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Background: Alcohol use disorder (AUD) is characterized by chronic excessive
alcohol consumption, often alternating with periods of abstinence known as
alcohol withdrawal syndrome (AWS). Diazepam is the preferred benzodiazepine
for treatment of alcohol withdrawal syndrome under most circumstances, but the
specific mechanism underlying the treatment needs further research.

Methods: We constructed an animal model of two-bottle choices and chronic
intermittent ethanol exposure. LC-MS/MS proteomic analysis based on the label-
free and intensity-based quantification approach was used to detect the protein
profile of thewhole brain. Weighted gene correlated network analysis was applied for
scale-free network topology analysis. We established a protein–protein interaction
network based on the Search Tool for the Retrieval of Interacting Genes (STRING)
database and Cytoscape software and identified hub proteins by CytoHubba and
MCODE plugins of Cytoscape. The online tool Targetscan identified miRNA–mRNA
pair interactions.

Results: Seven hub proteins (Dlg3, Dlg4, Shank3, Grin2b, Camk2b, Camk2a and
Syngap1) were implicated in alcohol withdrawal syndrome or diazepam treatment. In
enrichment analysis, glutamatergic synapses were considered the most important
pathway related to alcohol use disorder. Decreased glutamatergic synapses were
observed in the late stage of withdrawal, as a protective mechanism that attenuated
withdrawal-induced excitotoxicity. Diazepam treatment during withdrawal
increased glutamatergic synapses, alleviating withdrawal-induced synapse
inhibition.

Conclusion: Glutamatergic synapses are considered the most important pathway
related to alcohol use disorder that may be a potential molecular target for new
interventional strategies.
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1 Introduction

Alcohol use disorder (AUD) is characterized by chronic excessive
alcohol consumption, often alternating with periods of abstinence
accompanied by symptoms of tremors, anxiety, irritability, and
agitation, collectively known as alcohol withdrawal syndrome
(AWS). AUD is associated with neurological deficits including loss
of brain volume and cognitive impairments (Sullivan et al., 2000).
Emerging evidence indicates that dysfunctional glutamate
neurotransmission is critical in the initiation and development of
alcohol and drug dependence (Goodwani et al., 2017). Our research
showed that Glutamatergic synapses may be a potential molecular
target for new interventional strategies.

Transcriptional analysis is a useful method for determining
changes in gene expression; however, the results do not always
accurately correlate with protein levels. Therefore, application of
proteomic analysis to animal models of AUD is necessary to
provide a new understanding of mechanisms underlying associated
neuroplasticity, and to identify new therapeutic targets for AUD.
Weighted gene correlated network analysis (WGCNA) converts
gene expression data into networks, or modules, containing a
group of genes that share a common biological relationship or
function and behave similarly, thereby providing modules that may
be responsible for the phenotypic characteristics of interest. WGCNA
has been applied to the study of alcohol dependence (Nunez et al.,
2013; Mamdani et al., 2015; Kapoor et al., 2019).

Diazepam is the preferred benzodiazepine for treatment of
patients experiencing moderate to severe AWS (Weintraub, 2017),
but the specific mechanism underlying the effects of treatment needs
further research. Here, we used LC-MS/MS proteomic analysis based
on the label-free and intensity-based quantification (iBAQ) approach
in animal models of diazepam treatment of AUD. We used WGCNA
scale-free network algorithms combined with bioinformatic methods
to analyze chronic intermittent ethanol exposure simultaneously with
diazepam treatment-evoked changes in protein levels in brain tissue.
We established a protein–protein interaction (PPI) network based on
the Search Tool for the Retrieval of Interacting Genes (STRING)

database and Cytoscape software to identify hub genes related to AUD.
Subsequently, the hub gene and miRNA–mRNA pair interactions
were identified. We screened the hub genes and pathways highly
associated with AUD and provided further insight into the
pathophysiology of AUD at the molecular level and explored
potential molecular targets for new interventional strategies.

2 Material and methods

2.1 Animals

Adult male C57BL/6J mice purchased from Guangdong
Provincial Medical Laboratory Animal Center were
individually housed in an animal facility with corncob bedding
under a 12-h light–dark cycle. The temperature was kept constant
at 24°C ± 2°C, and relative humidity was maintained at 60 ± 5%.
Mice were given free access to food and tap water during all
experimental procedures. All animal procedures were approved
by the Experimental Animal Ethics Committee of Guangdong
Medical Experimental Animal Center (permit number: C202207-
26). In the animal experiments, all operations and treatments are
obliged to conform to the Declaration of Helsinki and the “3R”
principles.

2.2 Ethanol consumption

After a 2-week adaptation period (age 7-8 weeks), the
experimental mice were weighed. The two-bottle choice was
given as described previously (Juarez et al., 2017). Ethanol
concentration successively increased from 3% (v/v solution) to
6% and 10%, and each concentration was administered for 4 days.
Bottles were weighed every 2 days and interchanged to prevent side
preference. Mice were weighed every 4 days (i.e., once for each
concentration of ethanol). On the fourth day of access to 10%
ethanol and water, individual drinking behaviors were determined.
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Ethanol preference (%) was determined as ethanol intake/total
fluid intake × 100%. Ethanol consumption (g/kg/day) was
determined as ethanol intake × ethanol concentration/mouse
weight per day. Low alcohol consumption mice had an ethanol
preference <40% and consumption <10 g/kg/day. High alcohol
consumption mice had an ethanol preference >70% and
consumption >10 g/kg/day. Mice that did not meet these criteria
(medium alcohol consumption) were not used.

