliculin-deficient
renal cancer cells. J. Exp. Clin. Cancer Res. 32 (1), 99. doi:10.1186/1756-9966-
32-99

Zhang, W., Shen, Y., Huang, H., Pan, S., Jiang, J., Chen, W., et al. (2020). A rosetta
stone for breast cancer: Prognostic value and dynamic regulation of neutrophil in
tumor microenvironment. Front. Immunol. 11, 1779. doi:10.3389/fimmu.2020.
01779

Zhang, X., Wang, Y., Qu, C., and Chen, J. (2021). Pan-cancer analysis of
PARP1 alterations as biomarkers in the prediction of immunotherapeutic effects
and the association of its expression levels and immunotherapy signatures. Front.
Immunol. 12, 721030. doi:10.3389/fimmu.2021.721030

Zhang, Z., Yu, Y., Zheng, J., Zhang, M., and Niu, H. (2021). Prognostic
significance of preoperative neutrophil-to-lymphocyte ratio in papillary renal
cell carcinoma patients after receiving curative surgery based on a retrospective
cohort. BMC Urol. 21 (1), 43. doi:10.1186/s12894-021-00805-8

Frontiers in Pharmacology frontiersin.org15

Xie et al. 10.3389/fphar.2022.1103986

https://doi.org/10.1186/s13059-016-0995-z
https://doi.org/10.1186/s13059-016-0995-z
https://doi.org/10.1038/s41467-020-17549-y
https://doi.org/10.1038/s41467-020-17549-y
https://doi.org/10.3390/genes13050851
https://doi.org/10.1016/j.kint.2021.04.019
https://doi.org/10.1189/jlb.3RI0615-239R
https://doi.org/10.1189/jlb.3RI0615-239R
https://doi.org/10.3389/fgene.2022.912037
https://doi.org/10.3389/fgene.2022.912037
https://doi.org/10.1038/nature13480
https://doi.org/10.1038/nature13480
https://doi.org/10.2147/OTT.S229104
https://doi.org/10.2174/0929867324666171006165942
https://doi.org/10.1038/bjc.2013.300
https://doi.org/10.1038/bjc.2013.300
https://doi.org/10.1002/ijc.34201
https://doi.org/10.1371/journal.pone.0209338
https://doi.org/10.1371/journal.pone.0209338
https://doi.org/10.1172/JCI67428
https://doi.org/10.1186/s13148-019-0752-8
https://doi.org/10.3389/fonc.2021.753690
https://doi.org/10.1158/1535-7163.MCT-20-0069
https://doi.org/10.1158/1535-7163.MCT-20-0069
https://doi.org/10.1126/science.abo3959
https://doi.org/10.1136/jim-2022-002379
https://doi.org/10.1136/jim-2022-002379
https://doi.org/10.4143/crt.2021.854
https://doi.org/10.18632/oncotarget.22732
https://doi.org/10.18632/oncotarget.22732
https://doi.org/10.1186/s13045-018-0667-4
https://doi.org/10.1186/s13045-018-0667-4
https://doi.org/10.3389/fonc.2020.00061
https://doi.org/10.1038/leu.2011.50
https://doi.org/10.1038/leu.2011.50
https://doi.org/10.3389/fmolb.2022.841814
https://doi.org/10.3389/fmolb.2022.841814
https://doi.org/10.1016/S0140-6736(21)00152-5
https://doi.org/10.1016/S0140-6736(21)00152-5
https://doi.org/10.1136/jitc-2021-004206
https://doi.org/10.2147/OTT.S238890
https://doi.org/10.3389/fmolb.2021.711227
https://doi.org/10.3389/fmolb.2021.711227
https://doi.org/10.1038/s41588-018-0312-8
https://doi.org/10.1126/science.abf0529
https://doi.org/10.1016/j.intimp.2020.107146
https://doi.org/10.7150/ijms.27359
https://doi.org/10.7150/ijms.27359
https://doi.org/10.1242/dmm.048793
https://doi.org/10.1242/dmm.048793
https://doi.org/10.1007/s00439-011-0950-8
https://doi.org/10.1186/s12894-022-01037-0
https://doi.org/10.1186/s12894-022-01037-0
https://doi.org/10.1186/1756-9966-32-99
https://doi.org/10.1186/1756-9966-32-99
https://doi.org/10.3389/fimmu.2020.01779
https://doi.org/10.3389/fimmu.2020.01779
https://doi.org/10.3389/fimmu.2021.721030
https://doi.org/10.1186/s12894-021-00805-8
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1103986


Zheng, Q. X., Wang, J., Gu, X. Y., Huang, C. H., Chen, C., Hong, M., et al.
(2021). TTN-AS1 as a potential diagnostic and prognostic biomarker for
multiple cancers. Biomed. Pharmacother. 135, 111169. doi:10.1016/j.biopha.
2020.111169

Zhu, L., Liu, X., Zhang, W., Hu, H., Wang, Q., and Xu, K. (2022). MTHFD2 is a
potential oncogene for its strong association with poor prognosis and high level of
immune infiltrates in urothelial carcinomas of bladder. BMC Cancer 22 (1), 556.
doi:10.1186/s12885-022-09606-0

Zhu, Y., Yang, Z., Luo, X. H., and Xu, P. (2021). Long noncoding RNA TTN-AS1
promotes the proliferation and migration of prostate cancer by inhibiting miR-1271

level. Eur. Rev. Med. Pharmacol. Sci. 25 (3), 10678–10684. doi:10.26355/eurrev_
201912_19766

Zhuang, B., Ni, X., Min, Z., Wu, D., Wang, T., and Cui, P. (2022). Long non-
coding RNA CKMT2-AS1 reduces the viability of colorectal cancer cells by
targeting AKT/mTOR signaling pathway. Iran. J. Public Health 51 (2), 327–335.
doi:10.18502/ijph.v51i2.8685

Zuo, S., Wang, L., Wen, Y., and Dai, G. (2018). Identification of a
universal 6-lncRNA prognostic signature for three pathologic subtypes
of renal cell carcinoma. J. Cell. Biochem. 120, 7375–7385. doi:10.1002/
jcb.28012

Frontiers in Pharmacology frontiersin.org16

Xie et al. 10.3389/fphar.2022.1103986

https://doi.org/10.1016/j.biopha.2020.111169
https://doi.org/10.1016/j.biopha.2020.111169
https://doi.org/10.1186/s12885-022-09606-0
https://doi.org/10.26355/eurrev_201912_19766
https://doi.org/10.26355/eurrev_201912_19766
https://doi.org/10.18502/ijph.v51i2.8685
https://doi.org/10.1002/jcb.28012
https://doi.org/10.1002/jcb.28012
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1103986

	Cuproptosis-related lncRNA signatures predict prognosis and immune relevance of kidney renal papillary cell carcinoma
	Introduction
	Materials and methods
	Data processing and identification of cuproptosis-related lncRNAs
	Construction of the prognosis cuproptosis-related lncRNA signature
	Survival analysis of the signature
	Independent analysis of the prognosis factor
	Building nomogram and principal component analysis
	Functional enrichment analysis
	Immune-related function analysis and TMB analysis
	High mutant genes and KIRP tumor immunoassay
	Drug sensitivity analysis and screening of potential KIRP drugs

	Results
	Identification of cuproptosis-related lncRNAs and building prognosis signature
	Survival analysis of the signature
	Independent analysis of the prognosis factor
	Building nomogram and PCA
	Functional enrichment analysis
	Immune-related function analysis and TMB analysis
	High mutant genes and KIRP tumor immunoassay
	Drug sensitivity analysis and screening of potential KIRP drugs

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