After two-bottle choices, mice were subjected to chronic
intermittent ethanol exposure. One bottle provided 20% alcohol
for 7 days followed by alcohol deprivation for 2 days (abstinence
period), and then 35% alcohol for 7 days, corresponding to the
reinstatement stage. During the second abstinence period,
diazepam (Shanghai Xudong Haipu, China) treatment was
initiated at 2.6 mg/kg (bid) by intraperitoneal injection. The
dosing volume was .1 mL/10 g. The mice were sacrificed by
intraperitoneal injection of excessive Pentobarbital sodium
followed by the brain tissue samples were extracted on ice and
stored in −80°C.

2.3 Protein extraction and trypsin digestion

Samples were minced and lysed in lysis buffer (Thermo Fisher
Scientific, Rockford, IL, United States) containing protease
inhibitors, and phosphatase inhibitors (Thermo Fisher Scientific,
Rockford, IL, United States) followed by 3 min of heat at 95°C and
5 min of sonication on ice after cooling to room temperature. The
lysate was centrifuged at 14,000×g for 10 min and the supernatant
was collected as whole tissue extract. Bradford protein assay was
used to determine protein concentration. Ammonium bicarbonate
solution (50 mM) was added to 30 μg protein extracts from each
sample for enzymatic digestion. The digested peptides were
lyophilized, desalted, re-lyophilized, and redissolved in 12 μL
.1% formic acid solvent, and quantified.

2.4 LC-MS/MS

Samples were separated on Easy-nLC 1,000 nanoflow LC system
(Thermo Fisher Scientific). Solvent A was .1% formic acid in water,
and Solvent B was .1% formic acid in 80% acetonitrile solution. After
equilibrating the column with 100% Solvent A, the peptide samples
were loaded onto the sample column by the autosampler and
separated by the analytical column at a flow rate of 600 nL/min for
75 min.

MS was performed using a Q Exactive HF-X mass
spectrometer (Thermo Fisher Scientific) with one full scan
(300–1,400 m/z, R = 120,000 at 200 m/z, positive ion mode) at
automatic gain control target of 3e6 ions with a maximum
injection time of 80 ms. Dynamic exclusion time was set at
40.0 s. After each full scan, the most intense ions selected
under top-speed mode were isolated with a 1.6 m/z window
and fragmented by higher-energy collisional dissociation with
a normalized collision energy of 27%. The 60 fragment spectra
were collected by MS/MS scans with a resolution of 7,500 at
200 m/z. The Q Exactive HF-X mass spectrometer with high
accuracy and high resolution guaranteed obtaining high-quality
MS1 and MS2 spectra.

2.5 Data pretreatment and identification of
differentially expressed proteins

The raw MS data were in RAW files, and Firmiana cloud platform
was used for database identification and quantitative analysis,
including missing value imputation, log2 transformed background
adjustment, quantile normalization, and principal components
analysis (PCA) (Feng et al., 2017). If the samples did not conform
to a normal distribution, a Wilcoxon rank-sum test was used to
identify proteins with significantly different expression in the
control group versus the withdrawal group and the withdrawal
group versus the diazepam group. p < .05 and |log2FC| > 1 were
considered indicative of significant differences in protein expression
between the two groups. The volcano plot and hierarchical clustering
heatmap were generated using R software 4.2.0 (https://www.r-
project.org). The Venn diagram was constructed using online
website (https://bioinformatics.psb.ugent.be/webtools/Venn/).

2.6 WGCNA

WGCNA performed with theWGCNA package (version 1.6.9) for
R software 4.2.0 (https://www.r-project.org) was used for scale-free
network topology analysis (Langfelder and Horvath, 2008). WGCNA
clustered genes with similar expression patterns into modules and
showed the relation between modules and specific traits. The process
mainly included the following steps: 1) defining the similarity matrix
and transforming it into the adjacencies matrix according to the
weight coefficient β selected; 2) transforming the adjacencies matrix
into the topological overlap matrix (TOM); 3) the hierarchical
clustering tree was obtained by the hierarchical clustering of TOM-
based dissTOM; 4) dynamic tree cutting method was used to identify
modules from hierarchical clustering tree; and 5) calculating the
eigengene for each module (ME) (Xu et al., 2022; Zhao et al., 2022;
Zhong et al., 2022). ME represented the overall expression level of the
module. Pearson correlation coefficient between MEs of each module
was calculated (Guillotin et al., 2021). Standard WGCNA parameters
were used for analysis, with the exceptions of soft-thresholding power
and deep split. A soft-thresholding power of 12 was used, which was
selected using methods described by Langfelder (Langfelder et al.,
2008). A deep split value of three was selected and the minimum
number of genes per module was defined as 30.

The correlation between modules and traits was described with
a heatmap to identify the modules most closely implicated with
traits. A |correlation coefficient| > .5 and p < .05 were cut-offs for
module screening. For each module, module membership (MM)
was the correlation between a given gene expression profile and ME
of a given model. Gene significance (GS) was defined as the value of
the correlation between a gene and a trait. The ME in the key
modules with MM > .8 and |GS| > .2 were selected for further
analysis.

2.7 Gene ontology and KEGG pathway
analysis

To examine for potential biological process (BP), molecular
function (MF), cellular component (CC) and related pathways of
turquoise and blue modules, Gene Ontology (GO) analysis (https://
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www.geneontology.org/) and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis (https://www.genome.jp/kegg/
pathway.html) were performed by DAVID 2021 (https://david.
ncifcrf.gov). p < .05 was considered to indicate a statistically
significant difference.

2.8 Bioinformatic analysis

Overlap was determined between genes in the turquoise
module verified by WGCNA and differentially expressed
proteins (DEPs; in withdrawal compared to control group)
using online veen tools (https://www.vandepeerlab.org). The
online search tool STRING database (STRING, V11.5; https://
cn.string-db.orgHYPERLINK https://cn.string-db.org) was
applied to predict PPIs, including functional associations and
physical interactions (Szklarczyk et al., 2021). The PPI pairs with
a combined score ≥.7 were considered significant and outlier
proteins were removed. Cytoscape software (https://cytoscape.

org, version 3.9.1) was used to construct and visualize the PPI and
miRNA–mRNA interaction networks. To further determine hub
proteins in BP, CytoHubba (version .1) plugins of Cytoscape was
applied to measure the interaction of candidate proteins based on
four algorithms: edge percolated component (EPC), maximal
clique centrality (MCC), degree, the maximum neighborhood
component (MNC). A Venn diagram was drawn to show the
overlapping proteins. The molecular complex detection
(MCODE) algorithm, a plugin in Cytoscape, was used for
clustering a given network based on topology to find densely
connected regions (Bader and Hogue, 2003). The advanced
options set as degree cutoff = 2, K-core = 2, and node score
cutoff = .2. The online tool Targetscan (Release 7.2; https://www.
targetscan.org/mmu_72/) was used to identify miRNAs that may
regulate hub mRNA and miRNAs (Agarwal et al., 2015). The
miRNA with total context++ score ≤ −.2 and conserved in
Mammals were selected. We used Cytoscape software to
construct interaction networks of mRNA–miRNA pairs with
inverse expression associations.

FIGURE 1
Alcohol consumption of C57BL/6J mice (n = 30). (A) A 12-day continuous-access two-bottle choice of alcohol consumption was performed, followed
by determination of alcohol consumption behavior. Mice continued to be supplied water or ethanol in one bottle and deprived of ethanol twice (2 days). (B)
Individual ethanol preference scattersmap across day of alcohol drinking procedure. Data show preference for 3% ethanol (day 4), 6% ethanol (day 8), and 10%
ethanol (day 12). (C) Individual ethanol intake scatters map across day of alcohol drinking procedure. Data show daily intake of 3% ethanol (day 4), 6%
ethanol (day 8), and 10% ethanol (day 12). (D) Ethanol preferences in high (n = 19) and low (n = 3) alcohol consumption groups (two-way ANOVA: interaction
effect F (2, 60) = 15.64, p < .0001; alcohol consumption group effect F (1, 60) = 50.88, p < .0001; Šídák’smultiple comparisons test, **p < .01, ****p < .0001). (E)
Ethanol intake in high (n = 19) and low (n = 3) alcohol consumption groups (two-way ANOVA: interaction effect F (2, 60) = 23.82, p < .0001; drinking group
effect F (1, 60) = 60.04, p < .0001; Šídák’s multiple comparisons test, *p < .05, ****p < .0001).
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3 Results

3.1 Low or high alcohol consumption groups
were determined by two-bottle choice

Male C57BL/6J mice aged 7-8 weeks were allowed to voluntarily
consume water and increasing concentrations of alcohol (4 days each
concentration: 3%, 6% and 10% v/v ethanol) over 12 days (Figure 1A).
Alcohol consumption behavior changed on day 8, with further
changes on day 12 (Figures 1B, C). The results suggested that
EtOH preference can sufficiently distinguish mice because of EtOH
preferences of 30 mice ranged from .93 to .02 on day 12 (Figure 1B).
On day 12, 63.3% of mice showed >70% alcohol preference and 10%
showed <40%. Alcohol intake increased with concentration, among
which, 83.3% of the mice consumed >10 g/kg/day and 16.7%
consumed <10 g/kg/day (Figure 1C). Thus, we considered mice
with <40% alcohol preference and <10 g/kg/day alcohol intake to
have low alcohol consumption (n = 3), and mice with >70% alcohol
preference and >10 g/kg/day alcohol intake to have high alcohol
consumption (n = 19). The classification was proved reasonable by
less EtOH preference and EtOH intake of Low alcohol drinking mice
than high alcohol drinking mice, especially at 8 and 12 days
(Figures 1D, E).

3.2 Chronic intermittent ethanol exposure
and withdrawal

After two-bottle choice, the mice were divided into three groups by
alcohol preference and chronic intermittent ethanol exposure and
withdrawal were implemented. The five mice with the lowest alcohol
preference were considered as the control group (n = 5). The ten mice

with the highest alcohol preference were divided into the withdrawal
group (n = 5) and diazepam group (n = 5). The control group was
provided with water until death. The withdrawal group was provided
with alcohol and withdrawn twice. The diazepam group was the same
as the withdrawal group except for receiving diazepam on the second
day of withdrawal.

3.3 Data processing and identification of DEPs

LC-MS/MS measured 15 samples and demonstrated good
consistency in proteome identification and quantification. The mass
deviation of all identified peptide segments was mainly distributed
within 10 ppm, indicating accurate and reliable results
(Supplementary Figure S1A). The number of proteins identified in
each sample was highly consistent; however, each group contained
5%–12% specific proteins (Supplementary Figures S1B, D). The
cumulative number of proteins was 6,536, achieving deep coverage
of the proteome (Supplementary Figure S1C, Table 1). Proteome
quantification was performed by the iBAQ algorithm followed by
normalization to the fraction of total (Supplementary Figures S2A–C).
To evaluate the sample differences within each group (intra-group
deviation), correlation analysis was performed. The results showed
that the correlation of the samples in each group was high (.81–.99),
suggesting good experimental repeatability (Supplementary
Figure S2D).

PCA, an unsupervised data analysis method, revealed the
overall distribution trend of samples between groups, showing
that the samples between the control group and withdrawal
group were scattered well and the samples within the group
were well clustered together. However, the diazepam group
could not be distinguished from the other two groups, probably
resulting from the over-short treatment time of diazepam (1 day)
(Figure 2A). Compared with the control group, we identified
886 DEPs (382 upregulated and 504 downregulated) in the
withdrawal group and 365 (249 upregulated and
116 downregulated) in the diazepam group compared with
withdrawal group (Figure 2F). All proteins are shown in the
volcano plot (Figures 2B, C). The most significant DEPs were
shown in the hierarchical clustering heatmap (Figures 2D, E). In
the withdrawal and control groups, Ppp1r1a was the most
significant DEP (logFC = −16.02, p = .005) with protein serine/
threonine phosphatase inhibitor activity, involved in intracellular
signal transduction (Cataldo et al., 2021). However, in the
diazepam and withdrawal groups, Serpini1 was the most
significant DEP (logFC = 13.36, p = .005), playing a role in the
regulation of axonal growth and development of synaptic plasticity
(Hermann et al., 2020).

3.4 WGCNA

Compared with DEP analysis, WGCNA constructed the scale-
free network and was therefore of more biological significance. A
sample cluster dendrogram showed that no outliers were observed,
hence, all samples were used for analysis (Figure 3A). Choosing
soft-thresholding power = 12 to construct the expression network
was reasonable according to Figure 3B. A hierarchical clustering
tree was obtained by conducting hierarchical clustering for

TABLE 1 Number of spectra, identified peptide segments and proteins by each
sample.

Id Spectrum Peptides Protein

Exp115928_C10 1,29,018 24,596 4,689

Exp115929_C38 1,26,194 23,864 4,605

Exp115930_C21 1,27,774 24,273 4,678

Exp115931_C1 1,29,337 25,655 4,860

Exp115932_C16 1,25,989 23,143 4,572

Exp115933_W7 1,28,839 22,713 4,716

Exp115934_W39 1,29,543 24,064 4,710

Exp115935_W23 1,27,226 23,447 4,668

Exp115936_W31 1,28,820 25,101 4,878

Exp115937_W26 1,28,328 23,855 4,695

Exp115938_D34 1,34,571 28,059 5,165

Exp115939_D9 1,29,702 23,980 4,729

Exp115940_D29 1,29,592 25,112 4,860

Exp115941_D32 1,32,147 25,485 4,816

Exp115942_D40 1,33,149 25,447 4,809
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dissTOM and five modules were identified: blue, brown, grey,
turquoise and yellow (grey module was the no significant
module, with no follow-up analysis; Figures 3C, D). The
heatmap quantified module similarity through eigengene
correlation. The results indicated that the blue and turquoise
modules had the lowest similarity (correlation = −.8; Figure 3E),
suggesting the proteins in the two modules had the opposite
expression pattern. The associations between traits and modules
were identified according to the correlation between module
eigengene and traits (Figure 3F). The two modules were
significantly correlated with clinical characteristics of
withdrawal. The blue module (1,194 proteins) was positively
related to withdrawal, and the turquoise module
(1,386 proteins) was negatively correlated. They included most
of the proteins that were over- or underexpressed in withdrawal,
respectively. Therefore, the blue and turquoise modules were
treated as withdrawal-related modules in subsequent analyses
(Figure 3G). However, the modules closely related to diazepam
treatment were not discovered, which may have resulted from the
over-short treatment time for diazepam. We used p < .05, |GS| >
.2 and MM > .8 to screen key proteins in the blue and turquoise
modules and obtained 472 candidate proteins that were highly

correlated with withdrawal, which were included for further
analysis.

3.5 GO functional and KEGG pathway
enrichment analysis of turquoise and blue
modules

To further investigate the functions and mechanisms of the
turquoise and blue modules negatively and positively related to the
alcohol withdrawal respectively, GO and KEGG pathway
enrichment analyses were performed. The enriched GO
annotations of the blue module included small molecule
metabolic process in the BP category, mitochondrion in the CC
category, and protein-containing complex binding in the MF
category (Figure 4A). KEGG pathways mainly included
metabolic pathways (GeneRatio = 86/206, p.adjust = 2.21 ×
10–13; Figure 4C). The above results suggested that alcohol
withdrawal was implicated with small molecule metabolic
pathways, consistent with many previous reports; for example:
β-hydroxybutyrate metabolism linked to AUD (Leclercq et al.,
2020); kynurenine metabolism impairing alcohol seeking and

FIGURE 2
Identification of DEPs. (A) PCA plots of Control (blue), Withdrawal (orange) andDiazepam (yellow) Groups in 15 samples with oval confidence intervals. (B)
Volcano plot of Control andWithdrawal Group samples. (C) Volcano plot of Withdrawal and DiazepamGroup samples. Colors represent different genes: grey
nodes represent proteins without significantly different expression, red nodes represent upregulated proteins, and blue nodes represent downregulated
proteins. (D) Hierarchical clustering heatmap of 52 DEPs (represented by rows) in Control and Withdrawal Group samples (represented by columns) and
(E) 46 DEPs inWithdrawal and DiazepamGroup samples. Colors represent relative abundance of proteins using normalized intensity data. (F)Number of DEPs
in Withdrawal versus Control and Diazepam versusWithdrawal Group samples. Red bar represents upregulated DEPs. Blue represents downregulated DEPs.
Grey represents total DEPs.
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relapse (Vengeliene et al., 2016); tryptophan metabolism associated
with alcohol dependence (Zhu et al., 2021); and glutathione and
lipid peroxidation (Videla and Valenzuela, 1982). For the turquoise
module, the enriched GO annotations included regulation of
transport in the BP category, synapse in the CC category, and
ribonucleotide binding in the MF category (Figure 4B). KEGG
pathways mainly included glutamatergic synapse (generation = 32/
330, q = 4.18 × 10–18), synaptic vesicle cycle (generation = 27/330,
q = 4.18 × 10–18), dopaminergic synapse (generation = 32/330, q =
4.96 × 10–16), calcium signaling pathway (generation = 28/330, q =
3.43 × 10–7) (Figure 4D). The results indicated that the above
pathways were downregulated in alcohol withdrawal mice. For
more reliable analysis, we combined WGCNA with differentially
expressed analysis to carry out overlap analysis and identify hub
proteins.

3.6 Identification of hub proteins and
construction of miRNA–mRNA interaction
network

Four hundred and seventy-two proteins in the turquoise module
(MM> .8 and |GS|> .2) verified byWGCNAand 886DEPs in the control
and withdrawal groups verified by differentially expressed analysis
overlapped into 350 DEPs (Figure 5A). A PPI network was
constructed containing 173 proteins (Figure 5B). To identify hub
proteins in the PPI network, CytoHubba was used to analyze the
173 proteins with interactions by four algorithms. The intersection of
the top 10 proteins of each algorithmwas shown in the Venn diagram and
seven hub proteins (Dlg3, Dlg4, Shank3, Grin2b, Camk2b, Camk2a and
Syngap1) were obtained (Figure 5C), closely implicated with
glutamatergic synapses and the calcium signaling pathway. This was

FIGURE 3
WGCNA identified modules associated with alcohol withdrawal. (A) Sample cluster dendrogram detected outliers and the trait heatmap displayed the
sample traits. (B) Soft-thresholding power selection of WGCNA. The left panel shows the scale-free fit index as a function of the soft-thresholding power. The
right panel shows the mean connectivity as a function of soft-thresholding powers. (C) Module assignment and cluster dendrogram. Highly interconnected
genes were clustered and fivemodules were identified with hierarchical clustering tree analysis. Different colors represent different modules. (D)Cluster
dendrogram of five modules. (E) Heatmap of the correlations among modules based on Pearson’s correlation coefficient. Correlation of the corresponding
modules is represented by square colors. High correlation is represented with red, while low correlation is represented with blue. (F) The module–trait
relationship heatmap. The columns represent Control, Withdrawal, and Diazepam Groups. The rows represent the module eigengenes. Corresponding
correlations and p values are shown in each square. Blue represents a negative correlation, and red a positive correlation. (G) Scatterplot of genes in the
turquoise and blue modules; the correlation and p-value are under the title.
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confirmed by enrichment analysis ofWGCNAmentioned above. All hub
proteins were downregulated in the withdrawal group compared with
control group, and upregulated in the diazepam group compared with
withdrawal group. Based on the identified miRNA–mRNA pairs, we
constructed an interaction network containing 49 miRNA–mRNA pairs,
31 miRNA and seven mRNA, visualized by Cytoscape (Figure 5D). By
comparing seven hub mRNAs, Grin2b was found to be a potential target
of 19 miRNAs. Camk2a and Dlg3 were the potential targets of 11 and
seven miRNAs, respectively. Regarding miRNA targeting of these hub
mRNAs, mmu-miR-491-5p were the main regulatory candidates based
on the most interactions (degree = 6), indicating that it could be a
biomarker of alcohol withdrawal.

3.7 Identification of hub proteins related to
diazepam treatment

To research the mechanism of action of diazepam on alcohol
consumption and withdrawal, 365 diazepam-treatment-related DEPs

were imported into the STRING online database to construct the PPI
network (Figure 6A). An interaction network of 112 proteins was acquired.
To identify hubproteins in the network,MCODEwas applied for clustering
proteins and the most significant MCODE cluster with 21 nodes and
114 edges is shown in Figure 6B. The related pathway involved
glutamatergic synapses, SNARE interactions in the synaptic vesicle cycle,
GABAergic synapses, and heterotrimeric G-protein complexes.

To further investigate the functions and mechanisms of diazepam-
related proteins, GO and KEGG analyses were performed. In upregulated
DEPs, the enrichedGOannotations included cellular protein localization in
the BP category, cell junction in the CC category, and purine nucleotide
binding in the MF category. KEGG pathways included ErbB signaling
pathway, long-term potentiation, glutamatergic synapses, pathways of
neurodegeneration—multiple diseases, calcium signaling pathway, and
dopaminergic synapses (Figures 6C, D). For downregulated DEPs, the
enriched GO annotations included organophosphate metabolic process in
the BP category,mitochondrion in theCC category, and protein-containing
complex binding in the MF category. KEGG pathways included
amyotrophic lateral sclerosis, pathways of neurodegeneration—multiple

FIGURE 4
Enrichment analysis of withdrawal-related turquoise and blue modules. (A) Top 15 GO functional annotations in blue module. (B) Top 15 GO functional
annotations in turquoise module. (C) KEGG pathway enrichment analysis in blue module. (D) KEGG pathway enrichment analysis in turquoise module.
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diseases, metabolic pathways, Parkinson’s disease, Alzheimer’s disease, fatty
acid metabolism, oxidative phosphorylation, and Huntington’s disease
(Figures 6E, F). We demonstrated that the mechanism of action of
diazepam on AWS may involve upregulation of the ErbB signaling
pathway, glutamatergic synapses, calcium signaling pathway,
downregulated metabolic pathways, and oxidative phosphorylation.
However, this needs experimental verification.

4 Discussion

To our knowledge, this is the first study to apply proteomics to explore
potential biomarkers of diazepam treatment of AWS in mice. This large-
scale assessment of protein expression changes contributes to our
understanding of the effects of diazepam on AWS and the potential

physiological and pharmacological actions. Here, we applied a label-free
and iBAQ LC-MS/MS-based proteomics approach to identify seven hub
proteins related to withdrawal (Dlg3, Syngap1, Grin2b, Dlg4, Camk2b,
Shank3 and Camk2a) and significant alteration of a pathway most closely
related to diazepam treatment of AWS, the glutamatergic synapse.
Additionally, the calcium signaling pathway was demonstrated as a
suitable biological correlate.

Excitatory synapses are most often localized on dendritic spines,
characterized by an electron-dense matrix of receptors and supporting
proteins collectively known as the postsynaptic density (PSD). This
complex assembly of hundreds of distinct proteins dynamically changes
its structure and composition during development and in response to
synaptic activity. The PSD contains signaling molecules including the
subunits of the glutamate receptors N-methyl D-aspartate (NMDA)
receptor, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate

FIGURE 5
Identification of hub proteins related to alcohol withdrawal. (A) Overlap analysis in 472 proteins in turquoise module (MM > .8 and |GS| > .2) verified by
WGCNA and 886 DEPs. (B) PPI network construction of 350 overlapped proteins related to alcohol withdrawal. (C) Seven hub proteins related to withdrawal
identified by CytoHubba plugins of Cytoscape based on four algorithms: EPC, MCC and MNC. (D) miRNA–mRNA interactions network. Orange circle
represents hub proteins and green diamond miRNA. The deeper the color and the larger the circle, the greater the degree.
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(AMPA) receptor, calcium/calmodulin dependent protein kinase II
(CaMKII) and synGAP. Other prominent PSD proteins are scaffold
molecules, including the PSD-95 family and Shank (Spiga et al., 2014).

Several studies have reported that chronic ethanol exposure followed by
withdrawal induced excitotoxicity because the balance was destroyed
between neuroadaptive changes (such as increased extracellular
glutamate increased average amplitude (Gerace et al., 2021) and basal
frequency (Zuo et al., 2019) of spontaneous excitatory postsynaptic
currents; sEPSCs) in the duration of chronic ethanol exposure and the
central nervous system inhibitory effect of ethanol. In early withdrawal
(0–12 h), the inhibitory effect of ethanol was not exerted and excitatory
synapses were in a state of overpotentiation, causing increased extracellular
glutamate (Rossetti and Carboni, 1995), intense Ca2+ loading, p38mitogen-
activated protein kinase (MAPK) activation and oxidative stress,
culminating in ATP depletion, mitochondrial injury (Jaatinen et al.,
2003) and neuronal death (Skrzypiec et al., 2009; Jung and Mallet,
2018). However, with the extension of the withdrawal process, the levels
of neurotransmitters often returned to normal, which was related to the
changes in protein expression. Our results found two protective
mechanisms that attenuated withdrawal-induced excitotoxicity. 1) The
decreased expression of postsynaptic glutamate receptor GluN2B,

mGlu7, and PSD proteins PSD-95, SAP102, Shank3 and CaMKII
reduced synaptic potentiation, alleviating abnormal glutamatergic
transmission. 2) Upregulation of glutamate transporter
EAAT4 decreased extracellular glutamate concentration by taking up
more glutamate into the glia.

Several studies have demonstrated that glutamatergic transmission was
implicated with chronic ethanol exposure and withdrawal (Gerace et al.,
2016; Gerace et al., 2018). For example, in mice with ethanol withdrawal,
there were significant decreases in sEPSC amplitude and current kinetics,
suggesting a decrease in postsynaptic glutamate transmission (Patel et al.,
2022). This was similar to our proteomic analysis that showed that
glutamatergic synapse signaling was decreased. NMDA receptor
antagonist dizocilpine reduced both the physical signs of withdrawal
and glutamate output (Rossetti and Carboni, 1995). We found that
GluN2B was significantly downregulated (logFC = −14.40, p = .005)
and AMPA subunit 4 (GluA4) was mildly upregulated (logFC = 1.60,
p = .009) in mice in the withdrawal group compared with control
group. NMDA amplitude was significantly decreased and the AMPA/
NMDA ratio was significantly increased, indicating a selective decrease in
postsynaptic glutamate transmission in the BLA-mPFCCRF1+ pathway in
mice with alcohol withdrawal (Patel et al., 2022). Despite a previous report

FIGURE 6
Identification of hub proteins related to diazepam treatment. (A) PPI network construction of 365 DEPs related to diazepam treatment. (B) The most
significant MCODE cluster with 21 nodes and 114 edges. (C) Top 15 GO functional annotations of upregulated DEPs in Diazepam Group compared with
Withdrawal Group. (D) KEGG pathway enrichment analysis of upregulated DEPs in Diazepam Group compared with Withdrawal Group. (E) Top 15 GO
functional annotations of downregulated DEPs in Diazepam Group compared with Withdrawal Group. (F) KEGG pathway enrichment analysis of
downregulated DEPs in Diazepam Group compared with Withdrawal Group.
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showing that ethanol withdrawal induced increased expression of
metabotropic glutamate subtype 5 (mGlu5) receptor (Gerace et al.,
2018), we found no significant difference for mGlu5. The expression
levels of mGlu4 and mGlu7 had opposite trends (logFC = 15.24, p =
.005 and logFC = −13.83, p = .005, respectively).

The PSD-95 family of proteins, known as synaptic membrane-
associated guanylate kinases, are highly expressed at excitatory synapses
(Won et al., 2017) and as scaffolding proteins, regulate clustering and
function of NMDA receptors (Alele and Devaud, 2005), including PSD-95,
PSD-93 and SAP102 (Chen et al., 2021). Several studies have demonstrated
the relationship between PSD-95 and alcohol consumption. For example,
alcohol consumption reduced the expression of PSD-95 in the dorsal
hippocampus of rats (Marcolin et al., 2020). A reduction in PSD-95
expression could indicate a deficit in assembling clusters of
glutamatergic receptors in postsynaptic membranes, making it difficult
to respond to glutamatergic stimuli coming from other regions (Chen et al.,
2011).We also found that PSD-95 (Dlg4), SAP102 (Dlg3) and Shank3were
downregulated (logFC = −1.42, p = .009; logFC = −1.28, p = .009;
logFC = −6.66, p = .009, respectively) in the withdrawal group
compared with control group. This suggests that the expression deficit
of PSD-95 family and scaffolding proteins is a potential mechanism of
ethanol-withdrawal-induced decreased postsynaptic glutamate
transmission.

The extracellular glutamate concentration is tightly controlled by
excitatory amino acid transporters (EAATs) (Brolese et al., 2015).
Several studies have assessed the effects of chronic ethanol exposure on
EAATs. For example, in a Xenopus oocyte expression system, decreased
EAAT4 (Yoo et al., 2008) and EAAT3 (Kim et al., 2005) activity was
observed in chronic ethanol exposure. However, some studies have
demonstrated that chronic ethanol exposure increased EAAT
expression. EAAT3 (EAAC1) showed significantly higher expression in
the cerebral cortex and hippocampus in ethanol-withdrawn female rats
(Alele and Devaud, 2005). Pharmacoproteomic results have demonstrated
that ethanol exposure increased EAAT2 expression (Germany et al., 2018).
The present study showed that ethanol withdrawal increased EAAT4
(Slc1a6) expression, which was the largest change among DEPs
compared with the controls (logFC = 22.49, p = .005), suggesting
uptake of more extracellular glutamate into the glia.

CaMKII was one of the PSD members in excitatory synapses,
regulating NMDA-receptor-dependent synaptic potentiation. NMDA-
receptor-mediated EPSCs mediate calcium flux into the postsynaptic
compartment, primarily activating downstream CaMKII, resulting in
autophosphorylation of the kinase, leading to induction and
maintenance of synaptic potentiation that are crucial for neuronal
development, synaptic and structural plasticity, learning, and memory
(Lisman, 2017; Yong et al., 2021). Recently, a gene mutant mouse study
identified that αCaMKII autophosphorylation-dependent remodeling of
glutamatergic synapses is a plausible mechanism for behavior related to
alcohol addiction (Mijakowska et al., 2017). Several studies have
demonstrated reduced CaMKII expression (Ayers-Ringler et al., 2016)
or activity (Christian et al., 2012) during ethanol withdrawal. For example,
Thr286 dephosphorylation along with Thr305/306 phosphorylation shifted
CaMKII kinase to an inactive state during alcohol withdrawal (Christian
et al., 2012). The enhancement of sEPSCs and firing was blocked by a
CaMKII inhibitor in ethanol-withdrawn rats, reducing ethanol intake (Zuo
et al., 2019). However, some research has shown that abstinence from
alcohol exposure induced an undercurrent of CaMKII kinase activity,
which may have promoted aberrant glutamatergic responses (Natividad
et al., 2018). Our results showed that decreased expression levels of

CaMKIIα and CaMKIIβ (logFC = −2.75, p = .009; logFC = −1.02, p =
.016, respectively) in ethanol-withdrawn mice. We propose that reduced
CaMKII expression or activity may be considered as a protective
mechanism to resist abnormal synaptic potentiation during ethanol
deprivation.

SynGAP is a neuron-specific Ras and Rap GTPase-activating protein
with high expression in the PSD fraction (WGt et al., 2015) of excitatory
neurons and phosphorylated byCaMKII (Oh et al., 2004) to regulate neural
development, synaptic plasticity (Zhang et al., 2020), and the trafficking of
glutamate receptors (Carlisle et al., 2008). Mutations in the SynGAP1 gene
have been linked to stroke (Zhang et al., 2020; Yang et al., 2022) and
neurodevelopmental disorders, such as cognitive dysfunction (Lai et al.,
2021; Kilinc et al., 2022), autism spectrum disorders (Harris et al., 2021),
schizophrenia (Gamache et al., 2020) and epilepsy (Creson et al., 2019).
However, the relationship between SynGAP and ethanol consumption has
not been reported so far. Our results found that SynGAP1 was significantly
downregulated in ethanol-withdrawnmice (logFC=−3.47, p= .009), which
may be explained by the proposal that GluN2B-containing NMDA
receptors and CaMKII act upstream of SynGAP (Wang et al., 2013).
SynGAP is considered to be a negative regulator of Ras (Yang et al., 2022).
Phosphorylation of synGAP by CaMKII increased its Ras GTPase-
activating activity (Oh et al., 2004), preventing the activation of Ras and
potentiating p38 MAPK signaling (Rumbaugh et al., 2006). SynGAP
dissociation from the MUPP1–CaMKII complex resulted in its
dephosphorylation, accompanied by p38 MAPK inactivation
(Krapivinsky et al., 2004), which was consistent with our KEGG
analysis by WGCNA. The clustered genes of the MAPK signaling
pathway (GeneRatio = 21/330, p.adjust = .009) was from turquoise
modules (downregulated, withdrawal related), but not from blue
modules (upregulated, withdrawal related). In slices from rats subjected
to 1-day withdrawal from CIE treatment, the reduction in MAPK
phosphorylation during post-tetanic potentiation was observed (Roberto
et al., 2003). However, some researchers have reported that p38MAPKwas
activated by ethanol withdrawal from chronic ethanol exposure (Jung et al.,
2016; Tian et al., 2016; Ryou et al., 2017). These apparently contradictory
results could be because of the differences in the species, sample type,model
system, and timing of exposure and withdrawal. In summary, our results
showed that in the later period of ethanol withdrawal, a series of
neuroadaptive changes occurred to attenuate withdrawal-induced
excitotoxicity (i.e., increased extracellular glutamate).

In themiRNA-mRNA interaction analysis,mmu-miR-491-5pwere the
main regulatory candidates and could be a biomarker of AUD. As known,
MicroRNA-491-5p (miR-491-5p) plays an important role in regulating cell
proliferation and migration (Liu et al., 2020). Besides, mmu-miR-491-5p
also involved neurodevelopment and angiogenesis, for example, Tang W
revealed that miR-491-5p downregulation alleviated neurological
dysfunction, promoted the recovery of regional cerebral blood flow,
increased the number of lectin-stained microvessels, and increased the
survival of neurons after traumatic brain injury (Tang et al., 2022).
However, we need more experiments to confirm the relationship
between miR-491-5p and AUD such as detection in the serum of
patients with AUD.

Diazepam is a well-known psychoactive drug widely used worldwide
for the treatment of anxiety, seizures, alcohol withdrawal syndrome, muscle
spasms, sleeplessness, and agitation. It is the number of the benzodiazepine
family, substances known to primarily act by binding and enhancing
GABA(A) receptors (Markin et al., 2021). Several studies have reported
that diazepam suppressed ethanol withdrawal symptoms and canceled out
the working memory impairments and glucocorticoid alterations in the
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alcohol-withdrawn animals (Mhatre et al., 2001; Dominguez et al., 2018).
Alcohol is an agonist of the GABAA receptor (Lovinger and Homanics,
2007). However, chronic ethanol exposure and withdrawal induce GABAA
receptor adaptive change. The study has shown that themaximal density of
GABAA receptor-mediated current was reduced significantly by 33 or 28%
after chronic ethanol treatment or ethanol withdrawal, respectively (Sanna
et al., 2003). Accordantly, our results demonstrated that the proteins of
Turquoisemodules were clustered toGABAergic synapse (GeneRatio = 19/
330, p.adjust <.001), not Blue modules, suggesting downregulated
GABAergic synapse in withdrawal group compared with control
group. Meanwhile, GABAergic synapse of diazepam group was
upregulated compared with withdrawal group (GeneRatio = 6/147,
p.adjust = .013), indicating diazepam activated GABAA receptor. In
addition, our research found that glutamatergic synapse of diazepam
group was upregulated compared with withdrawal group (GeneRatio =
14/147, p.adjust = 3.07E-07), probably resulting from that CNS inhibition
induced by diazepam excited GABA receptor needs to be balanced by
upregulated glutamatergic synapse. However, the potential mechanism
needs further research to clarify.

Prior research has shown that diazepam increased aspartate
concentration (Markin et al., 2021). Aspartic acid is an agonist of the
excitatory AMPA and NMDA receptors. In the present study, we showed
that NMDA receptors (Grin1) and metabotropic glutamate receptors
(MGlu3, MGlu5 and MGlu7) were significantly upregulated in the
diazepam group compared with the withdrawal group. Therefore, it is
conceivable that diazepam-induced elevated aspartic acid levels may
alleviate withdrawal-induced glutamatergic synapse inhibition. The
physiological reasons for this deserve further investigation.

5 Conclusion

We used a label-free iBAQ proteomics approach and bioinformatic
analysis to determine protein expression profiles of the brain and identify
the hub proteins that are associated with ethanol withdrawal or diazepam
treatment (i.e., Dlg3, Dlg4, Shank3, Grin2b, Camk2b, Camk2a and
Syngap1). In enrichment analysis, glutamatergic synapse was the most
significant pathway related toAUD thatmay be a potentialmolecular target
for new interventional strategies. The pharmacologicalmechanismof action
of diazepam in the treatment of AWS may involve increasing aspartate
concentrations, contributing to alleviating withdrawal-induced
glutamatergic synapse inhibition. Continued investigation of the detailed
roles of the proteinsmay help gain insight into themechanisms responsible
for the development of AUD that may eventually lead to the discovery of
novel diagnostic markers and therapeutic targets.
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